高考数学一轮复习-第九章-解析几何-96-双曲线课件-理-北师大版_第1页
高考数学一轮复习-第九章-解析几何-96-双曲线课件-理-北师大版_第2页
高考数学一轮复习-第九章-解析几何-96-双曲线课件-理-北师大版_第3页
高考数学一轮复习-第九章-解析几何-96-双曲线课件-理-北师大版_第4页
高考数学一轮复习-第九章-解析几何-96-双曲线课件-理-北师大版_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

9.6双曲线考纲要求:1.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质(范围、对称性、顶点、离心率、渐近线).

2.理解数形结合的思想.

3.了解双曲线的简单应用.21.双曲线的定义平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|

)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点

,两焦点间的距离叫做双曲线的焦距

.

注:设集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数,且a>0,c>0:(1)当a<c时,集合P是双曲线

;

(2)当a=c时,集合P是两条射线

;

(3)当a>c时,集合P是空集

.

32.双曲线的标准方程和几何性质

4512345×

×

√√√6123452.已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为(

)答案解析解析关闭答案解析关闭7123453.若实数k满足0<k<9,则曲线

的(

)A.焦距相等

B.实半轴长相等C.虚半轴长相等

D.离心率相等答案解析解析关闭答案解析关闭8123454.“k>9”是“方程

表示双曲线”的(

)A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件答案解析解析关闭答案解析关闭9123455.设双曲线C经过点(2,2),且与

具有相同渐近线,则C的方程为

;渐近线方程为

.

答案解析解析关闭答案解析关闭1012345自测点评1.要熟练掌握双曲线中参数a,b,c的内在关系及双曲线的基本性质.2.理解离心率的大小范围,并能根据离心率的变化来判断双曲线的扁狭程度.3.双曲线的定义中注意不是距离的差,而是距离差的绝对值.11考点1考点2考点3知识方法易错易混考点1双曲线的定义及其标准方程

例1(1)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为

.

12考点1考点2考点3知识方法易错易混13考点1考点2考点3知识方法易错易混(2)已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为

.答案解析解析关闭答案解析关闭14考点1考点2考点3知识方法易错易混思考:如何灵活运用双曲线的定义求方程或者解焦点三角形?解题心得:双曲线定义的应用主要有两个方面:一是判定平面内动点的轨迹是不是双曲线,进而根据要求可求出曲线方程;二是在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF1|-|PF2||=2a,运用平方的方法,建立与|PF1|·|PF2|的联系.15考点1考点2考点3知识方法易错易混对点训练1

(1)已知F1,F2分别为双曲线C:x2-y2=1的左、右焦点,点P在双曲线C上,且∠F1PF2=60°,则|PF1|·|PF2|等于(

)

A.2 B.4 C.6 D.8答案解析解析关闭答案解析关闭16考点1考点2考点3知识方法易错易混(2)已知F为双曲线C:的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为

.

答案解析解析关闭答案解析关闭17考点1考点2考点3知识方法易错易混考点2双曲线的几何性质(多维探究)

类型一

已知离心率求渐近线方程思考:双曲线的离心率与渐近线的方程有怎样的关系?答案解析解析关闭答案解析关闭18考点1考点2考点3知识方法易错易混类型二

已知渐近线求离心率例3设直线x-3y+m=0(m≠0)与双曲线(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是

.思考:求双曲线的离心率需要建立谁与谁的关系?答案解析解析关闭答案解析关闭19考点1考点2考点3知识方法易错易混类型三

由离心率或渐近线确定双曲线方程例4(2015郑州二模)已知双曲线(a>0,b>0)的两个焦点分别为F1,F2,以线段F1F2为直径的圆与双曲线渐近线的一个交点是(4,3),则此双曲线的方程为(

)思考:求双曲线的一般思路是怎样的?答案解析解析关闭答案解析关闭20考点1考点2考点3知识方法易错易混类型四

利用渐近线与已知直线的位置关系求离心率范围例5已知双曲线

与直线y=2x有交点,则双曲线离心率的取值范围为(

)答案解析解析关闭答案解析关闭21考点1考点2考点3知识方法易错易混思考:如何求双曲线离心率的范围?解题心得:1.双曲线的离心率与渐近线有密切联系,可通过公式

来反映.2.求双曲线方程的一般思路是利用方程的思想,把已知条件转化成等式,通过解方程求出a,b的值,从而求出双曲线的方程.3.涉及离心率的范围问题,要充分利用渐近线这个媒介,并且要对双曲线与直线的交点情况进行分析,最后利用三角或不等式解决问题.4.双曲线的几何性质若与向量、三角等交汇,则需要将向量或三角等有关条件进行转化.22考点1考点2考点3知识方法易错易混对点训练2

(1)已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是(

)

答案解析解析关闭答案解析关闭23考点1考点2考点3知识方法易错易混(2)已知双曲线C:(a>0,b>0)的离心率为2,A,B为其左、右顶点,点P为双曲线C在第一象限的任意一点,点O为坐标原点,若PA,PB,PO的斜率为k1,k2,k3,则m=k1k2k3的取值范围为(

)答案解析解析关闭答案解析关闭24(3)(2015课标全国Ⅱ,理11)已知A,B为双曲线E的左、右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为(

)考点1考点2考点3知识方法易错易混答案解析解析关闭答案解析关闭25考点1考点2考点3知识方法易错易混考点3直线与双曲线的位置关系

26考点1考点2考点3知识方法易错易混27考点1考点2考点3知识方法易错易混28考点1考点2考点3知识方法易错易混思考:直线与双曲线的位置关系的判断常见方法有哪些?解题心得:直线与双曲线的位置关系的判断和直线与椭圆的位置关系的判断方法类似,但是联立直线方程与双曲线方程消元后,注意二次项系数是不是0的判断.对于中点弦问题常用“点差法”.29考点1考点2考点3知识方法易错易混对点训练3

已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(-12,-15),求双曲线E的方程.

答案答案关闭30考点1考点2考点3知识方法易错易混31考点1考点2考点3知识方法易错易混32考点1考点2考点3知识方法易错易混1.双曲线标准方程的两种形式的区分要结合x2,y2前系数的正负.2.关于双曲线中离心率范围问题,不要忘记双曲线离心率固有范围e>1.4.若利用弦长公式计算,在设直线斜率时要注意说明斜率不存在的情况.5.当直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.33易错警示——忽视判别式而致误典例1已知双曲线,过点P(1,1)能否作一条直线l,与双曲线交于A,B两点,且点P是线段AB的中点?解:设交点A(x1,y1),B(x2,y2),且线段AB的中点为(x0,y0),若直线l的斜率不存在,显然不符合题意.设经过点P的直线l的方程为y-1=k(x-1),即y=kx+1-k.3435典例2直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A,B.(1)求实数k的取值范围;(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.解:(1)将直线l的方程y=kx+1代入双曲线C的方程2x2-y2=1后,整理得(k2-2)x2+2kx+2=0.①依题意,直线l与双曲线C的右支交于不同两点,解得k的取值范围是-2<k<-.36(2)设A,B两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论