




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 POPO(A)x轴上 (B)x轴上(C)x轴上 (D)y轴上PEx(E)y轴上 2有dS的电荷,该电荷在球面内各点产生的电场强度(A)处处为零 (B)不一定都为零(C)处处不为零 (D)无法判定 3 yyOxx标为(x,0).当x>>a时,该点场强的大小为: 5
yOyO
x 612Q
0a
Q(C) (D) 03a 07x变化的关系曲线为:(向右为正、向左为负 EE0-a +ay- ay- ax-aE-aE-a
+ax8
-a
+a各点电场强度E随位置坐标x变化的关系曲线为:(设场强方向向右为正、向左为负
E
0 0E-E-a E
yy ax
-a 9x轴垂直带电平面,坐标原点在带电平面上,则
EEEOx EOxEOx Ox10x轴垂直带电平面,坐标原点位于带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x变化的关系曲线为(规定场强方向沿x
EOxEOxEOxEOxE∝-E E∝- OxOx为(A) (B)R2E/(C) (D) 12 形面.在球面上取两块相等的小面积S1 13a/2处,有一电荷为q的正点电荷,如图所示,则通过该 面的电场强度通量
q
14已知 15 16q至曲面外一点,如图所示,则引入前后 17R的均匀带电球面的静电场中各点[18r的关系曲线为:
EO
E
r 19
OE
E
O
R的均匀带电球体的静电场E与距球心的距离r的关系曲线为:[
OE
20R的“无限长”均匀带电Er的关系曲线
E
rE O
O
21 E~r系曲线.请该静电场是由下列哪种带电体产生
22某点与球心相距r,当Ra<r<Rb时,该点的电场强度的大小为:1QaQb
QaQb Q
b
bb
23R、电荷体密度=Ar(A为常
aAqb24aAqb则通过侧面abcd的电场强度通量等于
q
25
26 SV定理EdSSV
dV/27 根 定理的数学表达式SEdSq/0可知下述各种说法中,正确的是 28 29带有电荷Q1,外球面半径为R2、带有电荷Q2,则在内球面 PPOrrPE
Q 4
4R0 30
0 q0能.(B)单位试验电荷置于该点时具有的电势能.(C)单位正电荷置于该点时具有的电势能. 31 ORrORORrORrORrUr变化的分布 32
则M点的电势为
33
放在与平面相垂直的x轴上的和-a位置上,如图所示.设坐标O<+a区域的电势分布曲线
O+aU
-a U
-a
34
+a PRqrPPRqr
q11
4 R0 0 00
(D)q11
4 r35 360.3mabca处有一为:10-9Nm(A)
37 E=0,U E=0,U .E
,U E
,U
38 Nq的圆周上:一种是无规则地分布,另一种是均匀分布.比较 39 40
443
223
641
12UOxU UOxUOxU UOxUOx[42x轴垂直带电平面,原点在带电平面上,则其周围空间各点电势U随距离平面的位置坐标x变化的关系曲线为:[
UOxUOxUOx43R的为(图中的U0和b皆为常量):
UO
R
U
44QrOQrO(A)E=0,U= .(B)E=0,U=
45
40 R2,U= ,
球心为rP点处电场强度的大小与电势分别为:
,U= Q OQ O
112140
4Rr0
2,U=
r
0 2
abrabr径为b的薄金属圆筒,圆筒原先不带电,但与地连rP点的场强大(A) lna (B)E=0,U= lnb(C)E=
,U= lnb (D)E= ,U=lnb 47
示.则电场力对q作功为(A) r2. 2r
r (D) 48 -四点,如图所示.现将一试验电荷从A点分别移动到B、C、 D各点, 49两板间的电势差UAB为
q1q2d. 20S
q1q2dBq q 2d
2d 50 如图所示,CDEFl2lDC延长线上CA=l处的A点有点电荷+q,在CF的中 动到F点,则电场力所作的功等于
5555
1 5
3333
51 551 a0 0
a
(C)33qQ (D)23qQ. 52
P1P2 53面2,带有电荷Q,则此两球面之间的电势差U1-U2为: 11 11 4 R 4 r0 qQ
q0 4 R 40 54(A)(B)(C)
(D) 55q q SS
0
20q q0000
S2 (D)S2 56充了电的平行板电容器两极板(看作很大的平板)F与两极板间的电压U的关系是:(A) (B) -R-RQ
58p该电偶极子 59在一个带有正电荷的均匀带电球面外放置 该电偶极子的运动主要
++p+++沿逆时针方向旋转,直至电矩p沿径向指
++++ 60
kk
(B) k (D)k 61至相距为r2,此时每一个电子的速率为2ke1m2k(C) m
1 1r2kk11m r2 . (D)er2 62距r1到相距r2期间,两电子系统的下列哪一个量是不变的?(A)动能总和 (B)电势能总和(C)动量总和 (D)电相互作用力 63密立根油滴实验,是利用作用在油滴上的电场力和重力平衡而测量电荷的,其电2r(A) (B)(C) (D) 642(A)2倍 (B) 2倍2(C)4倍.
倍
.(C) (D) 66合力F和合力矩M为:(A)F=0,M= (B)F=0,M(C)F0,M (D)F0,M 67电荷时,M、N两点电荷之间的作用力(A)大小不变,方向改变 (B)大小改变,方向不变(C)大小和方向都不变 (D)大小和方向都改 68 之间保持稳定,如图所示.若油滴获得了附加的负电荷, 了继续使油滴保持稳定,应采取下面哪个措施 69C点场
A
EA70
EAE
(D) EA于C点场强方向的四个图示中正确的是:
A
(B) EA (C) E
(D) E 71 于C点场强方向的四个图示中正确的是:
A
EA72
(C) E
(D) E CEBCBCAE AE 73 若场中某点不放试探电荷q0,则F=0,从而E 74将一个试验电荷q0(正电荷)放在带有负电荷的大导体附近 则Fq0PFq0PFq0PF/q0与P点处原先场强的数值哪个大无法确定 75 .(r为点电荷到场点的距离)“无限长”均匀带电直线(电荷线密度)的电场: (r为带电直线到场点的垂直于直线的矢量 R2 (r为球心到场点的矢量 76 (0,电直线,电荷线密度分别为+(x<0)和-(x>0)Oxy坐标平面上点(0,a)处的场强E (A) (B) i ]0] E] ]77为电场强度的大小,U为电势: 78为电场强度的大小,U为电势):
? 79 Q2,则在外球面外面、距离球心为r处的P点的 Q1Q22 2
4rR1010
.
21180
rrPO大小E为: (B)Q1. (D)Q2Q1 rPR1R2的共大小E为:(A)12. 20r
1 . 20R1 rRP2
. (C) . 2 . rPE为:
20R2
E1/E1/rE~r该电场是由下列哪一种带电体产生的(E表示电场强度的大小,r表示离对称中心的距离).均匀带电球面;(B)(C)点电荷 (D)不均匀带电球面 85图中所示曲线表示某种球对称性静电场的场强大小E8687图示为一轴对称性静电场的E~r关系曲线,请该R)88ER的半
E1E1/r EE1/ E
1R222R2E2
SrA89SrABAB为两个均匀带电球体,A带电荷+q,BB . .Sq0S定理求出 90EORR的闭合EOR- 4R2
91
PPrO则在内球面之内、距离球心为rP点的电势U为:Q1Q2
92
Q1R2Q2.设无穷远处为电势rPU为:
93
O O
94 图中所示为一球对称性静电场的电势分布曲线,r表 95 离对称中心的距离.请该电场是由下列哪一种带电 96
(D) 97 大小,U为电势) PQrPQrROrP
1qQ0 4 R0 q qQq 4 4 099
0 C点为中心,l为半径的半圆弧,N点有正电荷+q,-M点有负电荷-q.今将一试验电荷+q0从O点出 NDPOCDP(A)A<0,且为有限常量 (C) (D)[]100荷从M点移到N点.有人根据这个图作出下列几点结论, M-中哪点是正确的 (A)电场强度 (B)电势(C)电势能 (D)电场力的功101MN点.有人根据这个图作出下列几点结论,其(A)电场强度 (B)电势(C)电势能 (D)电场力的功102ab在电荷为-QA的静电场中,将另一电荷qBab点.ab Q11 qQ11
M 40qQ
r21
40
r2 (C)4rr (D)4rr0 2 0 103带有电荷-q的一个质点垂直射入开有小孔的两带电平qU (B)
d-qdd(C) 104
1qU 2BA 105零,则Q与q的大小关系为(A) 2(B)Q=-2(C)(D)[]1061∶3∶5A、B、C,保持在一条直线上,相A、C不动,改变BB所受电场力为零时,ABBC的比值为(A) (B)(C)5 (D)1/5 107F33(A) (B)F/(C)F (D)F/ 10812(A)F/ (B)3F/(C)F/ (D)3F/ -CE-CE两端分别带上电荷+q和-q,再加E,如图所[一孤立金属球,带有电荷
-C-C- -C³10-8C,已知当电场强度的大小为3³106V/m时,空气将被击穿.若要空气不被击 02 6.0³10-6 05m.[1/(40)=9
N2/2
6.0³10-3 12电荷为-5³10-9C的试验电荷放在电场中某点时,受到20³10-9N的向下的力,则该点的电场强度大小 ,方 3A、B为真空中两个平行的“无限大”均匀带电平面,已知两方向如图.则A、B两平面上的电荷面密度分别为 , 4
5电荷线密度分别为1和2如图所示,则场强等于零的点与直线1的距离a 6两个平行的“无限大”均匀带电平面,其电荷面密度分别为+和+2,如图所示,则A、B、C三个区域的电场强度分别为:
aad + 7 ,ED= 8电荷均为+qx轴上的+a和-a位置,如图所示.则y轴上各点电场强度的表示式为E .
++ BCyy QRO9QRO真空中一半径为R的均匀带电球面带有电荷Q(Q>0).今在球面上挖去非常小块的面积△S(连荷),如图.
O,场强方向 垂面上有一点P,它到轴线距离为r(r>R),则P点的电场强度的大小:当r<<L时 ;当r>>L时 12 垂直于OP,则和Q的数量之间应满足关系,且与Q为号电荷 aOR为半径作度通量
r0表 点的电场强度分别 14.15
Ⅰ区E的大 ,方 Ⅱ区E的大 .Ⅲ区E的大 方 16ROdROd
O为球心,R为半径(R>d)作一球面,如图所示, 的延长线与球面交点P处的电场强度的大小为E,方 E17半径为R的半球面置于场强为E的均匀电场中,其 18 EE.19心O点a/2处,有一电荷为q的正点电荷,则通 该平面的电场强度通量 20板平行.则通过M面的电场强度通量1= 通过N面的电场强度通量2= 21
22 在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量EdS 面S内,则通过该斯面的电场强度通量EdS ,式中ES24q1、q2、q3q4 电场强度通量EdS ,式中的S 在闭合曲面上任一点产生的场强25r (r<RrrE (r>Rr26场强分布为r表示在垂直于圆柱面的平面上,从轴线处引出的矢径rE (r<RrrE (r>Rr27q均匀地分布在表面上,在此气球被吹大的过程中,被气球表面掠过的点(该点与球中心距离为r),其电场强度的大小将由变 28分布,r表示离对称中心的距离.这是由29E的分布,r表示离对称中心的距离.这是由30分布,r表示离对称轴的距离,这是由31E的分布,r表示离对称轴的距离.这是由
E E E 32 图中图线表示一种面对称性静电场的场强E的分布,x表示离对称面的距离,规定场强方向沿x轴正 33 34在点电荷+q和-q的静电场中,作出如图所示的三个闭合面S1、S2、S3,则通过这些闭合面的电场强度通量分别是 35
36 abcd的电场强度通量 37 曲面S,如图所示,则以下两式分别给出通过S的电场强度通量EdS EdS 38l.以棒的中点B为电势的零点.则O点电势 ;P点电势U0=39
SPl 静电场中某点的电势,其数值等 .qA 40qA 20cm、30cm.若选B点的电势为零,则A点的电势 ,C点的电势 42,电势 把一个均匀带有电荷+Q的球形肥皂泡由半径r1吹胀到r2,则半径为R(r1< 势U由 q1=3³10-8Cr2=20cmq2=-6零的球面半径 45 圆半径为R,则b点处的电势 46q、2q、3q的三个正点电荷,设无穷远处为电势零点,则三角形中心O处的电势U=.47 R的均匀带电圆盘,电荷面密度为
则圆盘中心O点的电势 48则圆环中心O点的电势U= 49 51Sd.B两板中间,则导体薄板C的电势UC=.52
B面内各点电势U= 53点,则该球面上的电势U= 54则球面外距球心r处的P点的电势UP=.离,0为常量).设无限远处为电势零点.则球外(r>R)各点的电势分布为 56一半径为R的均匀带电球面,带有电荷Q.若规定该球面上电势值为零.则无限远处的电势U∞= 57图中曲线表示一种球对称性静电场的电势分布 58 1/1/r的电场的E~r关系也可描述 系.(E为电场强度的大小,U为电势)59(5446 1m.q的电场中,把一个-1.0³10-9C的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离0.1m处,克服电场力作功1.8³10-5J,则该点电荷q= .(真空介电常量0=8.85³10-122²1²m-2) 62
,因而静电力属 力 d∞ d∞q沿半径为R的整个圆弧的3/4圆弧轨道由a点移到d点的过程中电场力作功 ;从点移到无穷远处的过程中,电场力作功 64 -q场力所作的功 65在静电场中,一质子(带电荷e=1.6³10-19C)沿四分之一的AB点(如图)8.0³10-15J.则当质子沿四分之三的圆弧轨道从B点回到A点时,电场力作功 势 66
OBOA2³10-10m(两者静止)质子电荷e=1.60³10-19C, 11.6119J)
=9³109m2/2与点电荷距离为r处的电势 68 ²m-1,则点a(3,2)和点之间的电势差Uab= 的相互作用电势能 设当两个点电荷相距无穷远时电势能为零70q的点电荷的静电场中,将一电荷为q0的试验电荷从a点经任意路径移动到b点,电场力所作的功 71q0a到b点,外力所作的功
72 图示为一边为a的等边三角形,其三个顶点分则外力需作功A= q73d.ABE方向A点经任意路径到B点的场强线积分Edl
E 74bca静电场中有一质子(带电荷e=1.6³10-19)沿图示路径从a点另一路径回到a点过程中,电场力作功bca.75如图所示,在半径为R的球壳上均匀带有电荷Q,将一个点电荷q(q<<Q)从球内a点经球壳上一个小孔移到球外b点.则此过程中电场力作功A=
a O76将一点电荷+q0沿箭头所示路径由a点移至b点,则外力作功A 77
l
a电荷相距无限远时电势能为零,则此时的电势能 BBC 80 l为半径的半圆路径A、B两处各放有一点电荷,电荷分别为+q和-q把另一电荷为Q(Q<0)的点电荷从 .无穷远处为电势零点,则圆心O点处的电势U= 点电荷从无穷远处移到圆心O点,则电场力做功 82电荷为-QO处,b、c、d为同一圆周上的不同点,如图所示.现将试验电荷+q0从图中a点分别沿ab、ac、ad路径别用A、A、A表示,则三者的大小的关系 - d83 O为心的各圆弧为静电场的等势(位)线图,已知U2<U3,在图上画出a、b两点的电场强度的方向, Ob84b图中所示为静电场的等势(位)U1>U2>b小 Eb(填<、=、85
U1U2aqdaaqda在其中垂线上距离平板d处放一点电荷q0如图所示.在d与a满足 成q0q/(40d2).87认为是均匀的.设两极板分别带有电荷±Q,则两板间相互为.88bbvbava=RRO v 90Sd,其中充满空气.当两极板上加电压U时,忽略边缘效应,两极板间的相互作用力F=.为F,断开电池后,将两板距离拉开到2d,忽略边缘效应,则两板之间的静电作用力的大小 92 93 密度分别为1和2.则导线单位长度所受电场力的大小为 94各用长为l的丝线悬挂于O点,当两小球受力平衡时,两 2(很小)可忽略不计,则小球所带电荷 95
O v0E方向不同,若重力忽略不计,则该粒子的运动轨迹曲线是一条 它所受的电场力F ,力矩的大小 97.98UBBBvBAvA 99电荷为q的质点以直线为轴线作匀速率圆周运动.该质点的速率v=.100止开始下落(重力加速度为g),下落中穿越一均匀电场区域,欲使油滴在该区域中匀速下落,则电场的方向 ,大小 想象电子的电荷-e均匀分布在半径=1.4³10-15m(经典的电子半径)的球
=9³109N²m2/2,=1.6³1-191 总电荷为q,试求在直杆延长线上距杆的一端距离 dP2Q,如图所示.试求圆心O处的电场强度.x3R夹角,如图所示.试求环心O处的电场强度.4 环心O处的电场强度 5 0cos,式中Rx轴所夹的角,6
x OO'单位长度上的电荷为,试求轴线上一点的电场强度.’OROR8图中所示,A、B为真空中两个平行的“无限大”均匀带电平面,A面上电荷面密度A=-17.7³10-8C²m-2,BB=35.4³10-8C²m-2.试计算两平面之间和两平面外的电场强度.(真空介电常量0=8.85³10-122²N1²m-2)
9Ox轴如图所示,两线的中点为原点10a处的一点的场强大小的一半是由平面上的一个半径为R的圆面积范围内的电荷所产生的.试求该圆半径的大小.AROAROB
aaOxROa∞∞∞12布,电荷线密度为ABR,试求圆心O点的场强 13 用绝缘细线弯成的半圆环,半径为R,其上均匀地带 14 1.5³10-8C5cmP15
=9³109²m22R的半球面,均匀地带有电荷,电荷面密度为O16实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约表面的电荷产生,求地面上的电荷面密度.已知:真空介电常量2²1²m-yaOzaxyaOzaxaa布为:Ex=bx,Ey=0,Ez=0.a=0.1mb=1000(C).试求该闭合面中包含的净电荷.真空介电常数0=8.85³10-122²N1²m-2)18
0=8.85³10- E200i30019真空中一立方体形的面,边长a=0.1m,位于图中所Ex=bx Ey=0 常量b=1000/(²m).试求通过该面的电通量ROhP20ROhPPq的点电荷.O、P
yyaOzaxaaqqhR21qhRq=106C的点电荷,如图所示.求通过该圆锥体侧面的电场强度通量.(真空介电常量0=8.85³10-12C2²1²m-2)2223O处电势为零,试求空间的电势分布表示式并画24如图所示,两个点电荷+q和-3qd.
O dRO25ROO并与平面垂直的直线上各点的场强和电势(O点的电26)27A、B的面积都是而厚度可忽略的导体片C平行插在两极板的中间位置,如图所示,试求导体片C的电势.
d d B28
- 求以两环的对称中心O为坐标原点垂直于环面的x轴 29图中所示为一沿x轴放置的长度为l的不均匀量.取无穷远处为电势零点,求坐标原点O处 EEA EEA BMR的半球形光滑绝缘槽放在光滑水平面上(如图A31R1=0.03mR2=0.10m.已知两者的电势差为450V,求内球面上所带的电荷.32有两根半径都是R的“无限长”直导线,彼此平 度上分别带有+和-33E=5³104N/C,方向竖直朝上,把一电q=2.5³10-8Ca点,如图所示.求d点,ad=260cm(与水平方向成45°角).34
dⅢ45aⅡ 一电偶极子由电荷q=1.0³10-6C的两个异号点电荷组成,两电荷相距l=2.0cm.把这电偶极子放在场强大小为E=1.0³105N/C的均匀电场中.试求:qROqROl面电荷的电场力和细线在该电场中的电势能(设无穷m 36m d.电容器不带电时,天平正好平衡.当电容器U AB接地.求B的内表面上电荷线密度1和外表面上电荷线密度之比值/. 38 5000²-1电场中,电场的方向竖直向上.电子初速度为s电子从射入位置上升的最大高度.(电子的质量=9.1³10-31kg,电子电荷绝对值e=1.6³10-19 39在真空中一长为l=10cm的细杆上均匀分布着电荷,其电荷线密度=1.0³10-5C/md=10cmq0=空介电常量0=8.85³10-122²N1²m-2)40电荷线密度一半为+另一半为-.棒的方向与水平方向成
S41两根相同的均匀带电细棒,长为l,电荷线密度 42mq的粒子,43h的直角形光滑斜面斜面倾
+q、BhC下滑.设小球可看作质点,试求小球到达斜面底部 C点时的速率 44R的均匀带电细圆环,其电荷线密度为,水平向圆环的中心运动(如图)h的一点时的速率为v1,试求该粒子到达环心时的速率.
45距离.(质子质量=.27kg,基本电荷e=1.6³10-19C)46mq的质点在垂4748如图所示,一半径为R长度为L的均匀带电圆 L y yOxx=-a/2处的两条“无限长”平行的均匀带电细线,电荷线密度分别为+和-z轴上任一点的电场强度.50两个点电荷分别为q1=+2³10-7C和q2=-2³10- C,相距0.3m.求距q10.4mq20.5mP51
=9.00³109Nm2q 电荷q,如图所示.试以a,q,0表示出圆心 52q1=8.0³10-6Cq2=-16.0³10-6C距20cm,求离它们都是20cm处的电场强度.(真空介电常量 8.85³10- C2N-1m-2Oxd53Oxdd的“无限大”均匀带电平板,电荷面上,Ox轴垂直于平板).54 (r≤R) 55πR
(q为一正的常量= 试求:(1)带电球体的总电荷;(2)球内、外各点的电场强度;(3)球内、外各点的电aOb56aOb57P bx轴方向按余弦规律0cosP b58荷体密度分布为=kx(0≤x≤b),式中k为一正的常59分布不变,r的一个小球体,球心为O,两球心间距离OOd,如图所示.求:在球形空腔内,球心OE0三点在同一直径上,且OPd.若电荷以相同的面密度r1=10cmr2=20cm的两个同的值.(0=8.85³10-12C2/²m2)O O 为电势零点.计算圆盘中心O点电势.62OR2,在它的侧面上均匀带电,电荷面密度为,求顶点O的电O63OrOr半径为r处的电势.65若将27个具有相同半径并带相荷的球状小水滴成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴时总电666768无限远处电势为零,球心处的电势为U0=300V.[0=8.85³10-12C22]69U1=2U0,U2=U0,U0为一已知
R1R70 q=3³10-9CqqRBOARBOA71R的均匀带正电圆环,其电的距离分别为OA3ROB8R.m、72在盖革计数器中有一直径为2.00cm0.134mm的导线.如果在导线与圆筒之间加上850V的电压,试分别求 (1)导线(2)BR1BR110-4mA=4.5³10-3mB,如图所示.阳极300V,忽略边缘效应.求电子刚从阴极射出时所受的电场力.(基本电荷e=1.6³10-19C)RApB74RApBp的电偶极子的电场中,将一电中心重合,R>>电偶极子正负电荷之间距离)B点,求RRRd电荷分别为+Q和-Qd(d>>2R).求两球76所示.若将此偶极子绕通过其中心垂直于pE平面的轴转E180°,外力需作功多少 E77电荷为+q和-2qx=1mx=-1m处.一试验电荷置于x轴上何处,它受到的合力等于零?7879 真空中A、B两点相距为d,其上分别放置-Q +QABO处有一质量m、电量为+qv0AOCaaOCaaa求:(1)C点时,它与带电杆之间的相互作用电势能(设无穷远处为电势零点);(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国日装手袋数据监测研究报告
- 2025年中国数控立式内圆珩磨机市场调查研究报告
- 新生儿溶血病健康宣讲
- 新疆科技职业技术学院《车辆工程专业课程设计》2023-2024学年第二学期期末试卷
- 肇庆市实验中学高中生物三:通过神经系统的调节练习巩固
- 肇庆市实验中学高中历史一:第课马克思主义的诞生教案
- 新疆能源职业技术学院《医学统计学(C)》2023-2024学年第二学期期末试卷
- 2025-2030年中国15家商业银行银行卡业务行业动态分析及投资战略规划研究报告
- 2025-2030年中国B超设备行业发展前景展望及投资战略研究报告
- 2025-2030年中国PA6T项目投资风险研究报告
- 医院感染相关法律法规课件
- 屋顶分布式光伏项目可行性研究报告
- 时花采购供应投标方案(技术方案)
- 个人理财-形考作业3(第6-7章)-国开(ZJ)-参考资料
- 2024年上海客运驾驶员从业资格证
- 人教版小学数学五年级下册《分数加减混合运算》教学设计
- 环保材料使用管理规定
- 化学反应釜操作技能考核试卷
- 高中物理必修二《动能和动能定理》典型题练习(含答案)
- 《公路桥涵施工技术规范》JTGT3650-2020
- 检验科仪器故障应急预案
评论
0/150
提交评论