湖南省长沙市浏阳牛石中学2021年高二数学文月考试卷含解析_第1页
湖南省长沙市浏阳牛石中学2021年高二数学文月考试卷含解析_第2页
湖南省长沙市浏阳牛石中学2021年高二数学文月考试卷含解析_第3页
湖南省长沙市浏阳牛石中学2021年高二数学文月考试卷含解析_第4页
湖南省长沙市浏阳牛石中学2021年高二数学文月考试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市浏阳牛石中学2021年高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知椭圆C:+=1(a>b>0)的离心率为,双曲线﹣=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为()A.+=1 B.+=1 C.+=1 D.+=1参考答案:D【考点】椭圆的简单性质.【分析】由题意,双曲线﹣=1的渐近线方程为y=±x,根据以这四个交点为顶点的四边形的面积为16,可得(2,2)在椭圆C:+=1(a>b>0),利用e=,即可求得椭圆方程.【解答】解:由题意,双曲线﹣=1的渐近线方程为y=±x∵以这四个交点为顶点的四边形的面积为16,故边长为4,∴(2,2)在椭圆C:+=1(a>b>0)上∴,∵e=,∴,∴a2=4b2∴a2=20,b2=5∴椭圆方程为+=1.故选D.2.已知复数,,若,则()A.或 B.

C.

D.参考答案:B3.已知,则

)A.0 B. C. D.2参考答案:B4.在中,,则此三角形解的情况是(

)(A)一解

(B)B两解

(C)一解或两解

(D)无解参考答案:B5.关于x的不等式的解集不是空集,则实m的取值范围是A.m3

B.m<-3

C.m≥3

D.m≤-3参考答案:A6.下列四个类比中,正确得个数为()(1)若一个偶函数在R上可导,则该函数的导函数为奇函数,将此结论类比到奇函数的结论为:若一个奇函数在R上可导,则该函数的导函数为偶函数.(2)若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2.将此结论类比到椭圆的结论为:若椭圆的焦距是长轴长的一半,则此椭圆的离心率为.(3)若一个等差数列的前3项和为1,则该数列的第2项为.将此结论类比到等比数列的结论为:若一个等比数列的前3项积为1,则该数列的第2项为1.(4)在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,将此结论类比到空间中的结论为:在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8.A.1 B.2 C.3 D.4参考答案:D【考点】2K:命题的真假判断与应用.【分析】根据类比推理的一般步骤是:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想),判断命题是否正确.【解答】解:对于(1),若一个偶函数在R上可导,则该函数的导函数为奇函数,将此结论类比到奇函数的结论为:若一个奇函数在R上可导,则该函数的导函数为偶函数,命题正确;对于(2),若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2;将此结论类比到椭圆的结论为:若椭圆的焦距是长轴长的一半,则此椭圆的离心率为,命题正确;对于(3),若一个等差数列的前3项和为1,则该数列的第2项为;将此结论类比到等比数列的结论为:若一个等比数列的前3项积为1,则该数列的第2项为1,命题正确;对于(4),在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,将此结论类比到空间中的结论为:在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8,命题正确.综上,正确的命题有4个.故选:D.7.已知幂函数的图像经过点(2,4),则下列命题中不正确的是

A、函数图像过点(-1,1)

B、当时,函数取值范围是

C、

D、函数单调减区间为参考答案:C略8.已知集合,,则为(

)A.[0,3)

B.(1,3)

C.(0,1)

D.参考答案:C9.如右图所示,点P在边长为1的正方形的边上运动,设M是CD边的中点,则当点P沿着A﹣B﹣C﹣M运动时,以点P经过的路程x为自变量,三角形APM的面积函数的图象形状大致是()A. B. C. D.参考答案:A【考点】函数的图象.【分析】随着点P的位置的不同,讨论三种情形即在AB上,在BC上,以及在CM上分别建立面积的函数,分段画出图象即可.【解答】解:根据题意得f(x)=,分段函数图象分段画即可,故选A.10.某企业在今年年初贷款a万元,年利率为γ,从今年年末开始每年偿还一定金额,预计5年还清,则每年应偿还()A.万元 B.万元C.万元 D.万元参考答案:B【分析】设每年偿还x万元,由题意可得a(1+γ)5=x(1+γ)4+x(1+γ)3+…+x(1+γ)+x,由等比数列的前n项和公式即可得出.【解答】解:设每年偿还x万元,由题意可得a(1+γ)5=x(1+γ)4+x(1+γ)3+…+x(1+γ)+x,由等比数列的求和公式可得a(1+r)5=x,解得x=.故选:B.【点评】本题考查等比数列的求和公式,属基础题.二、填空题:本大题共7小题,每小题4分,共28分11..函数的极值是__________.参考答案:.【分析】对函数求导,并求出极值点,分析该函数的单调性,再将极值点代入函数解析式可得出函数的极值.【详解】函数的定义域为,,令,得.当时,;当时,.所以,函数的极小值为,故答案为:.【点睛】本题考查利用导数求函数的极值,解题时要熟悉求函数极值的基本步骤,考查分析问题和计算能力,属于中等题.12.函数y=ax+1(a>0且a≠1)的图象必经过点参考答案:D13.有两排座位,前排11个座位,后排12个座位。现在安排甲、乙2人就座,规定前排中间的3个座位不能坐,并且甲、乙不能左右相邻,则一共有多少种不同安排方法?__________

(用数字作答).

参考答案:346略14.在棱长为1的正方体ABCD—A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是

参考答案:略15.口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为________.参考答案:1/3略16.已知,且满足,则的最小值是

参考答案:1817.椭圆+=1的右顶点到它的左焦点的距离为

.参考答案:20【考点】椭圆的简单性质.【专题】数形结合;数学模型法;圆锥曲线的定义、性质与方程.【分析】椭圆+=1可得:a=12,b2=80,.即可得出右顶点,左焦点.【解答】解:椭圆+=1可得:a=12,b2=80,=8.右顶点(12,0)到它的左焦点(﹣8,0)的距离d=12﹣(﹣8)=20.故答案为:20.【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(Ⅰ)证明:平面PQC⊥平面DCQ(Ⅱ)求二面角Q﹣BP﹣C的余弦值.参考答案:【考点】MJ:与二面角有关的立体几何综合题;LY:平面与平面垂直的判定;MN:向量语言表述面面的垂直、平行关系;MR:用空间向量求平面间的夹角.【分析】首先根据题意以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;(Ⅰ)根据坐标系,求出、、的坐标,由向量积的运算易得?=0,?=0;进而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得证明;(Ⅱ)依题意结合坐标系,可得B、、的坐标,进而求出平面的PBC的法向量与平面PBQ法向量,进而求出cos<,>,根据二面角与其法向量夹角的关系,可得答案.【解答】解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;(Ⅰ)依题意有Q(1,1,0),C(0,0,1),P(0,2,0);则=(1,1,0),=(0,0,1),=(1,﹣1,0),所以?=0,?=0;即PQ⊥DQ,PQ⊥DC,故PQ⊥平面DCQ,又PQ?平面PQC,所以平面PQC⊥平面DCQ;(Ⅱ)依题意,有B(1,0,1),=(1,0,0),=(﹣1,2,﹣1);设=(x,y,z)是平面的PBC法向量,则即,因此可取=(0,﹣1,﹣2);设是平面PBQ的法向量,则,可取=(1,1,1),所以cos<,>=﹣,故二面角角Q﹣BP﹣C的余弦值为﹣.19.(本小题12分)已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率,若p、q有且只有一个为真,求m的取值范围.参考答案:解:将方程改写为,只有当即时,方程表示的曲线是焦点在y轴上的椭圆,所以命题p等价于;……………5分因为双曲线的离心率,所以,且1,解得,………………8分所以命题q等价于;

……………10分若p真q假,则;

若p假q真,则

综上:的取值范围为…………………12分20.(本题满分12分)某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求第4组至少有一名学生被考官A面试的概率?

组号分组频数频率第1组50.050第2组①0.350第3组30②第4组200.200第5组100.100合计1001.000

参考答案:(1)由题可知,第2组的频数为人,

………………1分第3组的频率为,

………………2分频率分布直方图如下:

………………5分

(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:人,

………6分

第4组:人,

………7分第5组:人,

………8分

所以第3、4、5组分别抽取3人、2人、1人。

(3)设第3组的3位同学为,第4组的2位同学为,第5组的1位同学为,则从六位同

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论