




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间向量数量积的应用[例1]如图所示,在正方体ABCD-A1B1C1D1中,求异面直线A1B与AC所成的角.
[归纳生成]求异面直线所成的角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须把所求向量用空间的一组基向量来表示.[例2]已知空间四边形OABC中,∠AOB=∠BOC=∠AOC,且OA=OB=OC.M、N分别是OA、BC的中点,G是MN的中点,求证:OG⊥BC.[归纳]a⊥b⇔a·b=0,事实上,用向量法证线线垂直问题是向量的数量积的应用.已知:在空间四边形OABC中(如图),OA⊥BC,OB⊥AC,求证:OC⊥AB.已知:在空间四边形OABC中(如图),OA⊥BC,OB⊥AC,求证:OC⊥AB.命题方向:距离问题例3.已知平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都是1,且两两夹角为60°,则AC1的长是多少?变式:如图,在平行四边形ABCD中,AB=AC=1,∠ACD=90°,将它沿对角线AC折起,使AB与CD成60°角,求B、D间的距离.3.1.4空间向量的正交分解及其坐标表示平面向量基本定理:平面向量的正交分解及坐标表示xyo【温故知新】二、空间直角坐标系
单位正交基底:如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用e1,e2,e3表示
空间直角坐标系:在空间选定一点O和一个单位正交基底e1,e2,e3,以点O为原点,分别以e1,e2,e3的正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这样就建立了一个空间直角坐标系O--xyz
点O叫做原点,向量e1,e2,e3都叫做坐标向量.通过每两个坐标轴的平面叫做坐标平面。xyzOe1e2e3给定一个空间坐标系和向量,且设e1,e2,e3为坐标向量,由空间向量基本定理,存在唯一的有序实数组(x,y,z)使p=xe1+ye2+ze3
有序数组(x,y,z)叫做p在空间直角坐标系O--xyz中的坐标,记作.P=(x,y,z)其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标.三、空间向量的直角坐标系xyzOe1e2e3空间向量运算
的坐标表示,则设一、向量的直角坐标运算若A(x1,y1,z1),B(x2,y2,z2),则AB=OB-OA=(x2,y2,z2)-(x1,y1,z1)
=(x2-x1,
y2-y1,
z2-z1)空间一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.二、距离与夹角的坐标表示1.距离公式(1)向量的长度(模)公式注意:此公式的几何意义是表示长方体的对角线的长度。在空间直角坐标系中,已知、,则(2)空间两点间的距离公式2.两个向量夹角公式注意:(1)当时,同向;(2)当时,反向;(3)当时,。解:设正方体的棱长为1,如图建立空间直角坐标系,则
例1如图,在正方体中,,求与所成的角的余弦值.
证明:设正方体的棱长为1,建立如图的空间直角坐标系xyzA1D1C1B1ACBDFE小结:1、空间向量的坐标运算;2、利用向量的坐标运算判断空间几何关系的关键:首先要选定单位正交基,进而确定各向量的坐标,再利用向量的坐标运算确定几何关系。
Thankyou拯畏怖汾关炉烹霉躲渠早膘岸缅
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论