版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市农业中学高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1..若实数x,y满足,则的取值范围为(
)A.[4,8] B.[8,+∞) C.[2,8] D.[2,4]参考答案:A【分析】利用基本不等式得,然后解不等式可得,同时注意.【详解】∵,∴(时取等号),,∴,又,∴,∴.故选A.【点睛】本题考查基本不等式求最值问题,解题关键是掌握基本不等式的变形应用:.2.函数与图像的交点个数是(
). A.0 B.1 C.2 D.3参考答案:D解:函数与的图象的交点个数即函数的零点的个数.显然,和是函数的两个零点.再由,,可得,故函数在区间上有一个零点.故函数与的图象的交点个数为.故选.3.设,则的大小关系是(
).
..
.参考答案:D略4.已知,,,则a,b,c的大小关系为(
)A. B. C. D.参考答案:C【分析】可以看出,直接排除A、B,再比较,从而选出正确答案.【详解】可以看出是一个锐角,故;又,故;又,而,故;从而得到,故选C.【点睛】比较大小时常用的方法有①单调性法,②图像法,③中间值法;中间值一般选择0、1、-1等常见数值.5.设l、m两条不同的直线,α是一个平面,则下列命题不正确的是()A.若l⊥α,m?α,则l⊥m B.若l⊥α,l∥m,则m⊥αC.若l⊥α,则m⊥α,则l∥m D.若l∥α,m∥α,则l∥m参考答案:D【考点】空间中直线与平面之间的位置关系.【分析】A,根据线面垂直的定义和性质即可得到m与l的位置关系;B,根据直线l⊥平面α可在平面α内找到两条相交直线p,n且l⊥p,l⊥n又m∥l故根据线面垂直的判定定理可知m⊥α正确;C,由线面垂直的性质定理,即可判断;D,若l∥α,m∥α,则l与m可能平行也可能垂直也可能异面.【解答】解:∵直线l⊥平面α,m?α,∴l⊥m,故A正确;根据直线l⊥平面α可在平面α内找到两条相交直线p,n且l⊥p,l⊥n又m∥l所以m⊥p,m⊥n故根据线面垂直的判定定理可知,m⊥α正确,故正确;l⊥α,m⊥α,则由线面垂直的性质定理,可得m∥l,即C正确;若l∥α,m∥α,则l与m可能平行也可能垂直也可能异面,故错误.故选:D.【点评】本题以命题真假为载体考查立体几何中位置关系的判断,记清课本中定理、公理的条件和结论,注意一些特殊情况是解决此类问题的关键.6.已知函数,则
A.-1
B.-3
C.1
D.3参考答案:C7.如图为几何体的三视图,根据三视图可以判断这个几何体为(
)A.圆锥
B.三棱锥
C.三棱柱
D.三棱台参考答案:C略8.不等式的解集为(-∞,-1)∪(3,+∞),则不等式的解集为(
)A、(-2,5)
B、
C、(-2,1)
D、参考答案:A根据题意,不等式(x+b)[(a﹣1)x+(1﹣b)]>0的解集为(﹣∞,﹣1)∪(3,+∞),则方程(x+b)[(a﹣1)x+(1﹣b)]=0的两根为(﹣1)和3,则有,解可得:a=5,b=﹣3,则不等式x2+bx﹣2a<0即x2﹣3x﹣10<0,解可得:﹣2<x<5,即不等式x2+bx﹣2a<0的解集为(﹣2,5);故选:A.9.(5分)方程x=2x﹣2014的实数根的个数为() A. 0 B. 1 C. 2 D. 不确定参考答案:B考点: 根的存在性及根的个数判断.专题: 函数的性质及应用.分析: 可以分别作出函数y=x与y=2x﹣2014的图象,通过观察容易解决问题..解答: 解;原方程的根的个数,即为函数y=x与y=2x﹣2014的图象交点的个数,做出图象如下:可见两函数只有一个交点,所以原方程只有一个零点.故选B.点评: 本题考查了利用函数图象研究函数零点个数的问题,一般的像这种含有指数与对数且无法求解的方程,判断根的个数往往利用图象法.10.长方体的一个顶点上的三条棱长分别为3,4,5.且它的八个顶点都在同一球面上,则这个球的表面积是()A.B.C.D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知或,(a为实数).若的一个充分不必要条件是,则实数a的取值范围是_______.参考答案:[1,+∞)【分析】求出和中实数的取值集合,然后根据题中条件得出两集合的包含关系,由此可得出实数的取值范围.【详解】由题意可得,,,由于的一个充分不必要条件是,则,所以,.因此,实数的取值范围是.故答案:.【点睛】本题考查利用充分必要条件求参数的取值范围,一般转化为两集合的包含关系,考查化归与转化思想,属于中等题.12.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东,行驶后,船到达C处,看到这个灯塔在北偏东,这时船与灯塔距离为__________km.参考答案:3013. 在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样方法从中抽取容量为20的样本,则三级品a被抽到的可能性为________.参考答案:略14._________.参考答案:
15.若抛物线的上一点到其焦点的距离为3,且抛物线的焦点是双曲线的右焦点,则p=_______,a=______.参考答案:
4
【分析】利用抛物线的定义可解得p的值;利用双曲线中可解得a的值.【详解】抛物线的上一点到其焦点的距离为3所以解得p=4抛物线的焦点是双曲线的右焦点解得a=【点睛】本题考查了抛物线和双曲线的性质,属于基础题型,解题中要熟练掌握和应用双曲线和抛物线的性质.16.已知,,,则的最小值为________.参考答案:9【分析】由题意整体代入可得,由基本不等式可得.【详解】由,,,则.当且仅当=,即a=3且b=时,取得最小值9.故答案为:9.【点睛】本题考查基本不等式求最值,整体法并凑出可用基本不等式的形式是解决问题的关键,属于基础题.17.求函数的定义域
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分).已知函数f(x)=-xα且f(4)=-.(1)求α的值;(2)判断f(x)在(0,+∞)上的单调性,并给予证明.参考答案:略19.设f(x)=loga(1+x)+loga(3﹣x)(a>0,a≠1),且f(1)=2.(1)求a的值及f(x)的定义域;(2)求f(x)在区间[0,]上的最大值.参考答案:【考点】函数的定义域及其求法;复合函数的单调性.【分析】(1)由f(1)=2即可求出a值,令可求出f(x)的定义域;(2)研究f(x)在区间[0,]上的单调性,由单调性可求出其最大值.【解答】解:(1)∵f(1)=2,∴loga(1+1)+loga(3﹣1)=loga4=2,解得a=2(a>0,a≠1),由,得x∈(﹣1,3).∴函数f(x)的定义域为(﹣1,3).(2)f(x)=log2(1+x)+log2(3﹣x)=log2(1+x)(3﹣x)=∴当x∈[0,1]时,f(x)是增函数;当x∈[1,]时,f(x)是减函数.所以函数f(x)在[0,]上的最大值是f(1)=log24=2.【点评】对于函数定义域的求解及复合函数单调性的判定问题属基础题目,熟练掌握有关的基本方法是解决该类题目的基础.20.计算下列各式:⑴
⑵
参考答案:⑴==⑵略21.设m∈R,函数f(x)=ex﹣m(x+1)+m2(其中e为自然对数的底数)(Ⅰ)若m=2,求函数f(x)的单调递增区间;(Ⅱ)已知实数x1,x2满足x1+x2=1,对任意的m<0,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,求x1的取值范围;(Ⅲ)若函数f(x)有一个极小值点为x0,求证f(x0)>﹣3,(参考数据ln6≈1.79)参考答案:【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;(Ⅱ)问题转化为2(x1﹣1)m﹣(﹣)+e﹣1<0对任意m<0恒成立,令g(m)=2(x1﹣1)m﹣(﹣)+e﹣1,得到关于x1的不等式组,解出即可;(Ⅲ)求出f(x0)的解析式,记h(m)=m2﹣mlnm,m>0,根据函数的单调性求出h(m)的取值范围,从而求出f(x0)的范围,证明结论即可.【解答】解:(Ⅰ)m=2时,f(x)=ex﹣2x﹣1,f′(x)=ex﹣2,令f′(x)>0,解得:x>ln2,故函数f(x)在[ln2,+∞)递增;(Ⅱ)∵不等式f(x1)+f(0)>f(x2)+f(1)恒成立,x1+x2=1,∴2(x1﹣1)m﹣(﹣)+e﹣1<0对任意m<0恒成立,令g(m)=2(x1﹣1)m﹣(﹣)+e﹣1,当2(x1﹣1)=0时,g(m)=0<0不成立,则,解得:x1>1;(Ⅲ)由题意得f′(x)=ex﹣m,f′(x0)=0,故=m,f(x0)=﹣m(x0+1)+m2=m2﹣mlnm,m>0,记h(m)=m2﹣mlnm,m>0,h′(m)=m﹣lnm﹣1,h′′(m)=﹣,当0<m<2时,h′′(m)<0,当m>2时,h′′(m)>0,故函数h′(x)在(0,2)递减,在(2,+∞)递增,如图所示:[h′(m)]min=h′(2)=﹣ln2<0,又当m→0时,h′(m)>0,m→+∞,h′(m)>0,故函数h′(m)=0有2个根,记为m1,m2(m1<2<m2<6)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 权益分配协议书
- 借款协议书三方协议书
- 加工厂协议书
- 2025-2026学年安徽省马鞍山市初一地理上册期中考试试卷及答案
- 新生儿科普宣教
- 2025版风湿性关节炎常见症状及护理心得分享
- 2025版皮肤炎常见症状及护理措施
- 过敏体质宝宝营养
- 咽喉梗阻急救处理方法
- 2025版慢性阻塞性肺病常见症状及护理
- 恬谈人生:夏培肃传
- 棚户区改造梁侧预埋悬挑脚手架设计计算书
- 《浅谈幼儿园劳动教育实施策略》 论文
- 抗菌药物使用管理制度
- 基于《中国高考评价体系》下的2023年高考物理命题趋势及复习备考策略
- 经外周静脉穿刺中心静脉置管术
- GB/T 13452.2-2008色漆和清漆漆膜厚度的测定
- 远程会诊登记本
- 高速公路改扩建工程施工作业指导书
- 多旋翼无人机培训教材课件
- 高新技术企业(科技型中小企业)专题培训课件
评论
0/150
提交评论