版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华市第十一中学2022-2023学年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.执行如图所示的程序框图,则输出的结果为()A.7 B.9 C.10 D.11参考答案:B【考点】程序框图.【分析】模拟程序框图的运行过程,该程序是累加求和的应用问题,当S≤﹣1时输出i的值即可.【解答】解:模拟程序框图的运行过程,如下;,否;,否;,否;,否;,是,输出i=9.故选:B.【点评】本题主要考查了循环结构的程序框图的应用问题,是基础题目.2.执行如图所示的程序框图,若输入的n=16,则输出的i,k的值分别为(
)A.3,5
B.4,7
C.5,9
D.6,11参考答案:C3.由数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数共有()A.60个 B.48个 C.36个 D.24个参考答案:C【考点】D4:排列及排列数公式.【分析】由题意本题的要求是个位数字是偶数,最高位不是5.可先安排个位,方法有2种,再安排最高位,方法有3种,其他位置安排方法有A33=6种,求乘积即可.【解答】解:由题意,符合要求的数字共有2×3A33=36种故选C【点评】本题考查有特殊要求的排列问题,属基本题.有特殊要求的排列问题,一般采用特殊位置优先或特殊元素优先考虑.4.函数y=3x+(x>0)的最小值是()A.6 B.6 C.9 D.12参考答案:C【考点】基本不等式.【分析】由已知式子变形可得y=3x+=x+x+,由三项基本不等式可得.【解答】解:∵x>0,∴y=3x+=x+x+≥3=9,当且仅当x=即x=2时,原式取最小值9,故选:C.【点评】本题考查三项基本不等式求最值,变形为可用基本不等式的形式是解决问题的关键,属基础题.5.复数等于A.1
B.-1
C.
D.参考答案:A略6.函数f()=x+
(x>2)在x=时取得最小值,则=(
)(A)1+
(B)1+
(C)3
(D)4参考答案:C7.中心在原点,焦点坐标为(0,±5)的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为,则椭圆方程为(
)A.+=1
B.+=1
C.+=1 D.+=1
参考答案:C略8.用秦九韶算法求多项式在时的值,的结果是(
)
A.
B.
C.5
D.6参考答案:D9.命题,则是A.
B.C.
D.参考答案:A略10.已知A是B的充分不必要条件,C是B是必要不充分条件,¬A是D的充分不必要条件,则C是¬D的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的递推关系进行递推即可.【解答】解:∵¬A是D的充分不必要条件,∴¬D是A的充分不必要条件,则¬D?A∵C是B是必要不充分条件,∴B是C是充分不必要条件,B?C∵A是B的充分不必要条件,∴A?B,则¬D?A?B?C,反之不成立,即C是¬D的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义进行递推是解决本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.从4台甲型和5台乙型电视机中任意取出2台,其中甲型与乙型电视机各1台,则不同的取法种数为
.参考答案:20【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、先在4台甲型电视机取出1台,②、再在5台乙型电视机中取出1台,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、先在4台甲型电视机取出1台,有4种取法;②、再在5台乙型电视机中取出1台,有5种取法;则有4×5=20种不同的取法;故答案为:20.12.如图,两个正方形ABCD和ADEF所在平面互相垂直,设M、N分别是BD和AE的中点,那么①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面.其中正确结论的序号是________.参考答案:①②③∵两个正方形ABCD和ADEF所在平面互相垂直,设M、N分别是BD和AE的中点,取AD的中点G,连接MG,NG,易得AD⊥平面MNG,进而得到AD⊥MN,故①正确;连接AC,CE,根据三角形中位线定理,可得MN∥CE,由线面平行的判定定理,可得②MN∥平面CDE及③MN∥CE正确,④MN、CE异面错误.13.已知离心率为的双曲线的左焦点与抛物线的
焦点重合,则实数__________.参考答案:-314.函数的最小正周期是__________.参考答案:2【分析】直接利用余弦函数的周期公式求解即可.【详解】函数的最小正周期是:2.故答案为:2.【点睛】本题考查三角函数的周期的求法,是基本知识的考查.15.已知点A(﹣2,3)、B(3,2),若直线l:y=kx﹣2与线段AB没有交点,则l的斜率k的取值范围是.参考答案:【考点】二元一次不等式(组)与平面区域.【分析】根据题意,分析可得,原问题可以转化为点A、B在直线的同侧问题,利用一元二次不等式对应的平面区域可得[k(﹣2)﹣3﹣2)]×[k(3)﹣2﹣2]>0,解可得k的范围,即可得答案.【解答】解:根据题意,直线l:y=kx﹣2与线段AB没有交点,即A(﹣2,3)、B(3,2)在直线的同侧,y=kx﹣2变形可得kx﹣y﹣2=0,必有[k(﹣2)﹣3﹣2)]×[k(3)﹣2﹣2]>0解可得:k∈,故答案为.16.的最小值为
.参考答案:-略17.过椭圆的焦点F的弦中最短弦长是
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆O:x2+y2=4和点M(1,a),(1)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程;(2)若,过点M的圆的两条弦AC.BD互相垂直,求AC+BD的最大值.参考答案:【考点】J7:圆的切线方程;JE:直线和圆的方程的应用.【分析】本题考查的是圆的切线方程,即直线与圆方程的应用.(1)要求过点M的切线方程,关键是求出切点坐标,由M点也在圆上,故满足圆的方程,则易求M点坐标,然后代入圆的切线方程,整理即可得到答案.(2)由于直线AC、BD均过M点,故可以考虑设两个直线的方程为点斜式方程,但由于点斜式方程不能表示斜率不存在的情况,故要先讨论斜率不存在和斜率为0的情况,然后利用弦长公式,及基本不等式进行求解.【解答】解:(1)由条件知点M在圆O上,∴1+a2=4∴a=±当a=时,点M为(1,),kOM=,此时切线方程为:y﹣=﹣(x﹣1)即:x+y﹣4=0当a=﹣时,点M为(1,﹣),kOM=﹣,此时切线方程为:y+=(x﹣1)即:x﹣y﹣4=0∴所求的切线方程为:x+y﹣4=0或即:x﹣y﹣4=0(2)当AC的斜率为0或不存在时,可求得AC+BD=2(+)当AC的斜率存在且不为0时,设直线AC的方程为y﹣=k(x﹣1),直线BD的方程为y﹣=(x﹣1),由弦长公式l=2可得:AC=2BD=2∵AC2+BD2=4(+)=20∴(AC+BD)2=AC2+BD2+2AC×BD≤2(AC2+BD2)=40故AC+BD≤2即AC+BD的最大值为219.如图,在四棱锥P-ABCD中PA⊥底面ABCD,为直角,,,E,F分别为PC,CD的中点.(1)试证:CD⊥平面BEF;(2)求BC与平面BEF所成角的大小;(3)求三棱锥的体积.参考答案:(1)证明见解析;(2);(3).【分析】(1)易证得四边形为矩形,从而;利用线面垂直性质可证得,进而得到平面,由线面垂直性质得,由平行关系得,由线面垂直判定定理证得结论;(2)由(1)可知即为所求角;根据四边形为矩形可得到长度关系,从而得到,进而得到结果;(3)利用体积桥可知,利用三棱锥体积公式计算可得结果.【详解】(1),为直角,四边形为矩形
又平面,平面
又,平面,
平面平面
分别为中点
平面,
平面(2)由(1)知,在平面内的射影为即为直线与平面所成角四边形为矩形
在中,
即直线与平面所成角大小为:(3),又为中点
【点睛】本题考查线面垂直关系的证明、直线与平面所成角的求解、三棱锥体积的求解;立体几何中求解三棱锥体积的常用方法是采用体积桥的方式,将问题转化为底面积和高易求的三棱锥体积的求解问题.20.(13分)某化妆品生产企业为了占有更多的市场份额,拟在2008年北京奥运会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销费t万元之间满足关系式:x=3-.已知2008年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需要投入32万元的生产费用,若化妆品的年销售收入额为其年生产成本的150%与年促销费的一半之和.问:该企业2008年的促销费投入多少万元时,企业的年利润y(万元)最大?(利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)参考答案:21.P为椭圆上一点,F1、F2为左右焦点,若∠F1PF2=60°(1)求△F1PF2的面积;(2)求P点的坐标.参考答案:【考点】椭圆的简单性质;椭圆的标准方程.【专题】计算题.【分析】(1)先根据椭圆的方程求得c,进而求得|F1F2|,设出|PF1|=t1,|PF2|=t2,利用余弦定理可求得t1t2的值,最后利用三角形面积公式求解.(2)先设P(x,y),由三角形的面积得∴,将代入椭圆方程解得求P点的坐标.【解答】解:∵a=5,b=3∴c=4(1)设|PF1|=t1,|PF2|=t2,则t1+t2=10①t12+t22﹣2t1t2?cos60°=82②,由①2﹣②得t1t2=12,∴(2)设P(x,y),由得4∴,将代入椭圆方程解得,∴或或或【点评】本题主要考查了椭圆的标准方程、椭圆的简单性质.解答的关键是通过解三角形,利用边和角求得问题的答案.22.在四棱锥S-ABCD中,侧面SCD⊥底面ABCD,,,,,.(Ⅰ)求SC与平面SAB所成角的正弦值;(Ⅱ)求平面SAD与平面SAB所成的锐二面角的余弦值.参考答案:(Ⅰ);(Ⅱ).【分析】(Ⅰ)在平面内作交于点,可得平面,以点为原点,,,所在直线分别为,,轴,通过解方程求得平面的法向量,利用,即可得解;(Ⅱ)求得平面的法向量,通过求解,即可得二面角锐角的余弦值.【详解】在平面内作交于点,又侧面底面,所以平面,以点为原点,,,所在直线分别为,,轴,建立如图所示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年建筑工程公司董事会工程项目审议管理制度
- 智能制造中企业协同合作策略分析报告
- 2025年温州教师笔试真题及答案
- 2025年高考真题散文分类及答案
- 2025年8月临床诊断学考试题含答案
- 2025年历届即兴表演真题及答案
- 法语劳动合同范本
- 私人浇混凝土合同范本
- 教育融资合同范本
- 电子绝缘材料试制工保密能力考核试卷含答案
- YYT 0631-2008 牙科材料 色稳定性的测定
- 学校运动队组建方案(2篇)
- GB/T 25849-2024移动式升降工作平台设计、计算、安全要求和试验方法
- 中考数学《圆的综合》综合检测试卷及答案解析
- 健身器材采购项目投标方案(技术方案)
- 农业生态与环境保护教案
- 对外汉语拼音教学
- GB/T 26081-2022排水工程用球墨铸铁管、管件和附件
- GB/T 30732-2014煤的工业分析方法仪器法
- 12YJ4-1 常用门窗标准图集
- 自然保护区规划研究课件
评论
0/150
提交评论