植物生理学:第三节 水分(亏缺)胁迫及植物的抗旱性_第1页
植物生理学:第三节 水分(亏缺)胁迫及植物的抗旱性_第2页
植物生理学:第三节 水分(亏缺)胁迫及植物的抗旱性_第3页
植物生理学:第三节 水分(亏缺)胁迫及植物的抗旱性_第4页
植物生理学:第三节 水分(亏缺)胁迫及植物的抗旱性_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三节水分(亏缺)胁迫

(water

deficit

stress)及植物的抗旱性包括干旱(drought)胁迫(由自然环境缺水引起)和脱水(desiccation)胁迫(实验室人为脱水引

起);为盐(salt)胁迫和渗透(osmotic)胁迫的组成部分。旱生植物:生长于极端干旱地区,如沙漠;形态、功能上特殊机制,能抗极度脱水;复水后“起死回生”中生植物:耐受一定范围内的脱水,产生相应的生理反应;大部分高等植物Craterostigma

plantagineum

plants.

(A)

Fullyturgid

plant.

(B)Desiccated

plant

(unwatered

for7d).

(C)

Plant

rehydrated

for

6h.中生植物的生理变化与耐旱性:地上部生长延缓,乃至部分叶片脱落。降低失水;根系纵向生长加快,增加吸水;根/冠(R/T) 增大气孔关闭,光合作用下降ABA上升渗透调节物质大量合成水分胁迫诱导的基因表达ABA在植物中起传递旱情的信号:

Accumulation

of

ABA

in

maize

roots

and

in

xylemsap

as

a

result

of

soil

drying.

Effect

of

manipulating

ABA

concentration

in

xylemsap

on

stomatal

conductance

of

leaves

(abaxialepidermis)

in

maize.透调节物质(osmolyte):高度水溶性、不干预细胞代谢的有机化合物。The

chemical

structures

of

some

important

cellular

compatible

osmolytes.脯氨酸

Proline甜菜碱

Betaine脯氨酸甜菜碱

Proline

betaine甘露醇

Mannitol透调节作用(osmotic

adjustment):Osmotic

adjustment

occurs

when

the

concentration

of

solutes

within

a

plant

cellincrease

to

maintain

a

positive

turgor

pressure

within

the

cell.水分胁迫响应基因亦受干旱、ABA和低温诱导Accumulation

of

RAB18

&

LT178

mRNA

in

Arabidopsis

thaliana.通过抗旱锻炼能提高植物的抗旱性抗性锻炼:植物经过一段时间的自然或人工的非致死胁迫后,往往增强了对该胁迫的抗性。“蹲苗”:适度干旱措施第四节涝害(flooding)与植物的抗涝性Plants

vary

in

ability

to

tolerate

flooding

Wetlandplants

Flood-tolerant

plants

Flood-sensitive

plantsSweet

flagArabidopsis

thalianaSoybeanRice

grassBarnyard

grassTomatoBarnyard

grassOatPeaCoral

treePotatoGolden

dockWheatRiceCornWild

rice

A

flooded

maize

field.Flooding

in

the

USMidwest

in

1993

resultedin

an

estimated

33%reduction

in

yieldcompared

with

1992.Survival

strategies

of

a

freshwater

weed.Hydrilla

verticillata

(L.f.)

Royle,

a

monocotyledous

native

of

Asia,

is

an

invasivesubmerged

weed

in

freshwater

ecosystems

in

the

southern

US.Hydrilla

develops

as

a

dense

mat

of

stems

and

leaves

near

the

surface

of

the

water.These

plants

now

threaten

waterways

in

Florida

and

other

Southeastern

states.Wetland

plants

posses

diverse

anatomical,

morphological

and

physiologicalfeatures

that

permit

survival

in

aquatic

environments

or

waterlogged

soilsAerenchyma:

continuous,

columnar

intracellularspaces

formed

in

root

cortical

tissuesAerenchyma

development

in

root

cortex

of

maize

after

oxygen

deprivation.(A)

under

aerobic

conditions,

(B)

under

72h

of

hypoxiaLenticels:

openings

in

the

periderm

that

allow

gasexchange

Adventitious

roots

and

prominent

lenticels

on

the

stem

of

young

ashafter

flooding.

The

black

arrow

indicates

the

water

depth

duringflooding.Pneumatophores:

shallow

roots

that

grow

withnegative

geotrophy

out

of

the

aquatic

environment.Pneumatophores

of

mangrove

develop

from

rootssubmerged

in

estuarine

mudInternodal

stem

elongation:

enables

stems

and

leavesto

be

established

above

the

aquatic

environment.

(A)Diagram

illustrating

growth

response

of

seedlings

deepwater

rice

toflooding.

Submerge

promotes

rapid

internodal

elongation

anddevelopment

of

adventitious

roots.

Once

the

flood

waters

recede,

theadventitious

roots

grow

into

the

soil

and

aerial

portions

of

the

plantgrow

upward.

(B)

Photographs

comparing

internode

elongation

in

aerobic

(left)

andsubmerged

(right)

plants.

Arrowsindicatepositions

of

nodes.During

short-term

acclimation

to

anoxic

conditions,plants

generate

ATP

through

glycolysis

andfermentationMajor

fermentation

productsof

carbohydrate

metabolismin

flooded

rootsImpact

of

oxygen

deprivation

onrespiratory

metabolismOxygen

status

Effect

on

metabolismNormoxic

(aerobic)Aerobic

respiration

proceeds

normally.

Almost

all

ATPproduction

results

from

oxidative

phosphorylation.HypoxicThe

partial

pressure

of

O2

limits

ATP

production

by

oxi-dative

phosphorylation.

Glycolysis

accounts

for

a

largerpercentage

of

ATP

yield

than

under

normoxic

condition.Metabolic

and

developmental

changes

are

stimulatedthat

result

in

adaptation

to

a

low-oxygen

environment.Anoxic

(anaerobic)ATP

is

produced

by

way

of

glycolysis.

Cells

exhibit

lowATP

contents,

diminished

protein

synthesis,

andimpaired

division

and

elongation.

If

anoxic

conditionspersist,

many

plant

cells

die.Effects

of

hypoxic

pretreatment

and

acclimation

onsurvival

of

anoxia:

avoidance

of

cytoplasmic

acidosisby

lactate

efflux.Flooding

typically

results

in

hypoxia,

followed

by

anoxia.

Exposureof

maize

seedlings

to

hypoxia

for

several

hours

before

beingtransferred

to

anoxia

increases

the

ability

of

roots

forlactateeffluxand

prolongs

survival.Ethylene

promotes

long-term

acclimativeresponses:including

formation

of

aerenchyma

and

stemelongation

Treatment

ActionEffect

on

aerenchymadevelpmentHypoxiaHypoxia

+

Ag+

Hypoxia

+

AVGHypoxia

+

EGTANormoxia

+

ethyleneNormoxia

+

caffeineStimulates

ETH

productionInhibits

ETH

actionInhibits

ETH

synthesisChelates

Ca2+Induces

ETH

responseIncrease

cytosolic

Ca2+PromotedReducedReducedReducedPromotedPromoted(A)

Formationof

aerenchyma

is

stimulated

byhypoxia

but

not

by

anoxia.Role

of

ethylene

in

promotion

of

long-termacclimative

responses(B)

Transduction

of

low

O2

signal

in

maize

leads

to

PCDduring

the

formation

of

lysigenous

aerenchyma.Chemicals

that

increase

the

cytosolic

Ca2+concentration

under

aerobic

conditions

promoteaerenchyma

formation,

whereas

compounds

that

blockCa2+

movement

under

anoxia

inhibit

aerenchymaformation.第五节盐害(salt

stress)与植物的抗盐性Areas

of

greatest

aquifer

depletion,

saltwater

intrusion

agroundwater

contamination

in

US.High

salt

concentrations

in

the

rhizosphere

generatestress

through

water

deficits

and

ion

toxicity.Exclusion

of

salt

and

osmotic

adjustment

both

playmajor

roles

in

tolerance

of

high

salt

environments.Areas

with

high

salinity:Coastal

salt-marshes;Islanddeserts;Near

the

shores

of

island

lakes

;Crop

fields

with

extensive

irrigation.In

China,

more

than

7

million

hectares

are

classified

assaline,

much

of

this

resulting

from

centuries

ofirrigation.A

New

England

salt

marsh

is

one

highly

productiveestuarinehabitat.

Theprimary

producers

are

phytoplankton,

algae,

and

salt-tolerant

plants

sucmarsh

grass

(Spartina).

Chesapeake

Bay,

Mobile

Bay,

and

San

Francisco

Bayare

broad,

shallow

estuaries.

In

tropical

regions,

mangrove

swamps

functimuch

like

salt

marshes

in

estuarine

ecology.Consequences

of

Heavy

Irrigation

-----

salinization

Irrigated

crops

in

the

Sahara

•Desert,

inAlgeria.Extensive

irrigation

leads

tosignificant

increase

in

the

saltcontent

of

agricultural

soils.Halophytes:

plants

that

grow

in

high-salt

soils滨藜(海马齿):生活于欧洲、地中海、北非与南非等海边的盐生植物•Idealized

growth

responses

ofhalophytes,

salt-tolerantnonhalophytes,

and

sensitivenonhalophytes

to

saltconcentration.Role

of

osmotic

adjustment

in

salt

tolerance

Osmoti

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论