初中数学函数总结_第1页
初中数学函数总结_第2页
初中数学函数总结_第3页
初中数学函数总结_第4页
初中数学函数总结_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(是常数,)2)反比例函数:函数(是常数,)叫做反比例函数。注意:3)二次函数:,2、点的坐标与函数的关系1)点的坐标用表示,横坐标在前,纵坐标在后,中间有“,”分开。平面内点的坐标是有序实数对,当时,和是两个不同点的坐标。2)点的坐标:从点向x轴和y轴引垂线,横纵坐标的绝对值对应相对应线段的长度。3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。3、函数的图像1)一次函数一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。k的符号b的符号函数图像图像特征k>0b>0y0x图像经过一、二、三象限,y随x的增大而增大。b<0y0x图像经过一、三、四象限,y随x的增大而增大。k<0k<0b>0y0x图像经过一、二、四象限,y随x的增大而减小b<0y0图像经过二、三、四象限,y随x的增大而减小。注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。2)反比例函数反比例函数k的符号k>0k<0图像yOxyOx性质①x的取值范围是x0,y的取值范围是y0;②当k>0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x的增大而减小。①x的取值范围是x0,y的取值范围是y0;②当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x的增大而增大。3)二次函数函数二次函数图像a>0a<0y0xy0x性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=,顶点坐标是(,);(3)在对称轴的左侧,即当x<时,y随x的增大而减小;在对称轴的右侧,即当x>时,y随x的增大而增大,简记左减右增;(4)抛物线有最低点,当x=时,y有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=,顶点坐标是(,);(3)在对称轴的左侧,即当x<时,y随x的增大而增大;在对称轴的右侧,即当x>时,y随x的增大而减小,简记左增右减;(4)抛物线有最高点,当x=时,y有最大值,4、函数图像的平移①将抛物线解析式转化成顶点式,确定其顶点坐标;②保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:③平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.二、常见题型:求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。在函数大题中,第一小问基本都是采用待定系数法求函数的表达式。注意:二次函数的解析式常根据具体情况选择采用以下方式求解:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与轴的两个交点的横坐标,一般选用两点式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.【例1】(2015•武汉)已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.【例2】(2015•海南)如图,二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),与y轴相交于点C,点G是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD平行GC交y轴于点D.求该二次函数的表达式。2、将函数的知识与几何知识联系起来的复合题此类题目是在函数图像中有几何图形,一般情况是通过点的坐标可得出相对应的线段的长度,最终求得线段的长度或是图形的面积与周长等。【例3】(2015•黄冈中学自主招生)如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A. B. C. D.【例4】(2015•德阳)如图,在一次函数y=﹣x+6的图象上取一点P,作PA⊥x轴于点A,PB⊥y轴于点B,且矩形PBOA的面积为5,则在x轴的上方满足上述条件的点P的个数共有()A.1个 B.2个 C.3个 D.4个3、根据函数图像判定系数的正负性或取值范围【例5】(2015•魏县二模)若直线y=mx+2m﹣3经过二、三、四象限,则m的取值范围是()A.m< B.m>0 C.m> D.m<0【例6】(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个 B.2个 C.3个 D.4个4、根据系数的范围判定函数图像在坐标系中的位置【例7】(2015•枣庄)已知直线y=kx+b,若k+b=﹣5,kb=5,那该直线不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【例8】(2015•杭州模拟)已知直线y=kx+b,若k+b<0,kb>0,那么该直线不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5、函数值域【例8】(2015•天津)己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>66、函数图像单调性的判定【例9】(2015•营口)如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()A.﹣5<x<1 B.0<x<1或x<﹣5 C.﹣6<x<1 D.0<x<1或x<﹣6【例10】(2015•上海模拟)已知正比例函数y=kx(k≠0)的图象经过点(﹣4,2),那么函数值y随自变量x的值的增大而.(填“增大”或“减小”)【例11】(2015•钦州)对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小7、点的纵坐标大小比较与最值【例12】(2015•富顺县一模)若A(﹣3,y1),B(﹣2,y2),C(﹣1,y3)三点都在y=﹣的图象上,则y1,y2,y3的大小关系是.【例13】(2015•湖北校级自主招生)已知a≥4,当1≤x≤3时,函数y=2x2﹣3ax+4的最小值是﹣23,则a=.8、函数图像的平移在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”【例14】(2015•闸北区模拟)将一次函数y=x+3的图象沿着y轴向下平移5个单位,那么平移后所得图象的函数解析式为.9、利用函数解实际问题很据实际问题建立函数模型,最终求解。【例15】(2015•武汉校级模拟)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为km.【例16】(2015•盘锦)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?10、函数与几何综合题此类题型一般是利用函数图像上点的坐标,确定线段的长度,最后再利用几何知识解题,这类题有一定难度。做这类题的关键是将函数的知识与几何知识联系起来。【例17】(2015•锦州)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(6,2),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、Sn,则第4个正方形的边长是,S3的值为.【例18】(2015•丽水)如图,反比例函数y=的图象经过点(﹣1,﹣2),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点P,连结BP.(1)k的值为.(2)在点A运动过程中,当BP平分∠ABC时,点C的坐标是.11、压轴题中的二次函数题此类题一般第一问是求函数的解析式,第二、三问是与几何知识联系起来的求两个量之间的函数关系,求最值,求特殊点等题型。常用公式有:两点间距离公式点A坐标为(x1,y1)点B坐标为(x2,y2)则AB间的距离,即线段AB的长度为2)勾股定理在直角三角形中,斜边长的平方等与两直角边的平方和。【例19】(2015•威海)已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论