




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求数列通项公式的十种方法,例题答案详解求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学XX、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。四种基本数列:等差数列、等比数列、等和数列、等积数列及其XX形式。等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。求数列通项公式的十种方法,例题答案详解求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。求数列通项的基本方法是:累加法和累乘法。数列的本质是一个函数,其定义域是自然数集的一个函数。一、累加法适用于: 这是xx的等差数列累加法是最基本的二个方法之一。若,则两边分别相加得例1已知数列满足,求数列的通项公式。解:由得则a=(a—a)+(a—a)++(a—a)+(a—a)+annn—1 n—1n—2 32 21 1=[2(n—1)+1]+[2(n—2)+1]++(2x2+1)+(2x1+1)+1=2[(n—1)+(n—2)++2+1]+(n—1)+1(n—1)n=2 +(n-1)+1=(n—1)(n+1)+1=n2所以数列的通项公式为。例2已知数列满足,求数列的通项公式。求数列通项公式的十种方法,例题答案详解解法一:由得则所以解法二:两边除以,得,则,故TOC\o"1-5"\h\za,aaaaaa a a a—n—(—n——n-1)+(—n-1——n-2)+(—n~2——n-3)+ +(—2—―)+—13n3naa3n-2 3n-2 3〃-3 32 31 3n—1 n—1z2 12 1 2 1、 ,2•••1、3—(+)+(+)+(+)++(+)+3 3n3 3n-1 3 3n-2 332 32(n—1),11 1 1 1、1=+(——+——+——+——++——)+13 3n3n3n-13n-2 32•••因此,则评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。例3.已知数列中,且,求数列的通项公式.解:由已知得,求数列通项公式的十种方法,例题答案详解化简有,由类型(1)有,又得,所以,又,,则此题也可以用数学xx来求解.二、累乘法1.0。 适用于: 这是xx的等比数列累乘法是最基本的二个方法之二。若,贝IJ两边分别相乘得,例4已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为例5.设是首项为1的正项数列,且(二1,2,3,…),则它的通项公式是=.解:已知等式可化为:()(n+1),艮P时,—.评注:本题是关于和的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到与的更为明显的关系式,从而求出.练习.已知,求数列{an}的通项公式.答案:-1.评注:本题解题的关键是把原来的递推关系式转化为xx,则问题进一步转化为形式,进而应用累乘法求出数列的通项公式.三、待定系数法适用于基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。形如,其中)型(1) 若c=1时,数列"为等差数列;(2) 若d=0时,数列"为等比数列;(3) 若时,数列"为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设,得,与题设比较系数得求数列通项公式的十种方法,例题答案详解,所以所以有:因此数列构成以为首项,以c为公比的等比数列,所以即:.规律:将递推关系化为构造成公比为c的等比数列从而求得通项公式逐项相减法(阶差法):有时我们从递推关系中把n换成n-1有,两式相减有从而化为公比为c的等比数列,进而求得通项公式.,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.例6已知数列中,,求数列的通项公式。解法一:a+1=2(a1+1)又是首项为2,公比为2的等比数列,即解法二:..a=2a+1
n+1n两式相减得,故数列是首项为2,公比为2的等比数列,再用累加法的……练习.已知数列中,求通项。答案:求数列通项公式的十种方法,例题答案详解形如:(其中q是常数,且n0,1)若p=1时,^",累加即可.若时,^",求通项方法有以下三种方向:i.两边同除以.目的是把所求数列构造成等差数列艮" ,令,则,然后类型1,累加求通项.两边同除以.目的是把所求数列构造成等差数列。即:,令,则可化为.然后转化为类型5来解,待定系数法:目的是把所求数列构造成等差数列设.通过比较系数,求出,转化为等比数列求通项.注意:应用待定系数法时,要求pq,否则待定系数法会失效。例7已知数列满足,求数列的通项公式。解法一(待定系数法):设,比较系数得,则数列是首项为,公比为2的等比数列,所以,即解法二(两边同除以):两边同时除以得:,下面解法略求数列通项公式的十种方法,例题答案详解解法三(两边同除以):两边同时除以得:,下面解法略形如(其中k,b是常数,且)方法1:逐项相减法(阶差法)方法2:待定系数法通过凑配可转化为;解题基本步骤:1、 确定=kn+b2、 设等比数列,公比为p3、 列出关系式,即4、 比较系数求x,y5、 解得数列的通项公式6、 解得数列的通项公式例8在数列中,求通项.(逐项相减法)解:,①时,,两式相减得.令,则求数列通项公式的十种方法,例题答案详解利用类型5的方法知即②再由累加法可得. 亦可联立①②解出.例9.在数列中,,求通项.(待定系数法)解:原递推式可化为比较系数可得:x=-6,y=9,上式即为所以是一个等比数列,首项,公比为.即:故.形如(其中a,b,c是常数,且)基本思路是转化为等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。例10已知数列满足,求数列的通项公式。解:设比较系数得,所以由,得则,故数列为以为首项,以2为公比的等比数列,因此,则。形如时将作为求解分析:原递推式可化为的形式,比较系数可求得,数列为等比数列。例11已知数列满足,求数列的通项公式。解:设比较系数得或,不妨取,(取-3结果形式可能不同,但本质相同)贝IJ,则是首项为4,公比为3的等比数列,所以练习.数列中,若,且满足,求.答案:.四、迭代法(其中p,r为常数)型例12己知数列满足,求数列的通项公式。解:因为,所以d—(23n-2n~l=[。3(”一1)・2〃-2 =Q32(〃—1)刀・2("-2)+("-1)nn-1 n-2 n-2=2)53]32(〃-l).〃.2(n-2)+(Tn-3=(/i-2)(n-l)n-2(«-3)+(»-2)+(»-i)n-3—Q3〃T・2・3 (〃—2)・(〃—1)・〃・21+2+ +(n-3)+(n-2)+(n-1).T......n^n-1)=21又,所以数列的通项公式为。求数列通项公式的十种方法,例题答案详解注:本题还可综合利用累乘法和对数变换法求数列的通项公式。五、对数变换法适用于(其中p,r为常数)型p>0,例14.设正项数列满足,(nN2).求数列的通项公式.解:两边取对数得:,,设,则是以2为公比的等比数列,••练习数列中,,(nN2),求数列的通项公式.答案:例15已知数列满足,,求数列的通项公式。解:因为,所以。两边取常用对数得设(同类型四)比较系数得,由,得,所以数列是以为首项,以5为公比的等比数列,则,因此求数列通项公式的十种方法,例题答案详解则。分子只有一项六、 倒数变换法适用于分式关系的递推公式,分子只有一项例16已知数列满足,求数列的通项公式。解:求倒数得为等差数列,首项,公差为,七、 换元法适用于含根式的递推关系例17已知数列满足,求数列的通项公式。解:令,贝代入得1 1 1, ,"T)=耐["4慕贝T)即因为,贝IJ,即,可化为,所以是以为首项,以为公比的等比数列,因此,则,即,得求数列通项公式的十种方法,例题答案详解八、数学xx通过首项和递推关系式求出数列的前n项,猜出数列的通项公式,再用数学xx加以证明。例18已知数列满足,求数列的通项公式。解:由及,得_ 8(1+1) _88x2_24%-"1(2x1+1)2(2x1+3)2—99x25一25_ 8(2+1) _24 8x3_48a3-"2(2x2+1)2(2x2+3)2-2525x49-498(3+1) 48 8x4 80a=a+ =——+ =——4 3(2x3+1)2(2x3+3)24949x8181由此可猜测,下面用数学xx证明这个结论。(1)当时,,所以等式成立。(2)假设当时等式成立,即,则当时,〃― 8(k+1)"k+1—"k(2k+1)2(2k+3)2_[(2k+1)2-1](2k+3)2+8(k+1)(2k+1)2(2k+3)2_(2k+1)2(2k+3)2-(2k+1)2(2k+1)2(2k+3)2_(2k+3)2-1-(2k+3)2_[2(k+1)+1]2-1—[2(k+1)+1]2由此可知,当时等式也成立。根据(1),(2)可知,等式对任何都成立。九、阶差法(逐项相减法)求数列通项公式的十种方法,例题答案详解1、递推公式中既有,又有分析:把已知关系通过转化为数列或的递推关系,然后采用相应的方法求解。例19已知数列的各项均为正数,且前n项和满足,且成等比数列,求数列的通项公式。解:..•对任意有⑴.••当n=1时,,解得或当nN2时,⑵⑴-⑵整理得:..•各项均为正数,...当时,,此时成立当时,,此时不成立,故舍去所以练习。已知数列中,且,求数列的通项公式.答案:2、对无穷递推数列例20已知数列满足,求的通项公式。求数列通项公式的十种方法,例题答案详解解:因为①所以②用②式一①式得则故所以③由,,则,又知,则,代入③得。所以,的通项公式为十、不动点法目的是将递推数列转化为等比(差)数列的方法不动点的定义:函数的定义域为,若存在,使成立,则称为的不动点或称为函数的不动点。分析:由求出不动点,在递推公式两边同时减去,在变形求解。类型一:形如例21已知数列中,,求数列的通项公式。解:递推关系是对应得递归函数为,由得,不动点为-1• ••,类型二:形如分析:递归函数为(1) 若有两个相异的不动点p,q时,将递归关系式两边分别减去不动点p,q,再将两式相除得,其中,...(2) 若有两个相同的不动点p,则将递归关系式两边减去不动点p,然后用1除,得,其中。例22.设数列满足,求数列的通项公式.分析:此类问题常用参数法化等比数列求解.解:对等式两端同时加参数t,得:,令,解之得t=1,-2代入得,,相除得,即{}是首项为,公比为的等比数列,=,解得.方法2:,两边取倒数得,令b,则b,转化为累加法来求.例23已知数列满足,求数列的通项公式。求数列通项公式的十种方法,例题答案详解解:令,得,则是函数的两个不动点。因为。所以数列是以为首项,以为公比的等比数列,故,则。十一。特征方程法形如是常数)的数列形如是常数)的二阶递推数列都可用特征根法求得通项,其特征方程为…①若①有二异根,则可令是待定常数)若①有二重根,则可令是待定常数)再利用可求得,进而求得例24已知数列满足,求数列的通项解:其特征方程为,解得,令,由,得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泰达基金从业考试及答案解析
- 2025年国家开放大学(电大)《投资学原理》期末考试备考试题及答案解析
- 养老机构年度工作规划范文
- 2025年国家开放大学《广告策划与设计》期末考试备考试题及答案解析
- 九年级数学相似三角形专题教案与练习题
- 2025年国家开放大学《风险管理与保险学》期末考试备考试题及答案解析
- 银行信贷业务风险管理操作指南
- 中考英语真题及详解
- 现代物流供应链管理模式分析报告
- 2025年国家开放大学《建筑电气及智能化》期末考试备考试题及答案解析
- 水平三(五年级)体育《篮球:单手肩上投篮》说课稿课件
- 2023发电机自动准同期装置整定计算技术导则
- GB/T 3672.1-2002橡胶制品的公差第1部分:尺寸公差
- 月度工作总结
- 《C++语言基础》全套课件(完整版)
- 箱涵高支模方案
- 第十章我国的环境保护政策和法规课件
- 《社会工作伦理案例分析》课件 儿童和青少年社会工作伦理
- 艺人明星形象代言肖像权使用合同模板
- 绿化养护检查记录表
- 减盐防控高血压治课件全球减盐行动课件
评论
0/150
提交评论