




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018-2019学年浙江省杭州市江干区九年级(上)期末数学试卷一、选择题1.(3分)下列函数是二次函数的是()A.y=2x B.y=1C.y=x+5 D.y=(x+1)(x﹣3)2.(3分)由5a=6b(a≠0),可得比例式()A.ab=65 B.ab=563.(3分)二次函数y=﹣2(x﹣1)2+3的最大值是()A.﹣2 B.1 C.3 D.﹣14.(3分)学校组织校外实践活动,安排给九年级两辆车,小明与小慧都可以从两辆车中任选一辆搭乘,则小明和小慧乘同一辆车的概率是()A.14 B.12 C.34 5.(3分)如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70° B.110° C.120° D.140°6.(3分)如图,E是平行四边形ABCD的BA边的延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.AEAB=AFBC B.AEAB=AFDF7.(3分)若抛物线y=ax2+2ax+4a(a>0)上有A(-32,y1)、B(2,A.y1<y2<y3 B.y1<y3<y2 C.y3<y1<y2 D.y2<y3<y18.(3分)四位同学在研究函数y=ax2+bx+c(a、b、c为常数,且a≠0)时,甲发现当x=1时,函数有最大值;乙发现﹣1是方程ax2+bx+c=0的一个根;丙发现函数的最大值为﹣1;丁发现当x=2时,y=﹣2,已知四位中只有一位发现的结论时错误的,则该同学是()A.甲 B.乙 C.丙 D.丁9.(3分)已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是()A.12 B.13 C.14 D.1510.(3分)把边长为4的正方形ABCD绕A点顺时针旋转30°得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.12 B.8+433 C.8+8二、填空题11.(3分)已知b是a、c的比例中项,若a=4,c=9,那么b=.12.(3分)如图,已知正三角形ABC,分别以A、B、C为圆心,以AB长为半径画弧,得到的图形我们称之为弧三角形.若正三角形ABC的边长为1,则弧三角形的周长为.13.(3分)如图,AB是⊙O的直径,E是OB的中点,过E点作弦CD⊥AB,G是弧AC上任意一点,连结AG、GD,则∠G=.14.(3分)如图所示矩形ABCD中,AB=4,BC=3,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为.15.(3分)如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠,使AB落在AD边上,折痕为AE,再将△AEB以BE为折痕向右折叠,AE与DC交于点F,则FCFD的值是16.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则APAB=三、解答题17.如图,一个人拿着一把长为12cm的刻度尺站在离电线杆20m的地方.他把手臂向前伸直,尺子竖直,尺子两端恰好遮住电线杆,已知臂长约为40cm,求电线杆的高度.18.某水果公司以2元/千克的成本购进10000千克柑橘,销售人员从柑橘中抽取若干柑橘统计损坏情况,结果如下表:柑橘总质量损坏柑橘质量柑橘损坏的频率505.50.11010010.50.10515015.150.10120019.420.09725024.250.09730030.930.13035035.320.10140039.240.09845044.570.09950051.420.103(1)请根据表格中的数据,估计这批柑橘损坏的概率(精确到0.01);(2)公司希望这批柑橘能够至少获利5000元,则毎干克最低定价为多少元?(精确到0.1元).19.花圃用花盆培育某种花苗,经过试验发现,毎盆的盈利与毎盆的株数构成一种函数关系.每盆植入2株,每株盈利4元,以同样的栽培条件,当株数在2到9株之间时,若每盆增加一株,平均单株盈利就减少0.5元.要使每盆盈利达到最大,应该植多少株?20.如图,BC是⊙O的直径,四边形ABCD是矩形,AD交⊙O于M、N两点,AB=3,BC=12.(1)求MN的长;(2)求阴影部分的面积.21.如图,在△ABC中,AB=AC,以腰AB为直径作半圆,分别交BC、AC于点D、E,连结DE.(1)求证:BD=DE;(2)若AB=13,BC=10,求CE的长.22.已知二次函数y=(x﹣m)2﹣(x﹣m).(1)判断该二次函数图象与x轴交点个数,并说明理由;(2)若该二次函数的顶点坐标为(72,n),求(3)若把函数图象向上平移k个单位,使得对于任意的x都有y大于0,求证:k>123.如图,在菱形ABCD中,点E在BC边上(不与点B、C重合),连接AE、BD交于点G.(1)若AG=BG,AB=4,BD=6,求线段DG的长;(2)设BC=kBE,△BGE的面积为S,△AGD和四边形CDGE的面积分别为S1和S2,把S1和S2分别用k、S的代数式表示;(3)求S2
2018-2019学年浙江省杭州市江干区九年级(上)期末数学试卷参考答案与试题解析一、选择题1.(3分)下列函数是二次函数的是()A.y=2x B.y=1C.y=x+5 D.y=(x+1)(x﹣3)【分析】直接利用二次函数的定义进而分析得出答案.【解答】解:A、y=2x,是一次函数,故此选项错误;B、y=1xC、y=x+5,是一次函数,故此选项错误;D、y=(x+1)(x﹣3),是二次函数,故此选项正确.故选:D.【点评】此题主要考查了二次函数的定义,正确把握函数的定义是解题关键.2.(3分)由5a=6b(a≠0),可得比例式()A.ab=65 B.ab=56【分析】逆用比例的基本性质,把5a=6b改写成比例的形式,使相乘的两个数a和5做比例的外项,则相乘的另两个数b和6就做比例的内项即可.【解答】解:5a=6b(a≠0),那么a:b=6:5,即ab故选:A.【点评】考查了比例的性质,解答此题的关键是比例基本性质的逆运用,要注意:相乘的两个数要做外项就都做外项,要做内项就都做内项.3.(3分)二次函数y=﹣2(x﹣1)2+3的最大值是()A.﹣2 B.1 C.3 D.﹣1【分析】直接利用二次函数的最值问题求解.【解答】解:二次函数y=﹣2(x﹣1)2+3的最大值是3.故选:C.【点评】本题考查了二次函数的最值:当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减小,因为图象有最高点,所以函数有最大值.4.(3分)学校组织校外实践活动,安排给九年级两辆车,小明与小慧都可以从两辆车中任选一辆搭乘,则小明和小慧乘同一辆车的概率是()A.14 B.12 C.34 【分析】画树状图为(用A、B表示两辆车)展示所有4种等可能的结果数,再找出小明和小慧乘同一辆车的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B表示两辆车)共有4种等可能的结果数,其中小明和小慧乘同一辆车的结果数为2,所以小明和小慧乘同一辆车的概率=2故选:B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.5.(3分)如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70° B.110° C.120° D.140°【分析】作AB所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【解答】解:作AB所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.(3分)如图,E是平行四边形ABCD的BA边的延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.AEAB=AFBC B.AEAB=AFDF【分析】根据平行四边形的性质得到AB∥CD,AB=CD;AD∥BC,再根据平行线分线段成比例得到AECD=AFDF=EFFC,用AB等量代换CD,得到AECD=【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD;AD∥BC,∴AECD=AFDF=∴AECD=AFDF=∴AEAB又∵AF∥BC,∴AEBE故选:A.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得对应线段成比例.也考查了平行四边形的性质.7.(3分)若抛物线y=ax2+2ax+4a(a>0)上有A(-32,y1)、B(2,yA.y1<y2<y3 B.y1<y3<y2 C.y3<y1<y2 D.y2<y3<y1【分析】先求出抛物线对称轴,根据题意可知抛物线开口向上,再根据三个点与对称轴距离的大小及抛物线的增减性即可判断纵坐标的大小.【解答】解:抛物线的对称轴是x=﹣1,开口向上,且与x轴无交点,∴与对称轴距离越近的点对应的纵坐标越小.A、B、C三点与对称轴距离按从小到大顺序是A、C、B,∴y1<y3<y2,故选:B.【点评】本题主要考查了抛物线先上点坐标的特征,找准对称轴以及抛物线的增减性是解题的关键.8.(3分)四位同学在研究函数y=ax2+bx+c(a、b、c为常数,且a≠0)时,甲发现当x=1时,函数有最大值;乙发现﹣1是方程ax2+bx+c=0的一个根;丙发现函数的最大值为﹣1;丁发现当x=2时,y=﹣2,已知四位中只有一位发现的结论时错误的,则该同学是()A.甲 B.乙 C.丙 D.丁【分析】将甲乙丙丁四人的结论转化为等式和不等式,然后用假设法逐一排除正确的结论,最后得出错误的结论.【解答】解:四人的结论如下:甲:b+2a=0,且a<0,b>0;乙:a﹣b+c=0;丙:a<0,且4ac-b24a=-1,即:4ac﹣b2丁:4a+2b+c=﹣2.由于甲、乙、丁正确,联立,解得:c=﹣2,a=23若甲乙正确,则:c=﹣3a,b=﹣2a,代入丙:﹣12a2﹣4a2=﹣4a,得:a=14若乙正确,则b=a+c,代入丙:4ac﹣(a+c)2=﹣4a,化简,得:﹣(a﹣c)2=﹣4a,故a≥0,与丙中a<0矛盾,故乙错误.因此乙错误.故选:B.【点评】本题考查了二次函数的最值和二次函数图象上点的特征,熟知二次函数的性质和合理推理是解题的关键.9.(3分)已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是()A.12 B.13 C.14 D.15【分析】根据相似的判定与性质每一层的靠上的边的长度,从而判定可放置的正方形的个数及层数.【解答】解:作CF⊥AB于点F,设最下边的一排小正方形的上边的边所在的直线与△ABC的边交于D、E,∵DE∥AB,∴DEAB=15-2解得:DE=263,而263∴最下边一排是4个正方形.第二排正方形的上边的边所在的直线与△ABC的边交于G、H.则GHAB=15-415,解得GH=22∴第二排是3个正方形;同理:第三排是:3个;第四排是2个,第五排是1个,第六排是1个,则正方形的个数是:4+3+3+2+1+1=14.故选:C.【点评】本题考查了相似三角形的性质与判定、正方形的性质等问题,解题的关键是在掌握所需知识点的同时,要具有综合分析问题、解决问题的能力.10.(3分)把边长为4的正方形ABCD绕A点顺时针旋转30°得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.12 B.8+433 C.8+8【分析】由正方形的性质可得AB=AD=4,∠DAB=90°,由旋转的性质可得AB=AB'=AD=4,∠BAB'=30°,由“HL”可证Rt△AOB'≌Rt△AOD,可得DO=433=B'O,即可求四边形【解答】解:如图,∵四边形ABCD是正方形∴AB=AD=4,∠DAB=90°∵旋转∴AB=AB'=AD=4,∠BAB'=30°∴∠DAB'=∠DAB﹣∠BAB'=60°,∵AD=AB',AO=AO∴Rt△AOB'≌Rt△AOD(HL)∴∠DAO=∠B'AO=30°,DO=B'O,∴AD=3DO=∴DO=433∴四边形AB′OD′的周长=AD+AB'+DO+B'O=8+故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定和性质,熟练运用这些性质进行推理是本题的关键.二、填空题11.(3分)已知b是a、c的比例中项,若a=4,c=9,那么b=±6.【分析】根据比例中项的定义,若b是a,c的比例中项,即b2=ac.即可求解.【解答】解:若b是a、c的比例中项,即b2=ac.则b=±ac=±故答案为:±6.【点评】本题主要考查了比例线段,关键是根据比例中项的定义解答.12.(3分)如图,已知正三角形ABC,分别以A、B、C为圆心,以AB长为半径画弧,得到的图形我们称之为弧三角形.若正三角形ABC的边长为1,则弧三角形的周长为π.【分析】根据等边三角形的性质得到∠A=∠B=∠C=60°,根据弧长公式求出AB的长,计算即可.【解答】解:∵△ABC是正三角形,∴∠A=∠B=∠C=60°,∴AB=则弧三角形的周长=π3×3故答案为:π.【点评】本题考查的是弧长的计算、等边三角形的性质,掌握弧长公式是解题的关键.13.(3分)如图,AB是⊙O的直径,E是OB的中点,过E点作弦CD⊥AB,G是弧AC上任意一点,连结AG、GD,则∠G=60°.【分析】连接OD,BD,根据含30°的直角三角形的性质和圆周角定理解答即可.【解答】解:连接OD,BD,∵CD⊥AB,E是OB的中点,∴∠OED=90°,2OE=OD,∴∠BOD=60°,∵OB=OD,∴△OBD是等边三角形,∴∠B=60°,∴∠G=60°,故答案为:60°.【点评】此题考查圆周角定理,关键是根据含30°的直角三角形的性质和圆周角定理解答.14.(3分)如图所示矩形ABCD中,AB=4,BC=3,P是线段BC上一点(P不与B重合),M是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为y=-25x2+2x(0<x≤【分析】过点M作ME⊥AD,垂足为点E,延长EM交BC于点F,由矩形的性质可得出AD=BC=3,∠A=90°,在Rt△ABD中,利用勾股定理可求出BD的长,由ME⊥AD,可得出∠DEM=∠A=90°,结合∠EDM=∠ADB,可得出△DEM∽△DAB,利用相似三角形的性质可用含x的代数式表示出EM,进而可得出MF的长,再利用三角形的面积公式即可得出y关于x的函数关系式.【解答】解:过点M作ME⊥AD,垂足为点E,延长EM交BC于点F,如图所示.∵四边形ABCD为矩形,∴AD=BC=3,∠A=90°.在Rt△ABD中,AB=4,AD=3,∴BD=AB∵ME⊥AD,∴∠DEM=∠A=90°.又∵∠EDM=∠ADB,∴△DEM∽△DAB,∴EMAB∴EM=AB⋅DMDB∴MF=AB﹣EM=(4-45∴y=12BP•MF=-25故答案为:y=-25x2+2x(0<x【点评】本题考查了矩形的性质、勾股定理、相似三角形的判定与性质、由实际问题抽象出二次函数关系式以及三角形的面积,利用矩形的性质及相似三角形的性质找出MF是解题的关键.15.(3分)如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠,使AB落在AD边上,折痕为AE,再将△AEB以BE为折痕向右折叠,AE与DC交于点F,则FCFD的值是12【分析】观察第3个图,易知△ECF∽△ADF,欲求CF、CD的比值,必须先求出CE、AD的长;由折叠的性质知:AB=BE=6,那么BD=EC=2,即可得到EC、AD的长,由此得解.【解答】解:由题意知:AB=BE=6,BD=AD﹣AB=2,AD=AB﹣BD=4;∵CE∥AB,∴△ECF∽△ADF,得CEAD即DF=2CF,∴CF:FD=1:2=1即FCFD故答案为:12【点评】本题主要考查了图形的翻折变换、矩形的性质以及相似三角形的判定和性质,掌握变换的性质是解决问题的关键.16.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则APAB=13【分析】连接AE,过点F作FH⊥AE,根据正多边形的内角和得出∠AFE=∠DEF=120°,再根据等腰三角形的性质可得∠FAE=∠FEA=30°,得出∠AEP=90°,由勾股定理得FH,AE,从而得出AP.【解答】解:连接AE,过点F作FH⊥AE,∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=a,∠AFE=∠DEF=120°,∴∠FAE=∠FEA=30°,∴∠AEP=90°,∴FH=a∴AH=32a,∵P是ED的中点,∴EP=a∴AP=A∴AP【点评】本题考查了正多边形和圆,以及勾股定理、等腰三角形的性质,是中考的常见题型.三、解答题17.如图,一个人拿着一把长为12cm的刻度尺站在离电线杆20m的地方.他把手臂向前伸直,尺子竖直,尺子两端恰好遮住电线杆,已知臂长约为40cm,求电线杆的高度.【分析】先求出△ABC∽△AEF,再根据三角形对应高的比等于对应边的比,这样就可以求出电线杆EF的高.【解答】解:作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴BCEF∵AM=0.4m,AN=20m,BC=0.12m,∴EF=0.12×200.4=6答:电线杆的高度为6m.【点评】此题主要利用了相似三角形的应用,利用相似三角形对应高的比等于对应边的比是解题关键.18.某水果公司以2元/千克的成本购进10000千克柑橘,销售人员从柑橘中抽取若干柑橘统计损坏情况,结果如下表:柑橘总质量损坏柑橘质量柑橘损坏的频率505.50.11010010.50.10515015.150.10120019.420.09725024.250.09730030.930.13035035.320.10140039.240.09845044.570.09950051.420.103(1)请根据表格中的数据,估计这批柑橘损坏的概率(精确到0.01);(2)公司希望这批柑橘能够至少获利5000元,则毎干克最低定价为多少元?(精确到0.1元).【分析】(1)根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.1左右,由此可估计柑橘的损坏概率为0.10;(2)根据概率计算出完好柑橘的质量为10000×0.9=9000千克,设每千克柑橘的销售价为x元,然后根据“售价=进价+利润”列方程解答.【解答】解:(1)根据表中的损坏的频率,当实验次数的增多时,柑橘损坏的频率越来越稳定在0.1左右,所以柑橘的损坏概率为0.10.故答案为:0.10;(2)根据估计的概率可以知道,在1000千克柑橘中完好柑橘的质量为10000×0.9=9000千克.设每千克柑橘的销售价为x元,则应有9000x=2×10000+5000,解得x≈2.8.答:出售柑橘时每千克大约定价为2.8元可获利润5000元.【点评】本题考查了利用频率估计概率:用到的知识点为:频率=所求情况数与总情况数之比.得到售价的等量关系是解决(2)的关键.19.花圃用花盆培育某种花苗,经过试验发现,毎盆的盈利与毎盆的株数构成一种函数关系.每盆植入2株,每株盈利4元,以同样的栽培条件,当株数在2到9株之间时,若每盆增加一株,平均单株盈利就减少0.5元.要使每盆盈利达到最大,应该植多少株?【分析】假设每盆花苗增加x株,则每盆花苗有(x+2)株,得出平均单株盈利为(4﹣0.5x)元,根据总利润=平均单株盈利×每盆株数,列出函数表达式,根据二次函数性质求解.【解答】解:设每盆花苗(假设原来花盆中有2株)增加a(a为偶数)株,盈利为y元,则根据题意得:y=(4﹣0.5×a)(a+2)=-12(a﹣3)∴当a=3时,y=12.5,∴每盆植5株时能使单盆取得最大盈利.【点评】此题考查了二次函数的应用,根据每盆花苗株数×平均单株盈利=总盈利得出二次函数表达式是解题关键.20.如图,BC是⊙O的直径,四边形ABCD是矩形,AD交⊙O于M、N两点,AB=3,BC=12.(1)求MN的长;(2)求阴影部分的面积.【分析】(1)作OE⊥AB于E,连接OM,由垂径定理得到ME=EN=12MN,根据勾股定理得到ME=O(2)连接ON,根据三角函数的定义得到∠MOE=60°,求得∠BOM=∠CON=30°,根据扇形和三角形的面积公式即可得到结论.【解答】解:(1)作OE⊥AB于E,连接OM,则ME=EN=12∵BC=12,∴OM=6,在矩形ABCD中,OE⊥AD,∴OE=AB=3,∵在△OEM中,∠OEM=90°,ME=OM2∴线段MN的长度为63;(2)连接ON,在Rt△OME中,∵cos∠MOE=OE∴∠MOE=60°,∴∠MON=120°,∴∠BOM=∠CON=30°,∴阴影部分的面积=60⋅π×62360+12×6【点评】本题考查了扇形的面积,勾股定理、垂径定理、矩形的性质等知识点,关键是构造直角三角形.21.如图,在△ABC中,AB=AC,以腰AB为直径作半圆,分别交BC、AC于点D、E,连结DE.(1)求证:BD=DE;(2)若AB=13,BC=10,求CE的长.【分析】(1)连接AD,DE,根据等腰三角形的性质得到∠BAD=∠CAD,于是得到结论;(2)根据等腰三角形的性质得到BD=CD=12BC=【解答】解:(1)连接AD,DE,∵AB为半圆的直径,∴AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∴BD=∴BD=DE;(2)∵AB=AC=13,AD⊥BC,∴BD=CD=12BC=∵∠CDE=∠BAC,∠C=∠C,∴△CDE∽△CAB,∴CDCE∴5CE∴CE=50【点评】本题考查了等腰三角形的性质,相似三角形的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.22.已知二次函数y=(x﹣m)2﹣(x﹣m).(1)判断该二次函数图象与x轴交点个数,并说明理由;(2)若该二次函数的顶点坐标为(72,n),求(3)若把函数图象向上平移k个单位,使得对于任意的x都有y大于0,求证:k>1【分析】(1)先把解析式整理y=x2﹣(2m+1)x+m2+m,再计算判别式的值,然后根据判别式的意义判断该二次函数图象与x轴交点个数;(2)利用顶点坐标公式得到--(2m+1)2=72,-14(3)配成顶点式得到抛物线y=(x-2m+12)2-14的顶点坐标为(2m+12,-14),利用平移得到平移k个单位后抛物线的顶点坐标为(2m+12,-14+【解答】(1)解:该二次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广西来宾市忻城县政府投资审计中心招聘见习生2人模拟试卷及完整答案详解1套
- 2025湖南岳阳市平江县事业单位第一批公开选调工作人员考前自测高频考点模拟试题及一套答案详解
- 2025年上半年四川绵阳市游仙区考核招聘教师31人考前自测高频考点模拟试题及1套参考答案详解
- 2025河南商丘市民权县消防救援大队招聘政府专职消防员32人模拟试卷及参考答案详解1套
- 2025海南白沙黎族自治县机关事务服务中心招聘公益性岗位人员2人考前自测高频考点模拟试题附答案详解
- 2025年阜阳颍上县人民医院引进博士研究生2人考前自测高频考点模拟试题附答案详解(完整版)
- 2025年轧钢导卫装置项目合作计划书
- 2025广东中共中山市委政法委员会所属事业单位招聘事业单位人员4人模拟试卷及完整答案详解一套
- 2025内蒙古鄂尔多斯生态环境职业学院人才引进38人考前自测高频考点模拟试题带答案详解
- 2025年福建省龙岩市武平县乡村人才振兴招聘10人模拟试卷及参考答案详解
- 高中化学-金属钠的性质及应用教学设计学情分析教材分析课后反思
- 工程量清单及招标控制价编制方案
- 04S519小型排水构筑物(含隔油池)图集
- 工程施工人员安全教育培训【共55张课件】
- 双碱法脱硫操作专项规程
- 人教版七年级上学期英语第一次月考试卷(含答案解析)
- 仿生机器鱼行业规模分析
- 胸闷病人的护理查房
- β内酰胺类抗菌药物皮肤试验指导原则(2021版)
- 北京猿人头盖骨失踪之谜
- 华中科技大学教学课件-工程传热学1王晓墨
评论
0/150
提交评论