




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§6.1数列的概念考试要求1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的有关概念概念含义数列按照确定的顺序排列的一列数数列的项数列中的每一个数通项公式如果数列{an}的第n项an与它的序号n之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式数列{an}的前n项和把数列{an}从第1项起到第n项止的各项之和,称为数列{an}的前n项和,记作Sn,即Sn=a1+a2+…+an2.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列an+1>an其中n∈N*递减数列an+1<an常数列an+1=an摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列与函数的关系数列{an}是从正整数集N*(或它的有限子集{1,2,…,n})到实数集R的函数,其自变量是序号n,对应的函数值是数列的第n项an,记为an=f(n).常用结论1.已知数列{an}的前n项和Sn,则an=eq\b\lc\{\rc\(\a\vs4\al\co1(S1,n=1,,Sn-Sn-1,n≥2.))2.在数列{an}中,若an最大,则eq\b\lc\{\rc\(\a\vs4\al\co1(an≥an-1,,an≥an+1))(n≥2,n∈N*);若an最小,则eq\b\lc\{\rc\(\a\vs4\al\co1(an≤an-1,,an≤an+1))(n≥2,n∈N*).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)数列的项与项数是同一个概念.(×)(2)数列1,2,3与3,2,1是两个不同的数列.(√)(3)任何一个数列不是递增数列,就是递减数列.(×)(4)若数列用图象表示,则从图象上看是一群孤立的点.(√)教材改编题1.(多选)已知数列{an}的通项公式为an=9+12n,则在下列各数中,是{an}的项的是()A.21B.33C.152D.153答案ABD解析由数列的通项公式得,a1=21,a2=33,a12=153.2.已知数列{an}的前n项和为Sn,且Sn=n2+n,则a2的值是()A.2B.4C.5D.6答案B解析由题意,S2=22+2=6,S1=1+1=2,所以a2=S2-S1=6-2=4.3.在数列1,1,2,3,5,8,13,21,x,55,…中,x=________.答案34解析通过观察数列各项的规律,发现从第三项起,每项都等于它前两项之和,因此x=13+21=34.题型一由an与Sn的关系求通项公式例1(1)已知数列{an}的前n项和为Sn,a1=2,Sn+1=2Sn-1,则a10等于()A.128B.256C.512D.1024答案B解析∵Sn+1=2Sn-1,∴当n≥2时,Sn=2Sn-1-1,两式相减得an+1=2an.当n=1时,a1+a2=2a1-1,又a1=2,∴a2=1.∴数列{an}从第二项开始为等比数列,公比为2.则a10=a2×28=1×28=256.(2)已知数列{an}的前n项和为Sn,且满足Sn=2n+2-3,则an=________.答案eq\b\lc\{\rc\(\a\vs4\al\co1(5,n=1,,2n+1,n≥2))解析根据题意,数列{an}满足Sn=2n+2-3,当n≥2时,有an=Sn-Sn-1=(2n+2-3)-(2n+1-3)=2n+1,当n=1时,有a1=S1=8-3=5,不符合an=2n+1,故an=eq\b\lc\{\rc\(\a\vs4\al\co1(5,n=1,,2n+1,n≥2.))思维升华Sn与an的关系问题的求解思路(1)利用an=Sn-Sn-1(n≥2)转化为只含Sn,Sn-1的关系式,再求解.(2)利用Sn-Sn-1=an(n≥2)转化为只含an,an-1的关系式,再求解.跟踪训练1(1)已知正项数列{an}中,eq\r(a1)+eq\r(a2)+…+eq\r(an)=eq\f(nn+1,2),则数列{an}的通项公式为()A.an=n B.an=n2C.an=eq\f(n,2) D.an=eq\f(n2,2)答案B解析∵eq\r(a1)+eq\r(a2)+…+eq\r(an)=eq\f(nn+1,2),∴eq\r(a1)+eq\r(a2)+…+eq\r(an-1)=eq\f(nn-1,2)(n≥2),两式相减得eq\r(an)=eq\f(nn+1,2)-eq\f(nn-1,2)=n(n≥2),∴an=n2(n≥2),①又当n=1时,eq\r(a1)=eq\f(1×2,2)=1,a1=1,适合①式,∴an=n2,n∈N*.(2)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=__________.答案-eq\f(1,n)解析因为an+1=Sn+1-Sn,an+1=SnSn+1,所以由两式联立得Sn+1-Sn=SnSn+1.因为Sn≠0,所以eq\f(1,Sn)-eq\f(1,Sn+1)=1,即eq\f(1,Sn+1)-eq\f(1,Sn)=-1.又eq\f(1,S1)=-1,所以数列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,Sn)))是首项为-1,公差为-1的等差数列.所以eq\f(1,Sn)=-1+(n-1)×(-1)=-n,所以Sn=-eq\f(1,n).题型二由数列的递推关系求通项公式命题点1累加法例2设[x]表示不超过x的最大整数,如[-3.14]=-4,[3.14]=3.已知数列{an}满足:a1=1,an+1=an+n+1(n∈N*),则eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,a1)+\f(1,a2)+\f(1,a3)+…+\f(1,a2023)))等于()A.1B.2C.3D.4答案A解析由an+1=an+n+1,得an-an-1=n(n≥2).又a1=1,所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+(n-2)+…+2+1=eq\f(nn+1,2)(n≥2),当n=1时,a1=1满足上式,则eq\f(1,an)=eq\f(2,nn+1)=2eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,n)-\f(1,n+1))).所以eq\f(1,a1)+eq\f(1,a2)+…+eq\f(1,a2023)=2×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)+\f(1,2)-\f(1,3)+…+\f(1,2023)-\f(1,2024)))=2×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2024)))=eq\f(2023,1012).所以eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,a1)+\f(1,a2)+\f(1,a3)+…+\f(1,a2023)))=eq\b\lc\[\rc\](\a\vs4\al\co1(\f(2023,1012)))=1.命题点2累乘法例3在数列{an}中,a1=1,an=eq\f(n-1,n)an-1(n≥2,n∈N*),则数列{an}的通项公式为________.答案an=eq\f(1,n)解析∵an=eq\f(n-1,n)an-1(n≥2),∴an-1=eq\f(n-2,n-1)an-2,an-2=eq\f(n-3,n-2)an-3,…,a2=eq\f(1,2)a1.以上(n-1)个式子相乘得,an=a1·eq\f(1,2)·eq\f(2,3)·…·eq\f(n-1,n)=eq\f(a1,n)=eq\f(1,n).当n=1时,a1=1,符合上式,∴an=eq\f(1,n).思维升华(1)形如an+1-an=f(n)的数列,利用累加法.(2)形如eq\f(an+1,an)=f(n)的数列,利用an=a1·eq\f(a2,a1)·eq\f(a3,a2)·…·eq\f(an,an-1)(n≥2)即可求数列{an}的通项公式.跟踪训练2(1)在数列{an}中,a1=2,an+1=an+lneq\b\lc\(\rc\)(\a\vs4\al\co1(1+\f(1,n))),则an等于()A.2+lnn B.2+(n-1)lnnC.2+nlnn D.1+n+lnn答案A解析因为an+1-an=ln
eq\f(n+1,n)=ln(n+1)-lnn,所以a2-a1=ln2-ln1,a3-a2=ln3-ln2,a4-a3=ln4-ln3,…an-an-1=lnn-ln(n-1)(n≥2),把以上各式相加得an-a1=lnn-ln1,则an=2+lnn(n≥2),且a1=2也满足此式,因此an=2+lnn(n∈N*).(2)已知数列a1,eq\f(a2,a1),…,eq\f(an,an-1),…是首项为1,公比为2的等比数列,则log2an=________.答案eq\f(nn-1,2)解析由题意知,a1=1,eq\f(an,an-1)=1×2n-1=2n-1(n≥2),所以an=eq\f(an,an-1)×eq\f(an-1,an-2)×…×eq\f(a2,a1)×a1=2n-1×2n-2×…×1=(n≥2),当n=1时,a1=1适合此式,所以log2an=eq\f(nn-1,2).题型三数列的性质命题点1数列的单调性例4设数列{an}的前n项和为Sn,且∀n∈N*,an+1>an,Sn≥S6.请写出一个满足条件的数列{an}的通项公式an=________.答案n-6,n∈N*(答案不唯一)解析由∀n∈N*,an+1>an可知数列{an}是递增数列,又Sn≥S6,故数列{an}从第7项开始为正.而a6≤0,因此不妨设数列是等差数列,公差为1,a6=0,所以an=n-6,n∈N*(答案不唯一).命题点2数列的周期性例5若数列{an}满足a1=2,an+1=eq\f(1+an,1-an),则a2024的值为()A.2B.-3C.-eq\f(1,2)D.eq\f(1,3)答案D解析由题意知,a1=2,a2=eq\f(1+2,1-2)=-3,a3=eq\f(1-3,1+3)=-eq\f(1,2),a4=eq\f(1-\f(1,2),1+\f(1,2))=eq\f(1,3),a5=eq\f(1+\f(1,3),1-\f(1,3))=2,a6=eq\f(1+2,1-2)=-3,…,因此数列{an}是周期为4的周期数列,所以a2024=a505×4+4=a4=eq\f(1,3).命题点3数列的最值例6已知数列{an}的通项公式为an=eq\f(1,2n-15),其最大项和最小项的值分别为()A.1,-eq\f(1,7)B.0,-eq\f(1,7)C.eq\f(1,7),-eq\f(1,7)D.1,-eq\f(1,11)答案A解析因为n∈N*,所以当1≤n≤3时,an=eq\f(1,2n-15)<0,且单调递减;当n≥4时,an=eq\f(1,2n-15)>0,且单调递减,所以最小项为a3=eq\f(1,8-15)=-eq\f(1,7),最大项为a4=eq\f(1,16-15)=1.思维升华(1)解决数列的单调性问题的方法用作差比较法,根据an+1-an的符号判断数列{an}是递增数列、递减数列还是常数列.(2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.跟踪训练3(1)观察数列1,ln2,sin3,4,ln5,sin6,7,ln8,sin9,…,则该数列的第11项是()A.1111B.11C.ln11D.sin11答案C解析由数列得出规律,按照1,ln2,sin3,…,是按正整数的顺序排列,且以3为循环,由11÷3=3余2,所以该数列的第11项为ln11.(2)已知数列{an}的通项an=eq\f(2n-19,2n-21),n∈N*,则数列{an}前20项中的最大项与最小项分别为________.答案3,-1解析an=eq\f(2n-19,2n-21)=eq\f(2n-21+2,2n-21)=1+eq\f(2,2n-21),当n≥11时,eq\f(2,2n-21)>0,且单调递减;当1≤n≤10时,eq\f(2,2n-21)<0,且单调递减.因此数列{an}前20项中的最大项与最小项分别为第11项,第10项.a11=3,a10=-1.课时精练1.已知an=eq\f(n-1,n+1),那么数列{an}是()A.递减数列 B.递增数列C.常数列 D.摆动数列答案B解析an=1-eq\f(2,n+1),将an看作关于n的函数,n∈N*,易知数列{an}是递增数列.2.已知数列{an}的前n项和Sn满足SnS1=Sn+1(n∈N*),且a1=2,那么a7等于()A.128B.16C.32D.64答案D解析因为数列{an}的前n项和Sn满足SnS1=Sn+1(n∈N*),a1=2,所以Sn+1=2Sn,即eq\f(Sn+1,Sn)=2,所以数列{Sn}是以2为公比,以2为首项的等比数列,所以Sn=2×2n-1=2n.所以当n≥2时,an=Sn-Sn-1=2n-2n-1=2n-1.所以a7=26=64.3.已知数列{an}满足a1=1,an-an+1=nanan+1(n∈N*),则an等于()A.eq\f(n2-n,2)B.eq\f(n2-n+2,2)C.eq\f(2,n2-n)D.eq\f(2,n2-n+2)答案D解析由题意,得eq\f(1,an+1)-eq\f(1,an)=n,则当n≥2时,eq\f(1,an)-eq\f(1,an-1)=n-1,eq\f(1,an-1)-eq\f(1,an-2)=n-2,…,eq\f(1,a2)-eq\f(1,a1)=1,所以eq\f(1,an)-eq\f(1,a1)=1+2+…+(n-1)=eq\f(n2-n,2)(n≥2),所以eq\f(1,an)=eq\f(n2-n,2)+1=eq\f(n2-n+2,2),即an=eq\f(2,n2-n+2)(n≥2),当n=1时,a1=1适合此式,所以an=eq\f(2,n2-n+2).4.设数列{an}满足:a1=2,an+1=1-eq\f(1,an),记数列{an}的前n项之积为Pn,则P2024等于()A.-2B.-1C.1D.2答案C解析a1=2,an+1=1-eq\f(1,an),得a2=eq\f(1,2),a3=-1,a4=2,a5=eq\f(1,2),…,所以数列{an}是周期为3的周期数列.且P3=-1,2024=3×674+2,所以P2024=(-1)674×a1a2=1.5.大衍数列,来源于我国的《乾坤谱》,是世界数学史上第一道数列题,主要用于解释中国传统文化中的太极衍生原理.其前11项依次是0,2,4,8,12,18,24,32,40,50,60,则大衍数列的第41项为()A.760B.800C.840D.924答案C解析由题意得,大衍数列的奇数项依次为eq\f(12-1,2),eq\f(32-1,2),eq\f(52-1,2),…,易知大衍数列的第41项为eq\f(412-1,2)=840.6.(多选)已知数列{an}的通项公式为an=(n+2)·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(6,7)))n,则下列说法正确的是()A.数列{an}的最小项是a1B.数列{an}的最大项是a4C.数列{an}的最大项是a5D.当n≥5时,数列{an}递减答案BCD解析假设第n项为{an}的最大项,则eq\b\lc\{\rc\(\a\vs4\al\co1(an≥an-1,,an≥an+1,))即eq\b\lc\{\rc\(\a\vs4\al\co1(n+2·\b\lc\(\rc\)(\a\vs4\al\co1(\f(6,7)))n≥n+1·\b\lc\(\rc\)(\a\vs4\al\co1(\f(6,7)))n-1,,n+2·\b\lc\(\rc\)(\a\vs4\al\co1(\f(6,7)))n≥n+3·\b\lc\(\rc\)(\a\vs4\al\co1(\f(6,7)))n+1,))所以eq\b\lc\{\rc\(\a\vs4\al\co1(n≤5,,n≥4,))又n∈N*,所以n=4或n=5,故数列{an}中a4与a5均为最大项,且a4=a5=eq\f(65,74),当n≥5时,数列{an}递减.7.Sn为数列{an}的前n项和,且log2(Sn+1)=n+1,则数列{an}的通项公式为________.答案an=eq\b\lc\{\rc\(\a\vs4\al\co1(3,n=1,,2n,n≥2))解析由log2(Sn+1)=n+1,得Sn+1=2n+1,当n=1时,a1=S1=3;当n≥2时,an=Sn-Sn-1=2n,显然当n=1时,不满足上式.所以数列{an}的通项公式为an=eq\b\lc\{\rc\(\a\vs4\al\co1(3,n=1,,2n,n≥2.))8.若数列{an}的前n项和Sn=n2-10n(n∈N*),则数列{an}的通项公式an=________,数列{nan}中数值最小的项是第________项.答案2n-113解析∵Sn=n2-10n,∴当n≥2时,an=Sn-Sn-1=2n-11;当n=1时,a1=S1=-9也适合上式.∴an=2n-11(n∈N*).记f(n)=nan=n(2n-11)=2n2-11n,此函数图象的对称轴为直线n=eq\f(11,4),但n∈N*,∴当n=3时,f(n)取最小值.∴数列{nan}中数值最小的项是第3项.9.在①nan+1-(n+1)an=n(n+1);②Sn=2n2-1这两个条件中任选一个补充在下面的横线上,并解答.若数列{an}的前n项和为Sn,a1=1,且数列{an}满足________.(1)求a2,a3;(2)求数列{an}的通项公式.注:如果选择多个条件分别解答,则按第一个解答计分.解(1)选择①:a2-2a1=1×2,则a2=4.2a3-3a2=2×3,则a3=9.选择②:a2=S2-S1=2×22-1-1=6.a3=S3-S2=2×32-1-2×22+1=10.(2)选择①:由nan+1-(n+1)an=n(n+1),得eq\f(an+1,n+1)-eq\f(an,n)=1,所以eq\f(an,n)=eq\f(an,n)-eq\f(an-1,n-1)+eq\f(an-1,n-1)-eq\f(an-2,n-2)+…+eq\f(a2,2)-a1+a1=n-1+1=n,所以an=n2.选择②:当n≥2时,an=Sn-Sn-1=2n2-1-[2(n-1)2-1]=4n-2;当n=1时,a1=S1=1,不符合上式,故{an}的通项公式为an=eq\b\lc\{\rc\(\a\vs4\al\co1(1,n=1,,4n-2,n≥2,n∈N*.))10.(2023·长沙模拟)已知数列{cn}满足c1=eq\f(1,2),eq\f(cn+1,cn+1-1)=eq\f(c\o\al(2,n),cn-1),n∈N*,Sn为该数列的前n项和.(1)求证:数列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,cn)))为递增数列;(2)求证:Sn<1.证明(1)因为c1=eq\f(1,2),eq\f(cn+1,cn+1-1)=eq\f(c\o\al(2,n),cn-1),所以cn≠1,cn≠0,两边分别取倒数可得1-eq\f(1,cn+1)=eq\f(1,cn)-eq\f(1,c\o\al(2,n)),整理可得eq\f(1,cn+1)-eq\f(1,cn)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,cn)-1))2>0,所以数列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,cn)))为递增数列.(2)由eq\f(cn+1,cn+1-1)=eq\f(c\o\al(2,n),cn-1)可得eq\f(cn+1-1+1,cn+1-1)=eq\f(c\o\al(2,n)-1+1,cn-1),即eq\f(1,cn+1-1)=cn+eq\f(1,cn-1),所以cn=eq\f(1,cn+1-1)-eq\f(1,cn-1),所以Sn=c1+c2+…+cn=eq\f(1,c2-1)-eq\f(1,c1-1)+eq\f(1,c3-1)-eq\f(1,c2-1)+…+eq\f(1,cn+1-1)-eq\f(1,cn-1)=eq\f(1,cn+1-1)-eq\f(1,c1-1)=eq\f(1,cn+1-1)+2,又eq\f(1,cn)≥eq\f(1,c1)=2,所以cn+1∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2))),所以eq\f(1,cn+1-1)<-1,即Sn<1.11.在数列{an}中,a1=1,a=(n,an),b=(an+1,n+1),且a⊥b,则a100等于()A.eq\f(100,99)B.-eq\f(100,99)C.100D.-100答案D解析因为a=(n,an),b=(an+1,n+1),且a⊥b,所以nan+1+(n+1)an=0,所以eq\f(an+1,an)=-eq\f(n+1,n),所以eq\f(a2,a1)=-eq\f(2,1),eq\f(a3,a2)=-eq\f(3,2),…,eq\f(a100,a99)=-eq\f(100,99).以上各式左右分别相乘,得eq\f(a100,a1)=-100,因为a1=1,所以a100=-100.12.(2022·全国乙卷)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{bn}:b1=1+eq\f(1,α1),b2=1+eq\f(1,α1+\f(1,α2)),b3=1+eq\f(1,α1+\f(1,α2+\f(1,α3))),…,依此类推,其中αk∈N*(k=1,2,…).则()A.b1<b5 B.b3<b8C.b6<b2 D.b4<b7答案D解析方法一当n取奇数时,由已知b1=1+eq\f(1,α1),b3=1+eq\f(1,α1+\f(1,α2+\f(1,α3))),因为eq\f(1,α1)>eq\f(1,α1+\f(1,α2+\f(1,α3))),所以b1>b3,同理可得b3>b5,b5>b7,…,于是可得b1>b3>b5>b7>…,故A不正确;当n取偶数时,由已知b2=1+eq\f(1,α1+\f(1,α2)),b4=1+eq\f(1,α1+\f(1,α2+\f(1,α3+\f(1,α4)))),因为eq\f(1,α2)>eq\f(1,α2+\f(1,α3+\f(1,α4))),所以b2<b4,同理可得b4<b6,b6<b8,…,于是可得b2<b4<b6<b8<…,故C不正确;因为eq\f(1,α1)>eq\f(1,α1+\f(1,α2)),所以b1>b2,同理可得b3>b4,b5>b6,b7>b8,又b3>b7,所以b3>b8,故B不正确;故选D.方法二(特殊值法)不妨取αk=1(k=1,2,…),则b1=1+eq\f(1,1)=2,b2=1+eq\f(1,1+\f(1,1))=1+eq\f(1,b1)=1+eq\f(1,2)=eq\f(3,2),b3=1+eq\f(1,1+\f(1,1+\f(1,1)))=1+eq\f(1,b2)=1+eq\f(2,3)=eq\f(5,3),所以b4=1+eq\f(1,b3)=1+eq\f(3,5)=eq\f(8,5),b5=1+eq\f(1,b4)=1+eq\f(5,8)=eq\f(13,8),b6=1+eq\f(1,b5)=1+eq\f(8,13)=eq\f(21,13),b7=1+eq\f(1,b6)=1+eq\f(13,21)=eq\f(34,21),b8=1+eq\f(1,b7)=1+eq\f(21,34)=eq\f(55,34).逐一判断选项可知选D.13.已知数列{an}中,前n项和为Sn,且Sn=eq\f(n+2,3)an,则eq\f(an,an-1)的最大值为________.答案3解析∵Sn=eq\f(n+2,3)an,∴当n≥2时,an=Sn-Sn-1=eq\f(n+2,3)an-eq\f(n+1,3)an-1,可化为eq\f(an,an-1)=eq\f(n+1,n-1)=1+eq\f(2,n-1),由函数y=eq\f(2,x-1)在区间(1,+∞)上单调递减,可得当n=2时,eq\f(2,n-1)取得最大值2.∴eq\f(an,an-1)的最大值为3.14.已知[x]表示不超过x的最大整数,例如:[2.3]=2,[-1.7]=-2.在数列{an}中,an=[lgn],记Sn为数列{an}的前n项和,则a2024=________;S2024=________.答案34965解析∵an=[lgn],∴当1≤n≤9时,an=[lgn]=0;当10≤n≤99时,an=[lgn]=1;当100≤n≤999时,an=[lgn]=2;当1000≤n≤9999时,an=[lgn]=3.∴a2024=[lg2024]=3,S2024=9×0+90×1+900×2+1025×3=4965.(n∈N*),则数列{an}第2024项为()A.21012-2 B.21013-3C.21011-2 D.21011-3答案B解析由a2n+1=a2n+(-1)n得a2n-1=a2n-2+(-1)n-1(n∈N*,n≥2),又由a2n=a2n-1+2n得a2n=a2n-2+2n+(-1)n-1(n∈N*,n≥2),所以a4=a2+22+(-1),a6=a4+23+(-1)2,a8=a6+24+(-1)3,…,a2024=a2022+21012+(-1)1011,将上式相加得a2024=a2+(-1)1+(-1)2+…+(-1)1011+22+23+…+21012=2+eq\f(4×1-21011,1-2)-1=21013-3.16.在数列{an}中,已知a1=1,n2an-Sn=n2an-1-Sn-1(n≥2,n∈N*),记bn=eq\f(an,n2),Tn为数列{bn}的前n项和,则T2025=________.答案eq\f(2025,1013)解析由n2an-Sn=n2an-1-Sn-1(n≥2,n∈N*),得n2an-(Sn-Sn-1)=n2an-1,所以(n2-1)an=n2an-1,所以eq\f(an,n)=eq\f(an-1,n-1)×eq\f(n,n+1).令cn=eq\f(an,n),则cn=cn-1×eq\f(n,n+1),所以eq\f(cn,cn-1)=eq\f(n,n+1).由累乘法得eq\f(cn,c1)=eq\f(2,n+1),又c1=a1=1,所以cn=eq\f(2,n+1),所以eq\f(an,n)=eq\f(2,n+1),所以an=eq\f(2n,n+1),所以bn=eq\f(an,n2)=eq\f(2,nn+1)=2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,n)-\f(1,n+1))),所以T2025=2×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)+\f(1,2)-\f(1,3)+…+\f(1,2025)-\f(1,2026)))=2×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2026)))=eq\f(2025,1013).
§6.2等差数列考试要求1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.知识梳理1.等差数列的有关概念(1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示,定义表达式为an-an-1=d(常数)(n≥2,n∈N*).(2)等差中项由三个数a,A,b组成等差数列,则A叫做a与b的等差中项,且有2A=a+b.2.等差数列的有关公式(1)通项公式:an=a1+(n-1)d.(2)前n项和公式:Sn=na1+eq\f(nn-1,2)d或Sn=eq\f(na1+an,2).3.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d(n,m∈N*).(2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an.(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.(6)等差数列{an}的前n项和为Sn,eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))为等差数列.常用结论1.已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等差数列,且公差为p.2.在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.3.等差数列{an}的单调性:当d>0时,{an}是递增数列;当d<0时,{an}是递减数列;当d=0时,{an}是常数列.4.数列{an}是等差数列⇔Sn=An2+Bn(A,B为常数).这里公差d=2A.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an+an+2.(√)(3)在等差数列{an}中,若am+an=ap+aq,则m+n=p+q.(×)(4)若无穷等差数列{an}的公差d>0,则其前n项和Sn不存在最大值.(√)教材改编题1.在等差数列{an}中,已知a5=11,a8=5,则a10等于()A.-2B.-1C.1D.2答案C解析设等差数列{an}的公差为d,由题意得eq\b\lc\{\rc\(\a\vs4\al\co1(11=a1+4d,,5=a1+7d,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a1=19,,d=-2.))∴an=-2n+21.∴a10=-2×10+21=1.2.设等差数列{an}的前n项和为Sn,若S4=8,S8=20,则a9+a10+a11+a12等于()A.12B.8C.20D.16答案D解析等差数列{an}中,S4,S8-S4,S12-S8仍为等差数列,即8,20-8,a9+a10+a11+a12为等差数列,所以a9+a10+a11+a12=16.3.设等差数列{an}的前n项和为Sn.若a1=10,S4=28,则Sn的最大值为________.答案30解析由a1=10,S4=4a1+6d=28,解得d=-2,所以Sn=na1+eq\f(nn-1,2)d=-n2+11n.当n=5或6时,Sn最大,最大值为30.题型一等差数列基本量的运算例1(1)(2023·开封模拟)已知公差为1的等差数列{an}中,aeq\o\al(2,5)=a3a6,若该数列的前n项和Sn=0,则n等于()A.10B.11C.12D.13答案D解析由题意知(a1+4)2=(a1+2)(a1+5),na1+eq\f(nn-1,2)=0,解得a1=-6,n=13.(2)(2020·全国Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块 B.3474块C.3402块 D.3339块答案C解析设每一层有n环,由题意可知从内到外每环之间构成d=9,a1=9的等差数列.由等差数列的性质知Sn,S2n-Sn,S3n-S2n成等差数列,且(S3n-S2n)-(S2n-Sn)=n2d,则9n2=729,得n=9,则三层共有扇面形石板S3n=S27=27×9+eq\f(27×26,2)×9=3402(块).思维升华(1)等差数列的通项公式及前n项和公式共涉及五个量a1,n,d,an,Sn,知道其中三个就能求出另外两个(简称“知三求二”).(2)确定等差数列的关键是求出两个最基本的量,即首项a1和公差d.跟踪训练1(1)《周髀算经》有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影长之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,问芒种日影长为(一丈=十尺=一百寸)()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸答案B解析由题意知,从冬至日起,依次为小寒、大寒等十二个节气日影长构成一个等差数列{an},设公差为d,∵冬至、立春、春分日影长之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,∴eq\b\lc\{\rc\(\a\vs4\al\co1(a1+a4+a7=3a1+9d=315,,S9=9a1+\f(9×8,2)d=855,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a1=135,,d=-10,))∴芒种日影长为a12=a1+11d=135-11×10=25(寸)=2尺5寸.(2)数列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(2,an+1)))是等差数列,且a1=1,a3=-eq\f(1,3),那么a2024=________.答案-eq\f(1011,1012)解析设等差数列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(2,an+1)))的公差为d,因为a1=1,a3=-eq\f(1,3),所以eq\f(2,a1+1)=1,eq\f(2,a3+1)=3.所以3=1+2d,解得d=1.所以eq\f(2,an+1)=1+n-1=n,所以an=eq\f(2,n)-1.所以a2024=eq\f(2,2024)-1=-eq\f(2022,2024)=-eq\f(1011,1012).题型二等差数列的判定与证明例2(2021·全国甲卷)已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列;②数列{eq\r(Sn)}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.解①③⇒②.已知{an}是等差数列,a2=3a1.设数列{an}的公差为d,则a2=3a1=a1+d,得d=2a1,所以Sn=na1+eq\f(nn-1,2)d=n2a1.因为数列{an}的各项均为正数,所以eq\r(Sn)=neq\r(a1),所以eq\r(Sn+1)-eq\r(Sn)=(n+1)eq\r(a1)-neq\r(a1)=eq\r(a1)(常数),所以数列{eq\r(Sn)}是等差数列.①②⇒③.已知{an}是等差数列,{eq\r(Sn)}是等差数列.设数列{an}的公差为d,则Sn=na1+eq\f(nn-1,2)d=eq\f(1,2)n2d+eq\b\lc\(\rc\)(\a\vs4\al\co1(a1-\f(d,2)))n.因为数列{eq\r(Sn)}是等差数列,所以数列{eq\r(Sn)}的通项公式是关于n的一次函数,则a1-eq\f(d,2)=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{eq\r(Sn)}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{eq\r(Sn)}的公差为d,d>0,则eq\r(S2)-eq\r(S1)=eq\r(4a1)-eq\r(a1)=d,得a1=d2,所以eq\r(Sn)=eq\r(S1)+(n-1)d=nd,所以Sn=n2d2,所以an=Sn-Sn-1=n2d2-(n-1)2d2=2d2n-d2(n≥2),是关于n的一次函数,且a1=d2满足上式,所以数列{an}是等差数列.思维升华判断数列{an}是等差数列的常用方法(1)定义法.(2)等差中项法.(3)通项公式法.(4)前n项和公式法.跟踪训练2已知数列{an}的各项都是正数,n∈N*.(1)若{an}是等差数列,公差为d,且bn是an和an+1的等比中项,设cn=beq\o\al(2,n+1)-beq\o\al(2,n),n∈N*,求证:数列{cn}是等差数列;(2)若aeq\o\al(3,1)+aeq\o\al(3,2)+aeq\o\al(3,3)+…+aeq\o\al(3,n)=Seq\o\al(2,n),Sn为数列{an}的前n项和,求数列{an}的通项公式.(1)证明由题意得beq\o\al(2,n)=anan+1,则cn=beq\o\al(2,n+1)-beq\o\al(2,n)=an+1an+2-anan+1=2dan+1,因此cn+1-cn=2d(an+2-an+1)=2d2(常数),∴{cn}是等差数列.(2)解当n=1时,aeq\o\al(3,1)=aeq\o\al(2,1),∵a1>0,∴a1=1.aeq\o\al(3,1)+aeq\o\al(3,2)+aeq\o\al(3,3)+…+aeq\o\al(3,n)=Seq\o\al(2,n),①当n≥2时,aeq\o\al(3,1)+aeq\o\al(3,2)+aeq\o\al(3,3)+…+aeq\o\al(3,n-1)=Seq\o\al(2,n-1),②①-②得,aeq\o\al(3,n)=Seq\o\al(2,n)-Seq\o\al(2,n-1)=(Sn-Sn-1)(Sn+Sn-1).∵an>0,∴aeq\o\al(2,n)=Sn+Sn-1=2Sn-an,③∵a1=1也符合上式,∴当n≥2时,aeq\o\al(2,n-1)=2Sn-1-an-1,④③-④得aeq\o\al(2,n)-aeq\o\al(2,n-1)=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1,∵an+an-1>0,∴an-an-1=1,∴数列{an}是首项为1,公差为1的等差数列,可得an=n.题型三等差数列的性质命题点1等差数列项的性质例3(1)已知在等差数列{an}中,若a8=8且log2()=22,则S13等于()A.40B.65C.80D.40+log25答案B解析log2()=log2+log2+…+log2=a1+a2+…+a11=11a6=22,所以a6=2,则S13=eq\f(13a1+a13,2)=eq\f(13a6+a8,2)=65.(2)已知数列{an},{bn}都是等差数列,且a1=2,b1=-3,a7-b7=17,则a2024-b2024的值为________.答案4051解析令cn=an-bn,因为{an},{bn}都是等差数列,所以{cn}也是等差数列.设数列{cn}的公差为d,由已知,得c1=a1-b1=5,c7=17,则5+6d=17,解得d=2.故a2024-b2024=c2024=5+2023×2=4051.思维升华等差数列项的性质的关注点(1)在等差数列题目中,只要出现项的和问题,一般先考虑应用项的性质.(2)项的性质常与等差数列的前n项和公式Sn=eq\f(na1+an,2)相结合.跟踪训练3(1)若等差数列{an}的前15项和S15=30,则2a5-a6-a10+a14等于()A.2B.3C.4D.5答案A解析∵S15=30,∴eq\f(15,2)(a1+a15)=30,∴a1+a15=4,∴2a8=4,∴a8=2.∴2a5-a6-a10+a14=a4+a6-a6-a10+a14=a4-a10+a14=a10+a8-a10=a8=2.(2)(2023·保定模拟)已知等差数列{an}满足eq\f(a8,a5)=-2,则下列结论一定成立的是()A.eq\f(a9,a4)=-1 B.eq\f(a8,a3)=-1C.eq\f(a9,a3)=-1 D.eq\f(a10,a4)=-1答案C解析由eq\f(a8,a5)=-2得a5≠0,2a5+a8=a4+a6+a8=3a6=0,所以a6=0,a3+a9=2a6=0,因为a5≠0,a6=0,所以a3≠0,eq\f(a9,a3)=-1.命题点2等差数列前n项和的性质例4(1)设等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意的n∈N*,都有eq\f(Sn,Tn)=eq\f(2n-3,4n-3),则eq\f(a2,b3+b13)+eq\f(a14,b5+b11)的值为()A.eq\f(29,45)B.eq\f(13,29)C.eq\f(9,19)D.eq\f(19,30)答案C解析由题意可知b3+b13=b5+b11=b1+b15=2b8,∴eq\f(a2,b3+b13)+eq\f(a14,b5+b11)=eq\f(a2+a14,2b8)=eq\f(a8,b8)=eq\f(S15,T15)=eq\f(2×15-3,4×15-3)=eq\f(27,57)=eq\f(9,19).(2)已知等差数列{an}共有(2n+1)项,其中奇数项之和为290,偶数项之和为261,则an+1的值为()A.30B.29C.28D.27答案B解析奇数项共有(n+1)项,其和为eq\f(a1+a2n+1,2)·(n+1)=eq\f(2an+1,2)·(n+1)=290,∴(n+1)an+1=290.偶数项共有n项,其和为eq\f(a2+a2n,2)·n=eq\f(2an+1,2)·n=nan+1=261,∴an+1=290-261=29.思维升华等差数列前n项和的常用的性质是:在等差数列{an}中,数列Sm,S2m-Sm,S3m-S2m,…也是等差数列,且有S2n=n(a1+a2n)=…=n(an+an+1);S2n-1=(2n-1)an.跟踪训练4(1)设等差数列{an}的前n项和为Sn,若S4=20,S5=30,am=40,则m等于()A.6B.10C.20D.40答案C解析由S4=20,S5=30,得a5=S5-S4=10,由等差数列的性质,得S5=30=5a3,故a3=6,而a5-a3=10-6=4=2d,故d=2,am=40=a5+2(m-5),解得m=20.(2)已知Sn是等差数列{an}的前n项和,若a1=-2020,eq\f(S2020,2020)-eq\f(S2014,2014)=6,则S2023等于()A.2023 B.-2023C.4046 D.-4046答案C解析∵eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))为等差数列,设公差为d′,则eq\f(S2020,2020)-eq\f(S2014,2014)=6d′=6,∴d′=1,首项为eq\f(S1,1)=-2020,∴eq\f(S2023,2023)=-2020+(2023-1)×1=2,∴S2023=2023×2=4046,故选C.课时精练1.首项为-21的等差数列从第8项起为正数,则公差d的取值范围是()A.(3,+∞) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(7,2)))C.eq\b\lc\[\rc\)(\a\vs4\al\co1(3,\f(7,2))) D.eq\b\lc\(\rc\](\a\vs4\al\co1(3,\f(7,2)))答案D解析an=-21+(n-1)d,因为从第8项起为正数,所以a7=-21+6d≤0,a8=-21+7d>0,解得3<d≤eq\f(7,2).2.设Sn是等差数列{an}的前n项和,若S50-S47=12,则S97等于()A.198B.388C.776D.2023答案B解析∵S50-S47=a48+a49+a50=12,∴a49=4,∴S97=eq\f(97×a1+a97,2)=97a49=97×4=388.3.已知等差数列{an}的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为()A.28B.29C.30D.31答案B解析设等差数列{an}共有2n+1项,则S奇=a1+a3+a5+…+a2n+1,S偶=a2+a4+a6+…+a2n,该数列的中间项为an+1,又S奇-S偶=a1+(a3-a2)+(a5-a4)+…+(a2n+1-a2n)=a1+d+d+…+d=a1+nd=an+1,所以an+1=S奇-S偶=319-290=29.4.天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,……,依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”,……,依此类推.1911年中国爆发推翻清朝专制帝制、建立共和政体的全国性革命,这一年是辛亥年,史称“辛亥革命”.1949年新中国成立,请推算新中国成立的年份为()A.己丑年 B.己酉年C.丙寅年 D.甲寅年答案A解析根据题意可得,天干是以10为公差的等差数列,地支是以12为公差的等差数列,从1911年到1949年经过38年,且1911年为“辛亥”年,以1911年的天干和地支分别为首项,则38=3×10+8,则1949年的天干为己,38=12×3+2,则1949年的地支为丑,所以1949年为己丑年.5.设Sn为等差数列{an}的前n项和,若3a5=7a11,且a1>0.则使Sn<0的n的最小值为()A.30B.31C.32D.33答案B解析根据题意,设等差数列{an}的公差为d,若3a5=7a11,且a1>0,则3(a1+4d)=7(a1+10d),变形可得4a1+58d=0,则a1=-eq\f(29,2)d,所以Sn=na1+eq\f(nn-1d,2)=-eq\f(29,2)nd+eq\f(nn-1d,2)=eq\f(d,2)(n2-30n),因为a1=-eq\f(29,2)d>0,所以d<0,若Sn<0,必有n2-30n>0,又由n∈N*,则n>30,故使Sn<0的n的最小值为31.6.(多选)在△ABC中,内角A,B,C所对的边分别为a,b,c,若eq\f(1,tanA),eq\f(1,tanB),eq\f(1,tanC)依次成等差数列,则下列结论中不一定成立的是()A.a,b,c依次成等差数列B.eq\r(a),eq\r(b),eq\r(c)依次成等差数列C.a2,b2,c2依次成等差数列D.a3,b3,c3依次成等差数列答案ABD解析在△ABC中,若eq\f(1,tanA),eq\f(1,tanB),eq\f(1,tanC)依次成等差数列,则eq\f(2,tanB)=eq\f(1,tanA)+eq\f(1,tanC),整理得eq\f(2cosB,sinB)=eq\f(cosC,sinC)+eq\f(cosA,sinA),利用正弦定理和余弦定理得2·eq\f(a2+c2-b2,2abc)=eq\f(a2+b2-c2,2abc)+eq\f(b2+c2-a2,2abc),整理得2b2=a2+c2,即a2,b2,c2依次成等差数列,此时对等差数列a2,b2,c2的每一项取相同的运算得到数列a,b,c或eq\r(a),eq\r(b),eq\r(c)或a3,b3,c3,这些数列都不一定是等差数列,除非a=b=c,但题目中未说明△ABC是等边三角形.7.(2022·全国乙卷)记Sn为等差数列{an}的前n项和.若2S3=3S2+6,则公差d=________.答案2解析由2S3=3S2+6,可得2(a1+a2+a3)=3(a1+a2)+6,化简得2a3=a1+a2+6,即2(a1+2d)=2a1+d+6,解得d=2.8.设Sn是等差数列{an}的前n项和,S10=16,S100-S90=24,则S100=________.答案200解析依题意,S10,S20-S10,S30-S20,…,S100-S90依次成等差数列,设该等差数列的公差为d.又S10=16,S100-S90=24,因此S100-S90=24=16+(10-1)d=16+9d,解得d=eq\f(8,9),因此S100=10S10+eq\f(10×9,2)d=10×16+eq\f(10×9,2)×eq\f(8,9)=200.9.已知{an}是公差为d的等差数列,其前n项和为Sn,且a5=1,________.若存在正整数n,使得Sn有最小值.(1)求{an}的通项公式;(2)求Sn的最小值.从①a3=-1,②d=2,③d=-2这三个条件中选择符合题意的一个条件,补充在上面的问题中并作答.注:如果选择多个条件分别解答,则按第一个解答计分.解选择①作为补充条件:(1)因为a5=1,a3=-1,所以d=1,所以an=1+(n-5)×1=n-4(n∈N*).(2)由(1)可知a1=-3,所以Sn=eq\f(na1+an,2)=eq\f(1,2)n(n-7).因为n∈N*,所以当n=3或4时,Sn取得最小值,且最小值为-6.故存在正整数n=3或4,使得Sn有最小值,且最小值为-6.选择②作为补充条件:(1)因为a5=1,d=2,所以an=1+(n-5)×2=2n-9(n∈N*).(2)由(1)可知a1=-7,所以Sn=eq\f(na1+an,2)=n2-8n.所以当n=4时,Sn取得最小值,且最小值为-16.故存在正整数n=4,使得Sn有最小值,最小值为-16.不可以选择③作为补充条件.10.在数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(n∈N*).(1)求数列{an}的通项公式;(2)设Tn=|a1|+|a2|+…+|an|,求Tn.解(1)∵an+2-2an+1+an=0,∴an+2-an+1=an+1-an,∴数列{an}是等差数列,设其公差为d,∵a1=8,a4=2,∴d=eq\f(a4-a1,4-1)=-2,∴an=a1+(n-1)d=10-2n,n∈N*.(2)设数列{an}的前n项和为Sn,则由(1)可得,Sn=8n+eq\f(nn-1,2)×(-2)=9n-n2,n∈N*.由(1)知an=10-2n,令an=0,得n=5,∴当n>5时,an<0,则Tn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=S5-(Sn-S5)=2S5-Sn=2×(9×5-25)-(9n-n2)=n2-9n+40;当n≤5时,an≥0,则Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=9n-n2,∴Tn=eq\b\lc\{\rc\(\a\vs4\al\co1(9n-n2,n≤5,n∈N*,,n2-9n+40,n≥6,n∈N*.))11.(多选)已知数列{an}是公差不为0的等差数列,前n项和为Sn,满足a1+5a3=S8,下列选项正确的有()A.a10=0 B.S10最小C.S7=S12 D.S20=0答案AC解析根据题意,数列{an}是等差数列,若a1+5a3=S8,即a1+5a1+10d=8a1+28d,变形可得a1=-9d.又由an=a1+(n-1)d=(n-10)d,得a10=0,故A正确;不能确定a1和d的符号,不能确定S10最小,故B不正确;又由Sn=na1+eq\f(nn-1d,2)=-9nd+eq\f(nn-1d,2)=eq\f(d,2)×(n2-19n),得S7=S12,故C正确;S20=20a1+eq\f(20×19,2)d=-180d+190d=10d.因为d≠0,所以S20≠0,故D不正确.12.已知等差数列{an}的前n项和为Sn,且eq\f(a2+2a7+a8,a3+a6)=eq\f(20,11),则eq\f(S11,S8)等于()A.eq\f(3,7)B.eq\f(1,6)C.eq\f(5,11)D.eq\f(5,4)答案D解析eq\f(a2+2a7+a8,a3+a6)=eq\f(2a5+2a7,a3+a6)=eq\f(4a6,a3+a6)=eq\f(20,11),所以eq\f(a6,a3+a6)=eq\f(5,11),所以eq\f(S11,S8)=eq\f(11a6,4a1+a8)=eq\f(11a6,4a3+a6)=eq\f(5,4).13.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.答案3n2-2n解析将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{an},则{an}是以1为首项,以6为公差的等差数列,故它的前n项和为Sn=n×1+eq\f(nn-1,2)×6=3n2-2n.14.设等差数列{an}的前n项和为Sn,若S6>S7>S5,则满足SnSn+1<0的正整数n的值为______.答案12解析由S6>S7>S5,得S7=S6+a7<S6,S7=S5+a6+a7>S5,所以a7<0,a6+a7>0,所以S13=eq\f(13a1+a13,2)=13a7<0,S12=eq\f(12a1+a12,2)=6(a6+a7)>0,所以S12S13<0,即满足SnSn+1<0的正整数n的值为12.15.将正奇数排成一个三角形阵,按照如图排列的规律,则第15行第3个数为()A.213B.215C.217D.219答案B解析由题意知,在三角形数阵中,前14行共排了1+2+3+…+14=eq\f(14×1+14,2)=105个数,则第15行第3个数是数阵的第108个数,即所求数字是首项为1,公差为2的等差数列的第108项,则a108=1+(108-1)×2=215.16.对于数列{an},定义Hn=eq\f(a1+2a2+…+2n-1an,n)为{an}的“优值”,已知数列{an}的“优值”Hn=2n+1,记数列{an-20}的前n项和为Sn,则Sn的最小值为()A.-70B.-72C.-64D.-68答案B解析∵数列{an}的“优值”Hn=2n+1,∴Hn=eq\f(a1+2a2+…+2n-1an,n)=2n+1,∴a1+2a2+…+2n-1an=n·2n+1,∴2n-1an=n·2n+1-(n-1)·2n(n≥2),∴an=4n-2(n-1)=2n+2(n≥2),又a1=4,满足上式,∴an=2n+2(n∈N*),∴an-20=2n-18,∴{an-20}是以-16为首项,2为公差的等差数列,所以{an-20}的前n项和Sn=n2-17n.由eq\b\lc\{\rc\(\a\vs4\al\co1(an-20=2n-18≤0,,an+1-20=2n-16≥0,))得8≤n≤9,∴Sn的最小值为S8=S9=-72.
§6.3等比数列考试要求1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.知识梳理1.等比数列有关的概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q≠0)表示.(2)等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,此时,G2=ab.2.等比数列的通项公式及前n项和公式(1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=a1qn-1.(2)等比数列通项公式的推广:an=amqn-m.(3)等比数列的前n项和公式:当q=1时,Sn=na1;当q≠1时,Sn=eq\f(a11-qn,1-q)=eq\f(a1-anq,1-q).3.等比数列性质(1)若m+n=p+q,则aman=apaq,其中m,n,p,q∈N*.特别地,若2w=m+n,则aman=aeq\o\al(2,w),其中m,n,w∈N*.(2)ak,ak+m,ak+2m,…仍是等比数列,公比为qm(k,m∈N*).(3)若数列{an},{bn}是两个项数相同的等比数列,则数列{an·bn},{pan·qbn}和eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(pan,qbn)))也是等比数列(b,p,q≠0).(4)等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为qn.(n为偶数且q=-1除外)(5)若eq\b\lc\{\rc\(\a\vs4\al\co1(a1>0,,q>1))或eq\b\lc\{\rc\(\a\vs4\al\co1(a1<0,,0<q<1,))则等比数列{an}递增.若eq\b\lc\{\rc\(\a\vs4\al\co1(a1>0,,0<q<1))或eq\b\lc\{\rc\(\a\vs4\al\co1(a1<0,,q>1,))则等比数列{an}递减.常用结论1.等比数列{an}的通项公式可以写成an=cqn,这里c≠0,q≠0.2.等比数列{an}的前n项和Sn可以写成Sn=Aqn-A(A≠0,q≠1,0).3.数列{an}是等比数列,Sn是其前n项和.(1)若a1·a2·…·an=Tn,则Tn,eq\f(T2n,Tn),eq\f(T3n,T2n),…成等比数列.(2)若数列{an}的项数为2n,则eq\f(S偶,S奇)=q;若项数为2n+1,则eq\f(S奇-a1,S偶)=q,或eq\f(S偶,S奇-an)=q.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)三个数a,b,c成等比数列的充要条件是b2=ac.(×)(2)当公比q>1时,等比数列{an}为递增数列.(×)(3)等比数列中所有偶数项的符号相同.(√)(4)数列{an}为等比数列,则S4,S8-S4,S12-S8成等比数列.(×)教材改编题1.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析若a,b,c,d成等比数列,则ad=bc,数列-1,-1,1,1.满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.2.设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6等于()A.31B.32C.63D.64答案C解析根据题意知,等比数列{an}的公比不是-1.由等比数列的性质,得(S4-S2)2=S2·(S6-S4),即122=3×(S6-15),解得S6=63.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数为________________.答案1,3,9或9,3,1解析设这三个数为eq\f(a,q),a,aq,则eq\b\lc\{\rc\(\a\vs4\al\co1(a+\f(a,q)+aq=13,,a·\f(a,q)·aq=27,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a=3,,q=\f(1,3)))或eq\b\lc\{\rc\(\a\vs4\al\co1(a=3,,q=3,))∴这三个数为1,3,9或9,3,1.题型一等比数列基本量的运算例1(1)(2022·全国乙卷)已知等比数列{an}的前3项和为168,a2-a5=42,则a6等于()A.14B.12C.6D.3答案D解析方法一设等比数列{an}的公比为q,易知q≠1.由题意可得eq\b\lc\{\rc\(\a\vs4\al\co1(a1+a2+a3=168,,a2-a5=42,))即eq\b\lc\{\rc\(\a\vs4\al\co1(a11+q+q2=168,,a1q1-q3=42,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a1=96,,q=\f(1,2),))所以a6=a1q5=3,故选D.方法二设等比数列{an}的公比为q,易知q≠1.由题意可得eq\b\lc\{\rc\(\a\vs4\al\co1(S3=168,,a2-a5=42,))即eq\b\lc\{\rc\(\a\vs4\al\co1(\f(a11-q3,1-q)=168,,a1q1-q3=42,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a1=96,,q=\f(1,2),))所以a6=a1q5=3,故选D.(2)(2023·桂林模拟)朱载堉(1536~1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中阐述了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音的频率是最初那个音的2倍.设第二个音的频率为f1,第八个音的频率为f2.则eq\f(f2,f1)等于()A.eq\r(2)B.eq\r(8,2)C.eq\r(12,2)D.4eq\r(12,2)答案A解析设第一个音的频率为a,相邻两个音之间的频率之比为q,那么an=aqn-1,根据最后一个音的频率是最初那个音的2倍,得a13=2a=aq12,即q=,所以eq\f(f2,f1)=eq\f(a8,a2)=q6=eq\r(2).思维升华等比数列基本量的运算的解题策略(1)等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)可迎刃而解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n项和公式时,一定要讨论公比q=1的情形,否则会漏解或增解.跟
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- java秒杀系统面试题及答案
- 网络管理与经济形势的关联性试题及答案
- 乐器保养服务租赁合同签订要点考核试卷
- 高效备考2025年Msoffice试题及答案
- 逻辑与财务决策的关系试题及答案
- 购买车辆抵押协议书
- 鸟笼购买合同协议书
- 在家学习的计算机二级试题及答案
- 计算机一级Photoshop入门与实践试题及答案
- 高分秘籍Msoffice试题及答案
- 江苏省小学科学实验知识竞赛题库附答案
- 单元三 防火防爆技术 项目三 点火源控制 一、化学点火源
- 2024网站渗透测试报告
- JTT663-2006 公路桥梁板式橡胶支座规格系列
- 电缆管廊敷设施工方案及流程
- 中风的早期识别和急救处理方法
- pets5历年真题(口语)
- 高速公路投诉培训课件
- 《天然药物化学》课程标准
- 本科毕业论文写作指导讲座课件
- 提升问题解决能力的培训
评论
0/150
提交评论