版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PhotobyAntRozetskyonUnsplash
04
Thestartingpoint
21
Aluminumindustryandothernon-
ferrousmetals
08
Theoptionsforthenet-zerorace
24
Foundries
12
Cementindustry
andothernon-
metallicminerals
27
Pulpandpaper
15
Chemicals
30
Food,drinkand
tobacco
18
Iron,steeland
aluminum
AllianzResearch
05April2023
Thegreen
industrialrevolution
InvestmentpathwaystodecarbonizetheindustrialsectorinEurope
AllianzResearch
2
Executive
Summary
MarkusZimmer
SeniorEconomistESG
markus.zimmer
@
ArneHolzhausen
HeadofInsurance,WealthandTrendResearch
arne.holzhausen
@
PatrickHoffmann
ResearchFellow
•Theindustrialsectorisresponsibleforroughlyonequarterofglobal
greenhouse-gas(GHG)emissions.Amixofmeasures,includingenergy-
efficiencyimprovements,usinghydrogenandbiomassasfeedstockor
fuel,producingheatthroughelectricmeansandadoptingcarbon-capturetechnologies,canreducethesector’scarbondioxideemissionstoalmostzero.Todecarbonizetheindustrysectorgloballywillrequirecumulative
investmentsofEUR2.7trnuntil2050.Ofthis,theEUneeds8%orEUR210bn,andhalfofthisforelectrificationinvestmentsalone.Therestisalmost
equallysplitbetweenhydrogenuse,innovativeproductionprocessesandnewtechnologies.Additionally,atEUR330bnuntil2050,theEUindustry’stotalinvestmentneedsforcarboncaptureandstorage(CCS)arealmost60%higherthantheinvestmentsinallotherindustrydecarbonization
measurescombined.
•Tomeettheseneeds,theEU28countriesneedtoinvestEUR3bnperyearbetween2020and2030,andEUR9bnannuallyfrom2030to2050,whentechnologieswillbereadyforfull-scaledeployment.Thepulp&paperindustryrequiresthelargestoverallinvestments–EUR78.4bnuntil2050
–followedbyiron&steel(EUR55.4bn)andcement(EUR37.6bn).Theseinvestmentswouldcutemissionsby265MtCO2(-92%),whichyieldsanaverageabatementinvestmentofEUR790pertCO2.
•Inthiscontext,governmentsshouldusetheinstrumentsattheirdisposal(e.g.subsidies,carbontaxes)toeffectivelyalignsectorpathwayswith
overarchingnet-zerotransitiongoals.
StefanLandau
ResearchAssistant
stefan.landau
@
AnandPamar
ResearchAssistant
anand.pamar
@
3
BilllionEUR
0
05April2023
Figure1:Investmentneedsintheindustrysectortoachievenet-zeroemissionsintheEU28
120
Others
100
Paperandpulp
Non-metallicminerals
80
Non-ferrousmetals
60
Ironandsteel
Foundries
40
Chemicals
20
2030
2050
Sources:IndustryPLAN,AllianzResearch.Note:BATreferstobestavailabletechnologies.IncludesEU+UK.SeeAppendixfordecompositionofinvestmentsbycountry.
Whatdoesittaketolimitglobalwarmingto1.5°C?
Checkoutourfivesectorpathwaysalreadypublished:
Thegreatgreenrenovation:buildingssectortransitionpathway
ACarbonfarming:Atransitionpathforagriculture&forestry
TheEUutilitytransition:Apathwaypoweredbysolarandwind
Jostlethecolossalfossil:Apathtotheenergysectortransition
TransportinazerocarbonEU:Pathwaysandopportunities
AllianzResearch
4
PhotobySolonUnsplash
Thestartingpoint
Overthepastfewdecades,theindustrysectorhas
madesignificantprogresstowardsreducingits
emissionsandimprovingenergyefficiency.By2010,Europeanindustryalonehadreduceditsemissionsby-29%,andby-39%by2020comparedto1990levels.¹Despiteintenseinternationalcompetition,Europeanindustryhasmanagedtoadjustitsbusinesspracticesandmodelstoalignwiththecontinent’sclimateandenergygoals,allwhilemaintainingaviableeconomicapproach.
Nonetheless,thesectorisstillresponsiblefor650MtofCO2emissions–withCO2accountingforover90%of
directGHGemissionsfromindustryin2020.Thecement,ironandsteelandchemicalssectors(seeFigure2)arethelargestcontributorstoCO2emissionsandindustrialenergyconsumption:Thethreesectorsgeneratedthree-quartersofindustrialemissionsintheEU-28in2020.
¹
EEA(2021).Dataviewerongreenhousegasemissionsandremovals
5
Othermachinery&equipment
Motorvehicles
2%
1%
Other
manufacturing
2%
Electricalequipment,
electronics,optics1%
Fabricatedmetal2%
Textiles1%
Basic
pharmaceuticals1%
Rubber&plastic
products
2%
05April2023
Figure2:EU-28industrialCO2emissionsin2020
Food,beverages,
tobacco
9%
Pulp,paper
5%
Chemicals
22%
Cement&non-metallic
minerals
28%
Other
12%
Iron&steel
22%
Aluminum,non-
ferrousmetals
2%
Sources:Eurostat,AllianzResearch(excludingemissionsfromrefineries).
Toaddtothis,allthreesectorsalsoproducesizeable
processemissions,rangingfrom25%to50%(seeFigure3).Thismattersbecauseindustrialprocessemissions
areparticularlyhardtoabate.Asaconsequence,eveninthenet-zerotransitionscenario,onlythree-quartersoftheseemissionsareexpectedtobeavoidedinthe
EU.Incontrast,otherindustrialsectorssuchasfoodandtobacco;paper,pulp,andprintandnonferrousmetals,
generatemainlyindirectanddirectemissions(Figure3),
withtheformerresultingmostlyfromcentrallyproduced
electricityandthelattermostlyfromheatgeneration.Thesearemoreorless“automatically”reducedbydecarbonizingenergyandheatgeneration.Forexample,nearly55%
ofCO2emissionsinthesesectorsresultfromtheuseof
centrallyproducedelectricity,primarilyfromnaturalgasandcoalforlow-andmedium-temperatureheatdemand.
6
GtCO2peryear
AllianzResearch
Figure3:GlobalCO2emissionsindifferentindustriesbyemissionsource(inGtCo2/yr)
0.90.7
2
0.5
0.8
0.3
1.3
0.3
1.1
0.1
0.3
3.6
2.9
0.1
0.1
0.1
0.1
Cement,
othernon-
metallic
minerals
IronandChemicalsOther
steelindustries
(incl.con-struction)
Processemissions
Indirect,machinedrive
andotheremissions
High-temperatureheat
(>500°C)
Medium-temperature
heat(100-500°C)
Low-temperatureheat
(<100°C)
Directemissions(mostly
heat)
Sources:
McKinsey(2018),
AllianzResearch.
Figure4illustratesthegargantuantaskofbringing
theindustryinlinewiththenet-zeropath:By2050,
emissionsmustbereducedby92%,withsomesectorsevengeneratingnegativeemissions,i.e.capturingmoreCO2emissionsthantheyproduce.ThefigurecomparestheNetworkforGreeningtheFinancialSystem(NGFS)
projectionswiththeEuropeanCommission(EC)
assessmentfortheEUGreenDeal.Thetwosourcesusedifferentdefinitionsfortheboundariesofthesectors
shown,aswellasfortheallocationofprocessemissionsandenergyemissions.Asaresult,thesectoralemissionsdifferandtheNGFSbaselineisslightlyhighersince
theOtherIndustriescategoryisbroader.Thetrendforfollowinga1.5°Cpathissimilarinbothassessmentsandnetemissionsin2050arecomparableaswell,
thoughNGFSexplicitlyreportsnegativeemissions.
Figure5showsthedevelopmentofthefinalenergyuseintheindustrialsectorsindifferentscenarios.Whiletherelativecompositionbetweenindustriesisnotexpectedtochangedramatically,cement,steelandchemicals
areexpectedtohavelowerenergy-savingpotential
thantheotherindustries.By2050,finalenergydemandintheCurrentPoliciesscenarioisexpectedtoincreaseby+14%relativetothe2020baseline,whileitisprojec-tedtodecreaseby-35%intheNetZero2050scenario.
MtCO2/year
NGFSBaseline
ECBaseline
NGFSCurrentPol.
ECCurrentPolicies
NGFSBelow2°C
NGFSNZ2050
ECNZ2050(MIX)
NGFSCurrentPol.
ECCurrentPolicies
NGFSBelow2°C
NGFSNZ2050
ECNZ2050(MIX)
EJ/yr
-100
2050
2020
0
05April2023
Figure4:EUindustrialCO2emissionsscenariocomparison
700
600
500
400
300
200
100
0
Otherindustries(NGFS)
Otherindustries(EC)
Textiles
Engineering
Food,beverage&tobacco
Pulp,paper&printing
Non-ferrousmetals
Cement,othernon-met.m.
Chemicals
Iron&steel
Processemissions
2030
Sources:NGFS,EuropeanCommission,AllianzResearch.
Figure5:Finalenergyusebysectorandscenario
Cement
14
Chemicals
Steel
12
Other
10
8
6
4
2
Baseline
2020
CurrentPolicy
Below2˚C
2030
1.5°CNetZero
CurrentPolicy
Below2˚C
2040
1.5°CNetZero
CurrentPolicy
Below2˚C
2050
1.5°CNetZero
Sources:NGFS,AllianzResearch.
7
8
PhotobyClaytonCardinalliUnsplash
AllianzResearch
Theoptionsfor
thenet-zerorace
Thedifferentoptionsfordecarbonizationcanbe
broadlygroupedtogetherunderenergyefficiency,
fossil-fuelsubstitutionthroughsustainablefuelsor
electrificationandCCS.However,energyefficiency
andelectrificationoftengohand-in-handsince
theyarethetwosidesofthesamecoin.Takeheat
pumps,forexample,oneofthemaintechnologiesforelectrification,whichincreasetheefficiencyofenergyuseaswell.Whenevercoolingisneeded,heatwill
becreatedasaby-product,andtheoppositeistrueaswell.Heatpumpsmakeuseofthisrelationship
andreducewastedenergyinheatingorcooling
processes.Whiletheyarecurrentlyrelativelycommoninresidentialsettings,theyarefarlessestablishedforindustrialpurposes.Largeindustrialheatpumps(IHP)canrunonrenewableenergyorsourcewasteenergyfrombuildingsandprocesses.Theycanbeinstalledin
thermalprocesses,forexampleinthefood,paperor
chemicalsectors.²Forinstance,inthedairyindustry,
milkmustbecooledbeforetransportandconsumption,whileheatisneededforthepasteurizationprocess.Thewasteheatfromthecoolingprocesscanberecoveredandusedasaheatsourceforpasteurization.However,asignificantchallengeinmanyindustriesisthatsteamistypicallyusedtotransferheatacrossasite,resultinginhigh-temperaturesystemdesigns.Switchingto
airorliquidwaterrequiresnewpipes,pumpsand
processdesigns,whichentailhighinvestmentcostsandpotentialdisruptions.³
²
IEA(2014).ApplicationofIndustrialHeatPumps
³Forexamplesofpracticalapplicationsofheatpumpsinindustry,see
U.S.Dept.ofEnergy(2003)IndustrialHeatPumpsforSteam
;
Forthemethodologicalapproachtoemissionsavings,seeFfE(2019).
Small-scalemodelingofindividualGHGabatementmeasures
intheindustry
05April2023
9
CostofCO2abatement(2021$/tCO2saved)
Automotive
Pulp&Paper
SoybeanOil
Canesugarrefining
Meatprocessing
Beetsugar
Cannedfruits
Cannedvegetables
Dairy
Cornwet-milling
Beer
Textilewet-processing
Textileweaving
Heatpumpsleveragethepositiveeffectsofagreenerenergymix.Witheveryinstalledheatpump,overall
energyefficiencyisincreased.However,theneteffectofaheatpumpdependsonwhereitselectricitycomesfrom.Studieshaveshownthatinstallingaheatpumpthatrunsonelectricityfromfossilfuelsinsteadof
creatingheatfromgashasanegativenet-carbon
impact.Heatpumpsaremorecarbon-efficientthanelectricalresistanceheatersbecauseoftheirhigher
efficiency.Forexample,aheatpumpwithaCOP3.5⁴emitslessCO2perkWhthcomparedtonatural-gas-condensingboilerswhentheelectricitygridfactor
isbelow740gCO2/kWh,andoil-condensingboilers
whentheelectricitygridfactorisbelow980gCO2/
kWh.⁵Atthesametime,however,thismeansthat
installingmanyheatpumpsleveragesthepositiveneteffectsofgreenelectricity.Asrenewableenergytakesovertheenergymix,moreinstallingmoreheatpumpswillpushdowncarbonintensityfasteracrosssectors.
ThecostsofreducingCO2emissionsthroughheat
pumpsvarywidelyacrossindustries.AcomprehensivestudybyZuberi,HasanbeigiandMorrowanalyzesthe
abatementcostassociatedwiththeuseofheatpumpsindifferentindustries.⁶TheauthorsdevelopedCO2
abatementcostcurvesandenergy-conservationcost
curvesandestimatedthepotentialreductioninCO2
emissionsandenergysavingsfromtheapplicationof
IHPs.Theirresultsindicatethatelectrifyinghotwater
andsteam-generationsystemsin13industrialprocessescouldreduceannualCO2emissionsbyapproximately
17MtCO2inthebaseyear2021,witha100%adoptionrateofIHPapplications.However,withthecontinued
decarbonizationofelectricitygrids,thetotalCO2
abatementpotentialisexpectedtoreach54.5MtCO2
peryearin2035and57MtCO2in2050,equivalent
to5%oftotalgreenhouse-gasemissionsfromUS
manufacturingtoday,asshowninFigure6.Furthermore,theCO2abatementcostsareexpectedtorangefrom
USD55toUSD175pertCO2in2035(USD50toUSD155in2050),dependingontheindustrialprocess.FurtherdetailsonthecostsassociatedwithenergysavingscanbefoundinAppendix:industrialheatpumps.
Figure6:CO2abatementpotentialsthroughheatpumpsinUSmanufacturing
250
225
200
175
150
125
100
75
50
25
0
2035
2050
051015202530354045505560
CumulativeannualpotentialCO2abatement(MtCO2)
Sources:LawrenceBerkeleyNationalLaboratory,AllianzResearch.
⁴COP(CoefficientofPerformance)isdefinedastherelationshipbetweenthepower(kW)thatisdrawnoutoftheheatpumpascoo-lingorheat,andthepower(kW)thatissuppliedtothecompressor.ACOPof3.5reflectsthecurrentstateoftechnology.
⁵
WBCSD(2020).Heatpumptechnologies
⁶
LawrenceBerkeleyNationalLaboratory(2022).ElectrificationofU.S.ManufacturingWithIndustrialHeatPumps
AllianzResearch
10
Regardlessofhowlargetheeffortsinelectrification
andotherareasoftheenergytransitionare,itishighlyunlikelythatcumulativecarbonemissionsbetweennowand2050willbeconsistentwiththelevelsoftheNet-
Zero1.5°Cscenario.⁷Sectorssuchascementandsteelhavelimitedpotentialforemission-reductionsincesomelevelofCO2productionsimplycannotbeavoided.In
othersectors,decarbonizationeffortsaretechnicallypossiblebutonlyataprohibitivelyhighcost.Insuchsectors,CarbonCaptureandUtilizationorStorage
(CCUS)willplayavitalroleasaneconomicallyviabletechnologythatcanhelpsectorsreachtheirnet-zerogoals.
Usingtoday’stechnologies,CO2captureratesofover90%aretechnicallyfeasible.Carboncaptureand
storage(CCS)isaprocessthatinvolvescapturing
theCO2frompowergenerationoranotherindustrial
activity,transportingitandthenstoringitinrock
formationsdeepunderground.CCUSaddsthepotentialcommercialsaleanduseofthecapturedCO2.There
ispotentialforcarboncapturingwheneverfossil-or
biomass-basedfuelsarecombustedorevenbefore
combustion,forinstanceforblueorturquoisehydrogen.Itcanalsobeappliedintheammonia,iron,steelor
cementindustries.
TheimplementationofCCUShastwomajoruse-cases
acrossallindustries.Themoststraightforwardapplicationhappensinthecontextofcarbonremoval.Here,
technologiesforDirectAirCarbonCaptureandStorage
(DACCS)andBioenergywithCarbonCaptureandStorage(BECCS)playamajorrole.Bothtechnologiesresultin
theremovalofemissions,so-called“negativeemissions”,whenthecapturedcarbonispermanentlystored.
Secondly,CCUScanbeappliedtocaptureemissions
inindustrialprocesses.Thefocusherewilllieonthose
sectorswhereemissionscannotcompletelyberemoved
fromtheindustrialprocessandalternativenon-CO2
emittingprocessesarenotavailable,suchascement,steelorchemicals.
Figure7ashowstheaverageCCSinvestmentand7b
thecumulativeCCsinvestment,comparingtwodifferentsources.WhileETCprovidesadecompositionbyCCS
technologybysector,aswellasadditionalinvestment
needsinrenewableenergytosupplypowertoDACC,theNGFSanalysisshowsdetailsontheregionalsplitofCCSinvestments.Around17%oftotalinvestmentsoccurin
theEU.Notably,investmentinNature-BasedSolutions
(NBS)arenotincludedbuthavebeenaddressedinour
previousCarbonFarmingReport(see
AllianzResearch
(2022).CarbonFarming:Atransitionpathforagriculture
&forestry
).DACCtechnologiesare,however,usually
deployedatorinclosevicinitytopermanentstoragesites.Investmentintransportation(andstorage)willthusbe
significantlylowerforDACC.
⁷
ETC(2022).CarbonCapture,UtilisationandStorageintheEnergyTransition:VitalbutLimited
11
AverageyearlyinvestmentbnUSD
inadditionalcapturingcapacity
CumulativeinvestedbnUSD
incapturingcapacity
105
05April2023
Figure7a:CCSaverageglobalinvestments,USDbnperyear
250
200
150
100
50
0
NGFSCCSEU
NGFSCCSROW
214
RenewablePowerforDACC
DACC
Iron&Steel
Power
FossilFuelProcessing
142
BlueHydrogen
Cement
BECC
114
105
102
Transport
89
Storage
75
44
31
14
2
ETCNGFS
2020-2025
ETCNGFS
2025-2030
ETCNGFS
2030-2035
ETCNGFS
2035-2040
ETCNGFS
2040-2045
ETCNGFS
2045-2050
Sources:ETCbasescenario,NGFSNetZero2050scenario,AllianzResearch.
Figure7b:CCScumulativeglobalinvestments,USDbn
3,500
3,000
2,500
2,000
1,500
1,000
500
0
3,083
Storage
Cement
BlueHydrogen
FossilFuelProcessing
Transport
BECC
Power
2,015
Iron&Steel
DACC
RenewablePowerforDACC
1,304
735
291
71
202520302035204020452050
Sources:ETC,AllianzResearch.
12
PhotobyAlexLvrsonUnsplash
AllianzResearch
Cementindustryand
othernon-metallicminerals
Afterwater,concreteisthesecondmost-consumed
substanceintheworld⁸,andaccountsfor7%ofglobalemissions.Withoutconcrete,ourinfrastructurewouldcrumblesoontheroadtoanet-zeroglobaleconomy,thereisnowayaroundmakingitclean.Whilethenon-metallicmineralssectorconsistsofavarietyofdifferentproductssuchasglass,ceramics,bricksandgypsum,
cementandlimeproductiondominateemissions.Thisincludes1)theprocessemissionsfromthechemical
reactionthatturnslimestoneintocement;2)theenergyemissionsfromtheenergyusedtocreatethehigh
temperaturesneededincementproductionand3)toalowerextent,emissionsfromcementtransport.
Decarbonizingthecementsectorisachallengingtaskmainlyduetoprocessemissions,whicharedifficult
toavoid.Partofthesolutionliesindevelopingnew
cementchemistries.Tomeettheambitionofachievingnet-zeroemissionsby2050inthecementsector,the
clinker-to-cementratio⁹needstobereducedand
innovativetechnologiesdeployed,suchascarbon
captureandstorageandclinkersmadefromalternative
rawmaterials.10Theglobalaverageclinker-cement
ratioisabout0.81,withthebalancecomprisinggypsumandadditivessuchasblastfurnaceslag,flyashand
naturalpozzolana.Asclinkerproductionisthemost
energy-intensiveandCO2-emittingstepofthecement-makingprocess,reductionsintheclinker-cement
ratio(throughtheuseofclinkersubstitutes)would
lowerenergyuseandprocessCO2emissions.Anotherpossiblewaytoreduceenergyandprocessemissionsincementproductionistoblendcementswithincreasedproportionsofalternative(non-clinker)feedstocks,suchasvolcanicash,granulatedblastfurnaceslagfromironproductionorflyashfromcoal-firedpowergeneration.GovernmentscanstimulateinvestmentandinnovationintheseareasbyfundingR&Danddemonstrations,
creatingdemandfornear-zero-emissioncement
andadoptingmandatoryCO2emission-reduction
policies.ReducingCO2emissionswhileproducing
enoughcementtomeetdemandwillbechallenging,especiallyasdemandgrowthisexpectedtoresumeasthepotentialslowdowninChineseactivityisoffsetbyexpansioninothermarkets.11
⁸Gagg2014.Cementandconcreteasanengineeringmaterial:Anhistoricappraisalandcasestudyanalysis.EngineeringFailureAnalysis.
/10.1016/j.engfailanal.2014.02.004
⁹Cementisabindingagentthatsetsandhardenstoadheretobuildingunitssuchasstones,bricksortiles.Clinkerisanodularmate-rialwhichisusedasthebinderincementproducts.Theprimaryuseofclinkeristomanufacturecement.
10
UNClimateTechnologyCentre&Network(2010).Clinkerreplacement
11IEA(2022).Trackingreport-Cement
13
Ontheotherhand,carbonemissionsfromheatused
incementproductioncouldbereducedthrougha
switchfromcoaltogas,andeventuallyfullyeliminatedthroughheatelectrification,andtheuseofbiomass
orhydrogen.However,eachoftheseoptionswillentailsignificantadditionalcosts.
Lastbutnotleast,reducingcarbonemissionsfrom
cementwillalsorequirebetterdemandmanagement.
Theuseoftimberasasubstituteforbuildingmaterial
isnotwithoutitschallenges.Therefore,globalcementproductionisexpectedtocontinuetogrowworldwide:whileitisprojectedtostagnateinEuropebetween2030and2050,itwillincreaseinIndia,otherdeveloping
AsiancountriesandAfrica.However,demandgrowthcouldbesloweddownviagreatermaterialefficiencyinbuildingdesign,wastereduction,maximizingthe
lifeofbuildingsandinfrastructureandsomematerialscircularity.
CementemissionsarebeingaddressedbytheEU
EmissionsTradingSystem(ETS)andseveralother
countries,includingCanada,SouthKoreaandChina,havealsointroducedpricingschemes.Additionally,
theEUisdevelopingacarbonborderadjustment
mechanismforindustries,includingcement,whichaimsatlimitingcarbonleakageandincentivizingstronger
emissionsmeasuresinforeigncountries.12Many
governmentsandorganizationshavealsoreleasedroadmapsfordecarbonizingthecementsectorandreachingnetzeroby205013.
05April2023
Forthis,itiscrucialtocommercializeCCSby2030.
Therefore,governmentsmustplanandconstruct
infrastructuretotransportandstorecapturedCO2asthelackofsuchinfrastructurecancausesignificantdelaysintechnologicaldeployment.Transporting
CO2throughpipelinesisthemostsuitableway,andgovernmentsmustgainpublicsupportforbuildingthesepipelinesandCO2storagefacilities.
AnextensiveanalysisoftherequiredabatementcostsassociatedwiththeimplementationofthenecessarymeasuresfromelectrificationtoCCScanbeconducted
usingtheIndustryPLAN14model(Johannsen&
Mathiesen2023).Employingabottom-upapproach,
themodeldefinesspecificmeasuresforthesectorwithadjustableimplementationrateparametersandyieldsresultsonenergysavingsandinvestmentsforthe
EU+UK.TheaggregateandaveragedinvestmentspertonofCO2abatedforthenon-metallicmineralssector(cement,ceramicsandglass)showsarelativelystablerelationshipatvariouslevelsofemissionintensityof
energyuse,witharoundEUR615/tCO2(Figure8a).In
theothersectorsanalyzed,averageinvestmentneedswillrisemorestronglysincemarginalcostincreasesforthelastmeasurestoreachzeroemissionsaretypicallyhigherthanforthe“low-hangingfruits”implementedfirst.AsseeninFigure8a,implementingthesuggestedmeasuresfromtheIndustryPLAN15modelisestimatedtoresultinadecreaseoftheemissionintensityfrom
41.7tCO2/MJin2030to6.6tCO2/MJby2050.AnalyzingtheMaterialEconomics(2019)resultsforthecement
sector(Figure8b)andaggregatingtheresultsyieldsanaverageglobalinvestmentofaroundEUR250/tCO2toreduceemissions.16
12IntheterminologyoftheEuropeanCommission,‘carbonleakage’doesnotonlyrefertoemissionsjustbeingemittedinanother
countryinsteadoftheEU,whichwouldn’thelptheglobalclimateambition.Rather‘carbonleakage’alsoreferstothevalueadded
lfodgueAppendixGCCARoadmap.Anotherroadmap
isthe
IEACementTechnologyRoadmap
whichbuildsonthelong-standingcollaborationoftheIEAwiththeCementSustainabilityInitiative(CSI)oftheWorldBusinessCouncilforSustainableDevelopment(WBCSD).
14IndustryPLANchoosesthedecarbonizationactionsinabottom-upapproachfromamerit-orderoftechnologyoptions.
15MoreonthebackgroundofthetechnologiesandmitigationpotentialscanbefoundinAppendix:Industryemissionreductionpotentials.
16Caution:ThestatedIndustryPLANnumbersrefertoreducingtheemissionintensityofenergyuse(tCO2/MJ)whiletheMaterial
Economicsmodelnumbersrefertoreducingemissions(%CO2totalemissionreduction).ThedotsintheMaterialeconomicsgraph
showtheactualcalculatedaverageabatementcostsinthemodelatdifferingemissionreductionlevels,whilethelineshowstheOLSestimatederivedfromthecalculatedvaluesshownasdots.
14
AverageCAPEX/Abatement(EUR/tCO2)
AverageCAPEX/Abatement(EUR/tCO2)
AllianzResearch
Figure8a:Averageinvestmentinthecement/non-metallicmineralsmetalssector(EUR/tCO2)neededtoreachemissionintensitytargetsonthepathtonetzero
618
617
616
615
614
613
612
611
610
609
608
41.7tCO2/MJ(2030)6.6tCO2/MJ(2050)
NetZeropathwaycompliantemissionintensityofenergyinrespectiveyear
Sources:IndustryPLAN,AllianzResearch.Notes:CoverageEU+UK.Non-metallicmineralsincludecement,ceramicsandglass.
Figure8b:Averagecementsectorinvestment(inEUR/tCO2)relativetoemissionreductiontarget
300
250
200
150
100
50
0
0%20%40%60%80%100%
EmissionReduction
Sources:MaterialEconomics,AllianzResearch.Notes:CoverageisEU.
15
PhotobySonikaAgarwalonUnsplash
05April2023
Chemicals
ThechemicalsectorplaysacrucialroleintheEuropeaneconomy,withchemicalsbeingintegraltomajor
Europeanvaluechainssuchaspharmaceuticals,
electronics,batteriesforelectricvehiclesand
constructionmaterials.TheEU-27isthesecond-largestchemicalsproducerglobally,generatingEUR499bn
insalesin2020andaccountingforaround7%of
manufacturingoutputbyturnover,whichmakesitthe
fourth-largestindustryintheEU.Thechemicalindustry
employshighlyskilledworkersandboasts67%greater
laborproductivitythanthemanufacturingsectoraverage.
WhilechemicalproductionintheEU-27hasjumpedby+47%,GHGemissionshavedecreasedby-54
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年恒丰银行上海分行社会招聘备考题库及1套参考答案详解
- 3D打印胆道支架的通畅性长期观察
- 小学数学教学中游戏化学习与思维发展的关联课题报告教学研究课题报告
- 3D打印导板在神经外科手术中的精准设计与精准实践
- 2025年岱东镇下属企业公开招聘工作人员备考题库及一套参考答案详解
- 渐变风商业计划书宠物行业
- 2025年信息资源管理学院教师岗位招聘备考题库及答案详解1套
- 2025年西安市灞桥区中医医院脑病科住院医师招聘备考题库及参考答案详解1套
- 贵阳市乌当区水东实验学校2025年教师招聘备考题库及一套答案详解
- 深圳市龙岗区第五人民医院2025年第五批公开招聘备考题库及参考答案详解
- 2025-2030细胞治疗产品商业化生产瓶颈与CDMO平台建设规划
- 安全事故与安全责任事故的区别
- 南京总统府介绍
- 腹膜后血肿的护理措施
- 门诊人文关怀护理课件
- 氢气使用安全知识培训
- 部队日常养成课件
- 2025中小学诗词大会题库题库(含答案)
- 2025年煤矿一通三防〞安全管理知识题库及答案
- 部队安全驾驶课件
- 征集推广活动方案
评论
0/150
提交评论