版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一讲,结构的阻尼结构动力学基本方程:
MX
CX
KX
0(P(t))1
阻尼的分类(Category
of
damping)2
m
m2
m(
/
D)
2
m,其中,
m
ln(
)1
xst
0
p02
x0
,
xst
0
3,半功率带宽法
确定粘弹性阻尼的试验方法粘弹性阻尼(与速度成正比
反向)的测量方法1,自由振动衰减法xnxn
m
3
2,共振峰处放大系数法
k
n
4,等效阻尼法Reference:
Damping
Characteristics
of
a
Footbridge
-
Mysteries
and
Truths
R.
Cantieni,A.
Bajric,
R.
Brincker,
IMAC-XXXIV,
2016;
Paper
no.
487.ED
d(x)dx
f
(cx)xdt
粘弹性阻尼的物理意义单自由度体系(SDOF)稳态振动情况下:
4
TD0
TD0fd(x)dx
p0x0
sin(
)
mx
cx
kx
f
(t)
p0sin(ωt)粘弹性阻尼一周耗散的能量:外力输入的能量:
TD
0
TD
0x
x0sin(ωt
φ)2
c
x02
c
x0ES
fs(x)dx
(kx)xdt
粘弹性阻尼的物理意义
5
mx
cx
kx
f
(t)
p0sin(ωt)势能
(应变能:
strain
energy):
TD
0x
x0sin(ωt
φ)
2
0
k(x
0sin(
t
))(
x
0cos(
t
))dt
0动能
(kinetic
energy):
TD
0
0
x
1粘弹性阻尼耗散的能量
6x
x0sin(ωt
φ)22
2
2
mx
cx
kx
f
(t)
p0sin(ωt)
fd(x)
cx
cωx0cos(ωt
φ)
cω
x0
x0
sin2(ωt
φ)
cω
x0
x2(t)
2
2
f
x0
cωx0
A
πcωx0
kx
c
x0
x0
sin
(
t
)
x
f
kx
1粘弹性阻尼耗散的能量
72
x
x0sin(ωt
φ)Aπcωx0(
plastic
deformation
)2
mx
cx
kx
f
(t)
p0sin(ωt)
试验中测量的总抗力:
fs(x)
fd(x)
kx
cx
2
2
kx
c
x0
x2(t)
2
2
x0
cωx0
讨论:ω
0,
A
0
有塑性变形ED
fDdu
(cu
)u
dt
cu2dt
2
/
0
2
/
0
试验方法
-
等效阻尼法等效阻尼法为最普通的确定结构阻尼的方法,它利用一个循环内的力和位移曲线(滞回曲线)。
滞回曲线所围的面积为结构耗散
的能量:
2
/
0
1应变能(Strain
energy):
2u0fDEs0
nED
4
eq.
1
ED4
Es0
1
1
ED4
/
n
Es0
eq.
8Reference:
Estimating
Effective
Viscous
Damping
and
Restoring
Force
in
ReinforcedConcrete
Buildings,
Hesam,
A.
Irfanoglu,
T.J.
Hacker,
IMAC-XXXIV,
2016;
Paper
no.
501.E
π92
粘滞阻尼
(Hysteretic
damping,
rate-independent
damping试验发现:1,周期加载耗散能量不与频率相关;
2,结构各阶阻尼比相当,差别不大。
ED
πcωx0xηk
ω
fD
22
HDωx0ηk
ω
πηkx0
2πηES0
结构外阻尼产生的原因
(EXTERNAL
MECHANISMS
OF
DAMPING)1.
Acoustic
radiation
damping,
whereby
the
vibrational
response
couples
with
the
surrounding
fluid
medium,
leading
to
sound
radiation
from
the
structure.2.
Fluid
pumping,
in
which
the
vibration
of
structure
surfaces
forces
the
fluid
medium
within
which
the
structure
is
immersed
to
pass
cyclically
through
narrow
paths
or
leaks
between
different
zones
of
the
system
or
between
the
system
and
the
exterior,
thereby
dissipating
energy.3.
Coulomb
friction
damping,
in
which
adjacent
touching
parts
of
the
machine
or
structure
slide
cyclically
relative
to
one
another,
on
a
macroscopic
or
amicroscopic
scale,
dissipating
energy,
and
etc.10
结构内阻尼产生的原因
(INTERNAL
MECHANISMS
OF
DAMPING)1.
结构变形后有很多机制以热的形式耗散能量,都与物
质微观结构内部的原子或者分子重建,或者热效应有
关。在特定的条件下,对某种材料(金属,合金等)
只有其中的一种或者两种机制起主导作用。大多数金
属和合金在多数情况下阻尼很小,个别合金由于晶格
结构特殊阻尼很大。2.
结构的阻尼很难确定的原因还在于结构内部的接头和
接触面,以及部件连接处和支撑。3.
由于这些原因,通常几乎不可能或者显然很不容易,
准确地确定和控制一个结构的初始阻尼水平,具体何种机制产生也很难区分。11常用材料的阻尼钢结构的阻尼系数为多少与其工作状态有关,一般试验确定。12
规范的规定1.建筑结构抗震规范
GB
50011-2001的8.2.2条也有说
明,全文如下:钢结构在多遇地震下的阻尼比,对不超过
12层的钢结构可采用0.035,对超过12层的钢结构可采
用0.02;在罕遇地震下的分析,阻尼比可采用0.05.2.在日本道路公团2005年版的设计要领中,关于阻尼做如
下规定:
对于直接承受动荷载的桥梁上部结构,一般
不希望其工作在弹塑性阶段,阻尼系数取0.02~0.03。对于在大地震时可能工作在弹塑性阶段的钢下部结构,当其在弹性域范围内工作时,阻尼系数取0.03~0.05,当其工作在弹塑性域,且采用等价线性化模型解析时,阻尼系数取0.1~0.2。13a
2
1/
瑞利(Rayleigh)阻尼瑞利(Rayleigh)阻尼,指定两个固有频率处的阻尼,
其它处的阻尼也随之确定。c
a0m
a1k
a02
n
1
n
2
n
m
1
1/
m
m
a0
n
n
n
a1
优点:1,能够有效解耦;2,计算简单。缺点:两个参数决定所有阻尼,且其余各阻尼相关。c
a1kc
a0m14
,K
610
1瑞利(Rayleigh)阻尼习题
1:
1
1
1
2
1
2
400
400
400
1
386
m
已知结构为瑞利阻尼,给定第一阶和第二阶阻尼比为5%,求第三阶的阻尼比?1516John
Strutt,
3rd
Baron
Rayleigh
John
William
Strutt,
3rd
Baron
Rayleigh,
OM
(Nov.12,1842
–
June,30,
1919)
was
an
English
physicist
who,
with
William
Ramsay,
discovered
the
element
argon(Ar-18
氩气),
an
achievement
for
which
he
earned
the
Nobel
Prize
for
Physics
in
1904.
He
also
discovered
the
phenomenon
now
called
Rayleigh
scattering,
explaining
why
the
sky
is
blue,
and
predicted
the
existence
of
the
surface
waves
now
known
as
Rayleigh
waves.
Rayleigh's
textbook,
The
Theory
of
Sound,
is
still
referred
to
by
acoustic
engineers
today.
Rayleigh
ratio
(瑞雷商);Rayleigh-Ritz
method
(瑞雷-瑞兹法);
c
m
M
T(m
M
1)
I
Tc
(m
M
)C(M
m)
m(
n2
n
n
T
1C
T
1T(M
1
Tm)
I
1
(M
1
Tm)
1
(m
M
1)Mn
N
1
1
T习题
2:质量和刚度阵如习题
1,给定第一阶和第二阶阻
n
1尼比为5%,用叠加法求阻尼矩阵,和第三阶阻尼比?提示:先计算阻尼矩阵、对角化后再计算阻尼比。
模态阻尼矩阵的叠加法
(superposition
of
modal
damping
matrix)可以指定前n阶模态的阻尼比
Tc
C,Cn
n2
nMn
n)m
17教师联系方式:姓名:李东升地址:4号试验楼213室Tel:84708402Email:
dsli@答疑时间:周五
10:00
–
11:00课件下载地址:/s/1bntqAhL密码:0xrm
18c
m
al[m
1k]l两边左乘:
nkm
n
al
n
2l
1
两边左乘:
n(km
)继续左乘:
n(km
)l
0时:
T
nc0
n
n
T(a0m)
n
a0Mn
l
1时:
c
n
(a1k)
n
a1
Mnl
2时:
c
n
(a2km
k)
n
a2
n
n
a2
n
n
k
MCn
al
n
2lMnrrN
1
l
0rn
n
N
1
l
0
T
1
T
1
2
T
1
lcl左乘:I
mm
1
N
1第n阶模态的模态阻尼为:
Cn
Tnc
n
al
Tncl
n
l
0T
T
2n
1
n
nn
2
n
nT
T
1
2
T
4
Caughey
阻尼(扩展的瑞利阻尼)Caughey
阻尼可用于指定多于两个模态的阻尼比,是瑞利阻尼的扩展。19
Cn
1
N
1
k
r
2m
r
2Mn
n
2
l
0
Tn[km
1k]
r
2
Tnk
r
0,n
r.
Tn[(km
1)2k]
r
2
Tn[km
1km
1m]
r
0
T[(km
1)l
1k]
r
0
Tcl
r
cl
(km
1)l
1kcl
mm
1km
1km
1
km
1k
m[m
1k]l
1
1
1
N
a0
2
1
1
Cn
a1
2
2
2
n
2Mn
n
N
2M
2
aM
1
2
N
N
l
0
al
n
2l
1
a1
22
23
M1
M
2
M
3
2M
2
2
2
MM
2
N
N
11
12
13
21
1M
2
1
1
a0
aM
1
4
21
2
2
2
Caughey
阻尼的计算
4
2M
2
1
1
4
2M
2
2
2
N
矩阵的逆Explicit
solution20
M
r
1Reference:
T.
K.
Caughey
(JPL,
Caltech),Classical
Normal
Modes
in
DampedLinear
Dynamic
Systems,Journal
of
Applied
Mechanics,1960;
27(2):269
–
271.1
N
122005;
12:1–2.Thomas
K.
Caughey21Professor
of
Mech.Engr.
Caltech,
passed
awayrather
suddenly
on
7
December
2004,
at
the
ageof
77.A
Scotsman,
while
an
undergraduate
student
inScotland,
he
solved
all
the
problems
in
thefamous1940
textbook
‘Mathematical
Methods
inEngineering’,
by
Theodore
von
Karman
andMaurice
Biot,
a
book
used
in
the
1950’s
as
areference
for
a
graduate
course
at
Caltech.PhD
in
1954
at
Caltech,
assistant
prof.(1954),
prof.(1962).Contributions:
applied
mathematics,
dynamics
and
control
theory.Design
of
the
Caltech
eccentric-mass
vibration
generator
in
theearly
1960’s,
振动台试验的开始。Freudenthal
Medal,
Karman
Prize
by
ASCE
in
2002.Reference:
T.
K.
Caughey
(JPL,
Caltech),Obituary,Struct.
Control
Health
Monit.Cn
al
n
2lMn1
a
n
2
n
l
01
2
2
1
N
2
4
2
2M
2
a1
2
2
2
aM
1
2
N
N
2M
2
Reference:
J.
Enrique
Luco,A
note
on
classical
damping
matrices,Earthquake
engineering
and
structural
dynamics,2008;
37:615–626.
习用阻尼模型存在的问题常用阻尼的缺点:1,The
Rayleigh
damping
matrix
is
simple
and
banded
but
the
damping
ratios
foronly
two
modes
can
be
specified.2,A
Caughey
series
representation
is
more
general
but
requires
solution
of
apotentially
ill-conditioned
system
of
equations
to
determine
the
coefficients
of
theterms
in
the
series
in
terms
of
the
prescribed
damping
ratios.3,The
superposition
of
modal
damping
matrices
is
also
simple
but
requirescalculation
of
the
mode
shapes
and
leads
to
zero
damping
for
the
modes
for
whichthe
modal
damping
ratios
are
not
specified.
Classical
dampingcm
1k
km
1c,
Tnc
r
2
r
rMr
rsM
1
l
0M
12ll
n44
22
1
1
2
1
1
M
2
a0
2
1
1
N
NVandermonde’s
matrix
,
ill-conditioned2
4
2
4
4
2
4
2
4
2
2
4221
2
2
1
N
2
4
2
2M
2
a1
2
2
2
N
2M
2
aM
1
2
N
N
a1
22
23
M1
M
2
M
3
2M
2
2
2
MM
2
N
N
al
2
lr
r
r
Mr
1
11
12
13
21
1M
2
1
1
a0
aM
1
44
22
1
1
2
阻尼研究的新进展-1
1
1
M
2
a0
2
1
1
N
矩阵的逆2321
M
12
l
0al
nl
1
n
阻尼比由高阶项控制
l
0
al
n
2l
1al
2
lr
r
r
lr
(
1)
/
(
s
2
r
2),(l
0:M
1;r
1:M)阻尼研究的新进展-2r
r
s1
s
r
r
s
0
1,
m
2
2
2
1
2
1
2
m,(1
m
M
1)
sn
rl
r
Ms
1s
rM
l
1
Mr
11
M
12
n
1
2
2
21
2
2
2
2
2
2
22
21例如:
r
=1,
0
1
1
2
3
M
2
2
3
2
4
2
M
3
4
3
5
M
1
2
3
4
M解析解
见前面矩阵左乘以其逆。基本对称函数24c
m
al[m
k]
,(1)al
2
lr
r
r,(2)[L]
m
lr[m
1k]l,(4)/
(ωs
2
ωr
2),(l
0:M
1;r
1:M)变换符号及积分限:l
M
m
1,1)l
0,m
M
1;[L]
m
(
1)
(m
k)/
(
s
r
2),(5)
阻尼研究的新进展-3
Mr
1
1
lM
1
l
0将(2)代入
(1):
M
1
M
M
M
1
M
1
l
1
l
l
0
r
1
r
1
l
0
r
1M
1
l
0M
1rσ
Ms
1s
rrM
l
1M
m
1αlr
(
1)2mM
1rm
r
1M
m
1M
1m
0
Ms
1s
r
m
M
l
1.
2)l
M
1,m
0.25[L]
m
(
1)
(m
k)/
(
s
r
2),(5)
(
1)
m(m
k)M
m
1
0(m
k)M
1
1
(m
k)M
2
M
r
2(m
k)
M
r
1I
(m
k
s
2I)c
2
r
r[LMr
1],(3)[LMr
1]
m
(m
1k
s
2I)/
(
s
2
r
2),(6)阻尼研究的新进展-4m
1
r
1
1
1M
1m
0
1
Ms
1s
r2mM
1rm
r
1M
m
1M
1m
0
Ms
1s
rr
r
s1
s
r
r
s
0
1,
m
2
2
2
1
2
1
2
m,(1
m
M
1)
sn
r例如:
r
=1,1
2
2
21
2
2
2
2
2
2
22
2
1
2
3
M
2
2
3
2
4
2
M
3
4
3
5
M
1
2
3
4
M
M
Ms
1
s
1s
r
s
r伟达定理:方程根与系数关系
M
r
1确定阻尼矩阵公式26c
2
r
r[LMr
1],(3)阻尼研究的新进展-5
Mr
1确定阻尼矩阵公式
M
M
s
1
s
1
s
r
s
r1,
The
damping
matrix
[c]
defined
by
Equations
(3)
and
(6)
represents
afactorized
Caughey
series
and
hence
leads
to
classical
normal
modes.2,
The
modal
damping
ratios
for
the
first
M
modes
correspond
exactly
andexplicitly
to
the
prescribed
M
modal
damping
ratios
r.3,Although
the
calculation
of
the
matrix
products
appearing
in
Equation
(6)requires
some
effort,
the
potential
numerical
problems
arising
from
a
numericalsolution
of
the
ill-conditioned
Vandermonde’s
matrix
are
eliminated.4,Finally,
even
though
the
modal
damping
ratios
of
only
M
modes
are
specified,the
damping
ratios
of
the
other
modes
are
non-zero.
271
al
2
lr
r
r
lr
(
1)
/
(
s
2
r
2),(l
0:M
1;r
1:M)
r
r
(
1)
/
(
s
r
2)
r
r
n)
(
s
n
2)/
(
s
r
2),(M
n
N)(
/
阻尼研究的新进展-6指定的M个阻尼比之外的阻尼比的计算方法:l
r
Ms
1s
rM
l
1
Mr
12
M
12
l
0al
nl
1
n
M
M
M
1
2l
1
2l
12
l
0
r
1
r
1
l
0282lM
M
1r
2l
1M
l
1
nr
1
l
0
Ms
1s
r2
2r
1
s
1
s
1M
M
M
s
r
s
r
1
,K
k
c
2
r
r[LMr
1],(3)[LMr
1]
m
(m
1k
s
2I)/
(
s
2
r
2),(6)习题
3:
1
1
1
2
1
1
2
111
1
2
2
1m
m
2
3
M
Ms
1
s
1s
r
s
r设定第一阶,第二阶和第三阶阻尼比为:
1求阻尼矩阵,和第四阶的阻尼比?
M
r
129工程经验:•结构各阶阻尼比相差不多。•阻尼的非严格线性,随结构振动幅度的变化而有所改变,但相差不大。强迫振动和环境振动测试时阻尼比识别结果不同。30不同识别方法阻尼比识别结果不同,原因不明。31Reference:
Damping
Characteristics
of
a
Footbridge
-
Mysteries
and
Truths
R.
Cantieni,A.
Bajric,
R.
Brincker,
IMAC-XXXIV,
2016;
Paper
no.
487.
经典阻尼模型存在的问题1,
Solution
of
a
potentially
ill-conditioned
Vandermonde
system
of
linearequations2,
Extreme
care
must
be
exercised
to
select
the
number
of
frequenciesand
the
specific
set
of
frequencies
at
which
the
modal
damping
ratios
areprescribed3,
The
resulting
damping
matrix
may
be
a
full
matrix
thus
impacting
thecomputational
effort
and
complicating
the
physical
interpretation
of
thedifferent
elements
of
the
damping
matrix.2M
1
l
0al
nl
12
n
n
References:[1]
J.
Enrique
Luco,A
note
on
classical
damping
matrices,Earthquake
engineeringand
structural
dynamics,2008;
37:615–626.[2]
LETTER
TO
THE
EDITOR,
Earthquake
Engng
Struct.
Dyn.
2008;
37:1801–1804
1:
可以扩展为
指数形式;
2:给出一个简便的多项式方法求系数a;[3]
AUTHOR’SREPLY,
Earthquake
Engng
Struct.
Dyn.
2008;
37:1805–1809
1:
原文为
Lagrange
interpolation
–
Sylvester
formula
32增减后pivot
需要改变等。。。c
(m
M
)C(M
m)
m(
n2
n
n
T经典阻尼模型存在的问题33Mn
n)m
Nn
1叠加法的阻尼
1
1
T
抛弃比例的要求,假定一个振型,则可得
N
n
1
MnReferences:Eduardo
Kausel,Damping
Matrices
Revisited,Journal
of
EngineeringMechanics,2014;
04014055.阻尼矩阵的应用、问题及解决例子科研中的讨论、以及进步Engineering
Mechanics,2009,135(11):1248–1256.
阻尼矩阵的对角近似非对称和复阻尼矩阵出现的场合:1,Nonsymmetric
stiffness
and
damping
matrices
can
arise
when
structures
areactively
controlled,
and
in
areas
like
microdynamics.2,
Damping
matrices
adduced
from
experimental
measurements
often
turn
out
to
benonsymmetric,
and
are
often
used
in
modeling
complex
systems.3,
Matrices
with
complex
entries
can
arise
when
dealing
with
modeling
systemsthat
have
structural
and
viscoelastic
damping.非对称和复阻尼矩阵的工程处理方法:A
common
procedure
in
structural
engineering,
is
to
retain
only
the
diagonalelements
of
C,
zero
out
the
off-diagonal
elements,
and
thereby
obtain
a
newdamping
matrix,
C1=diag(C),
for
which
the
system
is
now
uncoupled.One
might
want
to
know
how
good
this
approximation
of
the
matrixsolely
by
its
diagonal
elements
might
be.
To
measure
“closeness”
of
two
matrices
weshall
use
the
Euclidean
Frobenius
norm.
Reference:
F.E.
Udwadia,A
Note
on
Nonproportional
Damping,Journal
Of34Engineering
Mechanics,2009,135(11):1248–1256.
阻尼矩阵近似的四个有用结果Result
1.
When
all
the
eigenvalues
of
the
matrix
K
are
distinct,
of
all
the
matrices
thatcommute
with
k,
the
matrix,
Ed,
that
comes
“closest”
to
the
matrix
E
in
Euclideannorm,
is
obtained
by
simply
deleting
all
the
off-diagonal
terms
of
E.Result
2.
When
all
the
eigenvalues
of
the
matrix
K
are
not
distinct
but
not
all
equal,
ofall
the
matrices
that
commute
with
,
the
block-diagonal
matrix,
Ed
comes
closestin
Euclidean
norm
to
the
matrix
E.
The
size
of
each
subblock
Ei
along
the
diagonal
ofthe
matrix
Ed
equals
the
multiplicity
of
the
corresponding
eigenvalue
of
K.Result
3.
Let
the
matrix
K
be
hermitian,
and
let
D
and
K
not
commute.
If
theeigenvalues
of
the
matrix
K
are
all
distinct,
then
of
all
the
mat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年仰恩大学单招职业技能测试题库附答案
- 2026年惠州城市职业学院单招职业技能考试备考题库带答案解析
- 2026年荆州职业技术学院单招职业技能笔试备考试题带答案解析
- 2026年阳江职业技术学院单招职业技能笔试备考试题带答案解析
- 福州市2023福建福州市水路运输事业发展中心编外人员招聘1人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 国家事业单位招聘2024中国农业科学院果树研究所人才招聘29人笔试历年参考题库典型考点附带答案详解(3卷合一)试卷2套
- 2025甘肃电气装备集团有限公司招聘70人笔试历年备考题库附带答案详解
- 2025浙江金华市兰溪市文化传媒集团有限公司招聘劳务派遣人员2人笔试历年备考题库附带答案详解
- 2025江西省赣农投资发展集团有限公司校园招聘及考试笔试历年难易错考点试卷带答案解析
- 2025广东深圳市优才人力资源有限公司招聘聘员拟聘人员笔试历年常考点试题专练附带答案详解
- 杉木容器育苗技术规程
- 售后工程师述职报告
- 专题12将军饮马模型(原卷版+解析)
- 粉刷安全晨会(班前会)
- (中职)中职生创新创业能力提升教课件完整版
- 部编版八年级语文上册课外文言文阅读训练5篇()【含答案及译文】
- 高三英语一轮复习人教版(2019)全七册单元写作主题汇 总目录清单
- 路基工程危险源辨识与风险评价清单
- NB-T+10131-2019水电工程水库区工程地质勘察规程
- 大学基础课《大学物理(一)》期末考试试题-含答案
- 管理大略与领导小言智慧树知到期末考试答案章节答案2024年山东大学
评论
0/150
提交评论