2022海上风电技术发展_第1页
2022海上风电技术发展_第2页
2022海上风电技术发展_第3页
2022海上风电技术发展_第4页
2022海上风电技术发展_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE10海上风电技术发展内容内容风电发展现状风电发展的技术问题及挑战主要风电并网技术方案将来的研发重点•风电发展背景WorldElectricityDemandSettoDoubleAdditional4,800GWnewcapacityby2030TrackedbyCO2emissionsEnvironmentconcernEUCoreObjectives(20-20-20Targets,2008)Greenhousegasemissionsreductionby20%by2020(below1990level)20%increaseinenergyefficiencyby202020%renewableenergyby2020China(2009)Aimstoreducecarbonemissionsrelativetoeconomicgrowth(GDP)by40to45%by2020(below2005level)••海上风电–美国的发展海上风电–美国的发展OffshoreWindPowerinUS397.5万海上风电–欧洲的发展海上风电–欧洲的发展WindPowerinEurope2010欧洲2010风电总容量installedcapacityinEurope欧洲总装机86.3GWinstalledcapacityinEU欧共体总装机84.3GW5.204GW27.214GW5.660GW5.797GW20.676GW海上风电–欧洲的发展(英国)海上风电–欧洲的发展(英国)OffshoreWindFarmsintheUKRounds1&2第一及第二轮Round1:2002,15sites;60-90MWeachRound2:2005,15sites,upto1200MWeach,7.17GW海上风电–欧洲的发展(英国)海上风电–欧洲的发展(英国)OffshoreWindFarmsintheUKRound3第三轮海上风电Round3:9Sites,25GW(2500万)Proposed 海上风电–欧洲的发展(英国)海上风电–欧洲的发展(英国)OffshoreWindFarmsintheUKRound3第三轮海上风电海上风电–欧洲的发展海上风电–欧洲的发展WindShareofTotalElectricityConsumptioninEurope2010欧洲2010年风电在总电力消耗的比重海上风电–欧洲的发展海上风电–欧洲的发展EuropeanWindInitiative(EWI,EWEA)欧洲风电发展的目标–20%in2020(230GW)–33%in2030(400GW)–50%in20502010年世界风电发展2010年世界风电发展WindPowerintheworldin2010China: 42.29GW–USA: 40.18GWGermany 27.21GWSpain: 20.68GWWorld: 194.39GWSource:GWEC–GlobalWind2010Report中国风电发展中国风电发展OnshoreWindPowerinChinain2010Connectedcapacity:29.56GWConstructedcapacity:41.6GW(includingtheconnectedcapacity)6windfarmsites/areas,eachofthemwillbeover10GWincapacity(NorthWest,NorthEast,NorthChina三华地区)WindFarmLocationsConnectedWindPowerandIncreasing%ConnectedWind EachYearPower(GW) Increasing(%)29.56(GW)(%)17.679.712.094.19Source:WindPowerDevelopment-WhitePaper,2011风机的发展WindTurbine风机的发展WindTurbineWindTurbine(WT)DevelopmentSource:UpWind,EWEAChinaWT5MW,6MWWindpowerproportionaltowindspeedscubed中国风电发展中国风电发展MixedOnshore/OffshoreWindPowerinChina2sites(>10GWeach)PlannedcapacityOffshoreWindFarmLocations2015:5GW(500万)2020:30GW(3000万)30GW3000(2020)内容内容风电发展现状风电发展的技术问题及挑战主要并网技术方案将来的研发重点2.风电发展技术问题及挑战2.风电发展技术问题及挑战Whatkindofelectricitydowewanttohave?GreenReliable2.风电发展技术问题及挑战Wind2.风电发展技术问题及挑战WindPowerFluctuation功率波动TypicalWinterDailyWindPowerCurvesinLiaoNingProvinceTime(Hour)Source:WindPowerDevelopment-WhitePaper,2011GaoShangZiCiEnSi HePing NanXiaoLiuWindPower(MW)2.风电发展技术问题及挑战2.风电发展技术问题及挑战WindPowerFluctuation风功率波动CutinSpeedCutoffSpeedYXCapacityFactor30–40%Source:AliIpakchi,2009IEEEpower&energymagazine2.风电发展技术问题及挑战Wind2.风电发展技术问题及挑战WindPowerFluctuation风功率的反调峰特性Typicalwinterdailyloadandwindpowercurves,JilinProvince,ChinaLoad负荷EquivalentLoad等消负荷WindPowerGenerationWindPowerGenerationloadTime(hour)Load(EquivalentLoad=Load–WindPowerGeneration) Source:WindPowerDevelopment-WhitePaper,2011WindPower(MW)Load(MW)2.风电发展技术问题及挑战2.风电发展技术问题及挑战Reactive/VoltageControl无功/电压控制–MostCommonTypesofWindTurbineGeneratorsFixedSpeedInductionGenerators(FSIG)衡速风机DoublyFedInductionGenerators(DFIG)双馈风机P,QDirectDriveSynchronousGenerator(DDSG)直驱风机+Q+QP100%+Q P100%P0% 100%-Q0%-Q0%-Q2.风电发展技术问题及挑战2.风电发展技术问题及挑战MainIssuesChallenges–Therewillbe8sites,andeachwiththeinstalledcapacityover10GW–bulkwindpowerIneachsite,windfarmsareverycentralizedinthesamearea,andmostofthemarefarawayfromtheloadcentre高度集中,远离负荷中心Developmentofwindfarmsisfasterthantransmissionsystemreinforcement–transmissioncongestion风电超前电网发展-网络拥挤Bulkwindpowerwillresultinbigimpactontransmissionsystemstabilityifwindfarmsaredisconnectedsuddenly大规模风电故障将对输电网产生重大影响WindFarmLocations30GW(2020)>2000km2.风电发展技术问题及挑战2.风电发展技术问题及挑战MainIssuesandChallengesGenerationsourcestructure&reserveissuesforpeak-shaving&generation-loadbalanceRichwindsourceregionsarealsotheregionswithmanyexistingcoalfiredpowerplants,whicharenormallyoperatedattheirmaximumloadconditioninwinter,duetoconstantthermalloaddemand–theyhavelesscapabilityforpeak-shavingPeak-shavingcapabilitiesofpump-storagepowerplantsarelimitedbylowwaterseasoninwinterWindturbineinstallationswerefasterthandevelopmentofGirdCodestandardforwindfarmgridconnection风电发展快于并网标准的发展Girdcodestandardwasnotappliedwhenmanywindfarmswereconnected,andmanywindfarmsdidn’thavefaultridethroughcapabilityalthoughtheywereconnectedwithgrid许多并网风电场并不满足并网技术要求内容内容风电发展现状风电发展的技术问题及挑战主要并网技术方案将来的研发重点风电并网标准风电并网标准ConnectionRequirements–GridCode风电并网标准风电并网标准KeyGridCodeRequirementsforConnectionSource:UpWind,EWEA风电并网标准–低电压故障穿越风电并网标准–低电压故障穿越GridCodeRequirement–FaultRideThrough–Comparisonoffaultridethroughrequirements.(Source:IEAWindTask25,2009)–LowVoltageRideThrough低电压穿越要求China GridConnectionPointVgriddip0.625sGTrippingAreaWindFarm风电并网标准–高电压故障穿越风电并网标准–高电压故障穿越GridCodeRequirement-FaultRideThrough–HighVoltageRideThrough高电压穿越要求TrippingAreaGrid1.2ConnectionPoint Vgrid1.0dipTrippingAreaVoltageDurationCurve(Source:WECC-WesternElectricityCoordinatingCouncil)GWindFarm可选的风电并网技术可选的风电并网技术EnablingTechnologiesforWindFarmConnectionsDirectConnection风电场经交流输电并网ConnectionCombinedwithReactivePowerCompensation风电场经交流输电并网并加并联无功补偿Capacitors/Reactors并联电容器及电抗器SVC(StaticVarCompensator)静止无功补偿器STATCOM(StaticSynchronousCompensator)静止同步补偿器ACombinationofAboveHVDCConnection风电场经高压直流输电技术并网VoltageSourceHVDC(VSHVDC电压源型高压直流输电技术LineCommutatedHVDC(LCHVDC)电流源型高压直流输电技术Off-shoreHVDCGridUsingVSCTechnology多端电压源型高压直流输电技术AdvancedWindPowerManagementSystems应用先进的自动化系统IIVSVC QVVSVCjX S XiiL()iC1iC2SWLSW1SW2无功补偿及控制StaticVarCompensator(SVC)无功补偿器SVC:TCR+TSCAcombinationofCandLelementscangivecompletecoverageLelementcanbecontrolledCelementcanonlybeswitchedTCRelementcanbeusedtodecreasecapacitivecontributionVs2TSC1TSCTCRonly+TCR+TCRBC(max) C=2BBL(max)ICIC(max)IL(max)ILSources:HeinzK.Tyll,SiemensAGVVSI VCXIIXICC|Vc|<|Vs|InductivecurrentIVSVCjX|Vc|>|Vs|CapacitivecurrentQVSVSVCXSjXI无功补偿及控制StaticSynchronousCompensator(STATCOM静止同步补偿器AcontrolledvoltagesourceisinjectedinphasewiththenetworkvoltageTheamplitudeoftheinjectedvoltageiscontrolledtoregulatethereactivepowerThevoltagesourceisgeneratedbypowerelectronicsconverterGeneratorspeed(pu)andGeneratorspeed(pu)andFISG风电场中的应用ACConnectionwithoutDynamicReactiveCompensationTimeFaultridethroughcapability−3-PhaseFaultatt=0.5sec,andlastedfor0.14s−WithoutSVC/STATCOM,thevoltageattheconnectionpointdidnotrecoverandFISG风电场中的应用ACConnection+SVCorSTATCOMforDynamicReactiveCompensationFor“Short”WindFarmConnectionDistanceUsingSVCorSTATCOMforreactivepowercompensation132kV132kV11kV60MW132kV50Hz2Z=2R+j2XZ=R+jXP+jQZ=R+jXZ=R+jXjQPFC28Mvar3-PhasefaultSVC/STATCOMFig.SchematicdiagramofthesimulatedsystemandFISG风电场中的应用PerformanceComparisonbetweenSVCandandFISG风电场中的应用PerformanceComparisonbetweenSVCandSTATCOMTime(s)Time(s)TimeTime(s)Faultridethroughcapability−3-PhaseFaultatt=0.5sec,andlastedfor0.14s−STATCOMisbetterthanSVC–SystemrecoveredfastReactivepower(MVar)Networkvoltage(pu)Generatorspeed(pu)Electrictorque(pu)在系统中的部点implementationstrategies−AtTurbineLevel−AtGridConnectingorCollectorPointLevelKeydecisionmakingcriteria−EaseofAccess−MeanTimeBetweenFailure−Losses−Capital&OperatingCostsStationCostDCStationCostDCStationsDCBreakEvenDistanceACACStationsTransmissionDistance为什么要用HVDC并网为什么要用HVDC并网SometimesHVDCistheonlyoptionLCCHVDCConnectionSolution电流源型HVDC并网LCCHVDCConnectionSolution电流源型HVDC并网ForLargeRemoteWindFarmConnectionUsingLCCHVDCtogetherwithaSTATCOMOffshoreWindFarm500MWOffshoreHybridHVDCConverterStationOnshoreHVDCConverterStation400kV50Hz500MW+500kV1000A145kV50HzFigure:WindfarmconnectionusingLCCHVDCTransmissionVSCHVDCConnectionSolution电压源型HVDC并网VSCHVDCConnectionSolution电压源型HVDC并网ForLargeRemoteWindFarmConnectionUsingVSCbasedHVDCsystemQ1PQ2IC1Network UC1UC2 1VSCVSC Network2DCtransmissionlineVSC=VoltageSourceConverterCapacitornormallyusedasenergystorageVSCusesself-commutateddevicessuchas:–IGBT(InsulatedGateBipolarTransistor)VSCgeneratesitsownvoltageinthereceivingsystemwithcontrolledamplitudeandphaseangleStation2Station1关键研发科题关键研发科题KeyActivities/ProjectsIntegratedwindpowerforecasting,monitoringandcontrollingsystemVerificationofGridCodecomplianceforfarms-FaultRideThroughvalidationGridsystemreinforcementGridstabilitycontrolsystemPMUbasedWAMsystemVSCHVDCTechnology风功率预报及监控Integratedwindpowerforecasting,monitoringandcontrollingsystemforwindfarm(atwindfarmlevel)–Windpowerforecasting(sampling:every15mins),activeandreactivecontrolandmanagement,faultdiagnosisNS2000WindFarmMonitoringandControlSystem风功率预报及监控风功率预报及监控Coordinatedwindpowerdispatchsystem(atgridlevel)–Windpowerdispatchbetweenwindfamesinthesamewindfarmsite/areatomeetthegridoperationrequirement故障穿越认证故障穿越认证Validationofwindfarmgridcodecompliance–FaultridethroughtestingLowvoltageridethroughtestingfora1.5MWDFIGatShuanlongwindfarminJilinprovince(吉林长岭双龙风电场1.5MW双馈风电机组低电压穿越测试)故障穿越认证故障穿越认证ValidationofgridcodecomplianceforlargePVs–LargePVtestingcentre(SGEPRI)MobiletestfacilityforsmallPVstations风光储输示范项目风光储输示范项目DemonstrationProject–Wind(100MW),PV(40MW),Storage(20MW)andTransmission国家风光储输示范工程(河北张家口)内容内容风电发展现状风电发展的技术问题及挑战主要并网技术方案将来的研发重点将来的研发重点将来的研发重点FurtherdevelopmentofUHVACandUHVDCtransmissionsystems,toformthe“Strong”UHVAC&UHVDCgrids,includingprojectsUHVDCHamitoHenan(哈密-河南)JiuquantoHuan(酒泉-湖南)UHVAC:XimengtoNanjing锡盟-南京MenxitoChangsha(蒙西-长沙)2700kM±800kV,2400kM±800kV2300kMSource:WindPowerDevelopment-WhitePaper,1000kVAC将来的研发重点将来的研发重点Furtherdevelopthe“StrongSmartGrid”techniquesinordertoimplementoptimaloperationoftransmissionsystemwithbulkwindpowerintegrations.TheseincludethedevelopmentofAccuratewindpowerforecastingfordispatchCoordinateddispatchandcontroltechniquesIntegratedsmartsubstation,etc将来的研发重点将来的研发重点Developmentofstoragetechnologies,mainlypump-storagepowerplant(Fen-ningpumpstoragehydroplantetc)–2015,18.4GW–2020,40GWFigure1:Typicalstoragecapa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论