版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2Randomvariablesandtheirdistributions2.1RandomVariables2.2Discreterandomvariables2.3SomeImportantDiscreteProbabilityDistributions2.5ContinuousRandomVariables2.6SomeContinuousProbabilityDistributions2.7FunctionsofRandomVariables2.4CumulativeDistributionFunctions2Randomvariablesandtheird12.1RandomVariablesExample1Tosscoin:1HT2.1RandomVariablesExample12RSExample2Testthelifeinyearsoflightbulbs:Definition2.1LetSbethesamplespaceassociatedwithaparticularexperiment.Asingle-valuedfunctionXassigningtoeveryelementarealnumber,X(ω),iscalleda
randomvariable.DenotedbyX.2RSExample2Testthelifein3Ingeneral,Definition2.1LetSbethesamplespaceassociatedwithaparticularexperiment.Asingle-valuedfunctionXassigningtoeveryelementarealnumber,X(ω),iscalledarandomvariable.DenotedbyX.andx,y,z…representarealnumber.weuseX,Y,Z….representarandomvariableNoticethatRXisalwaysasetofrealnumbers.Definition2.2
ThesetofallpossiblevaluesofXiscalledtherangespaceofX
andisdenotedbyRX.3Ingeneral,Definition2.1Let4Definition2.2
ThesetofallpossiblevaluesofXiscalledtherangespaceofX
andisdenotedbyRX.NoticethatRXisalwaysasetofrealnumbers.Foraboveexample,4Definition2.2Foraboveexamp5Foraboveexample,5Foraboveexample,56
Randomvariablecouldtakedifferentvaluesdependingondifferentrandomexperiments.Becausetheexperimentresultsshowuprandomlytherandomvariablecouldtakevaluesdependingoncertainkindofprobability.(2)Thewaytotakethevaluesforrandomvariableobeyskindofprobabilityrule.
Randomvariableiskindoffunction,butitisessentiallydifferenttotheothergeneralfunctions.Thelaterkindoffunctionsaredefinedonrealnumbersetwhilerandomvariablesaredefinedonthesamplespacewhoseelementswouldnotallberealnumbers.2.Notes(1)Randomvariableisdifferenttothecommonfunction6Randomvariablecouldtaked7
Theconceptofrandomeventiscontainedwithintheconceptofrandomvariable,whichismoreextended.Fromanotherpointofviewwecansayrandomeventistosearchtherandomphenomenabyastaticmethodwhilerandomvariableistodosobyadynamicway.(3)Therelationshipbetweenrandomevent&variable7Theconceptofrandomevent8CategoriesofrandomvariableDiscreteObservethenumberdisplayedonarollingdice.PossiblevaluesforarandomvariableX:RandomVariableContinuouse.g.11,2,3,4,5,6.Non-discreteOthers(1)Discrete
ifthenumberofvaluesarandomvariablecouldtakeisfiniteorcountableinfinitethenthisvariableiscalleddiscreterandomvariable.8CategoriesofrandomvariableD99e.g.2LetXbearandomvariablerepresenting“Thenumberofshootingsasoneshootscontinuouslyuntilthetargetisshot.”.ThenthepossiblevaluesXcouldtake:e.g.3
Iftheprobabilityforoneshootertoshootthetargetis0.8,nowhehasshot30timesandletXbetherandomvariabletorepresent“Thenumberofshootingsthatareshotonthetarget”,ThenthepossiblevaluesXcouldtake:
9e.g.2LetXbearandomv1010e.g.2
RandomvariableXrepresents“Themeasuringerrorsforsomemachineparts”.ThenthevaluesXcouldtakeis(a,b).e.g.1RandomvariableXrepresents“Thelengthoflifeforalamp”.(2)ContinuousIfallpossiblevaluesarandomvariablecouldtakewillfullyfillinanintervalontheaxis,thisvariablewillbecallacontinuousrandomvariable.ThenthevaluesXcouldtakeis10e.g.2RandomvariableXr1111Summary2.Twowaystoclassifyrandomvariable:discrete、continuous.1.Probabilitytheoryquantitativelyexaminestheinherentpatternofrandomphenomena,thusinordertoeffectivelysearchintorandomphenomena,wemustquantifyrandomevents.Whenrepresentingsomenon-numericalrandomeventwithnumbers,theconceptofrandomvariableisestablished.Therefore,randomvariableisdefinedasaspecialfunctioninthesamplespace.11Summary2.Twowaystoclas122.2Discreterandomvariables
Definition2.3Witheachpossibleoutcome,weassociateaNumbercalledtheprobabilityofxi·Thenumbersmustsatisfy(i)(ii)ArandomvariableXissaidtobeadiscreterandomvariableifitsrangespaceiseitherfiniteorcountablyinfinite,i.e.122.2Discreterandomvariables13Thenumbersmustsatisfy(i)(ii)Definition2.4
ThefunctionpiscalledtheprobabilitymassfunctioncalledtheprobabilitydistributionofX.(pmf)andthecollectionofpairs13Thenumbersmustsatisfy(i)(ii)14Example2.1Solution:LetXbearandomvariablewhosevaluesxarethepossiblenumbersofdefectivecomputers
Purchasedbytheschool.Thenxcanbeanyofthenumbers0,1,and2.Ashipmentof8similarmicrocomputerstoaretailoutletcontains3thataredefective.arandompurchaseof2ofthesecomputers,findtheprobabilitydistributionforthenumberofdefectives.Ifaschoolmakes14Example2.1Solution:LetXbea15Solution:LetXbearandomvariablewhosevaluesxarethepossiblenumbersofdefectivecomputers
Purchasedbytheschool.Thenxcanbeanyofthenumbers0,1,and2.ThustheprobabilitydistributionofXisx012p(x)15Solution:LetXbearandomvar162.3SomeImportantDiscrete
ProbabilityDistributionsUniformWehaveafinitesetofoutcomeswhichhasthesameprobabilityofoccurring(equallylikelyoutcomes).XissaidtohaveaUniformdistributionandweeachofWriteSo162.3SomeImportantDiscrete
17XissaidtohaveaUniformdistributionandweWritebulb,Example2.2Whenalightbulbisselectedatrandomfromaboxthatcontainsa40-wattbulb,a60-wattbulb,a75-wattanda100-wattbulb.FindSolution:eachelementofthesamplespaceoccurswithprobability1/4.Therefore,wehaveauniformdistribution:17XissaidtohaveaUniformdi18Solution:eachelementofthesamplespaceoccurswithprobability1/4.Therefore,wehaveauniformdistribution:Example2.3Whenadieistossed,S={1,2,3,4,5,6}.P(eachelementofthesamplespace)=1/6.Therefore,wehaveauniformdistribution,with18Solution:eachelementofthes19Example2.3Whenadieistossed,S={1,2,3,4,5,6}.P(eachelementofthesamplespace)=1/6.Therefore,wehaveauniformdistribution,withBernoullitrialABernoullitrialisanexperimentwhichhastwoLetp=P(success),q=P(failure)(q=1-p).‘success’and‘failure’.possibleoutcomes:19Example2.3Whenadieistosse20
ThepmfofXisBernoullitrialABernoullitrialisanexperimentwhichhastwoLetp=P(success),q=P(failure)(q=1-p).‘success’and‘failure’.possibleoutcomes:or20Bernoullimaterial
ThepmfofXisBernoullitr21Binomialeachofwhichmustresultineithera‘success’withConsiderasequenceofnindependentBernoullitrialsprobabilityofpora‘failure’withprobabilityq=1-p.LetX=thetotalnumberofsuccessesinthesentrialsothatXissaidtohaveaBinomialdistributionwithparametersP(thetotalnumberofxsuccesses
)=nandpandwewriteX~Bin(n,p)orX~b(x;n,p)Specialcase,21Binomialeachofwhichmustres22XissaidtohaveaBinomialdistributionwithparametersnandpandwewriteX~Bin(n,p)orX~b(x;n,p)Specialcase,whenn=1,wehaveWewriteB(n,p)b(1,p)22XissaidtohaveaBinomiald23BinomialDistribution23BinomialDistribution2324Theprobabilitythatacertainkindofcomponentwillsurviveagivenshocktestis3/4.Findtheprobabilitythatexactly2ofthenext4componentstestedsurvive.Example2.4AssumingthatthetestsareindependentandSolution:p=3/4foreachofthe4tests,weobtainExample2.5Theprobabilitythatapatientrecoversfromarareblooddiseaseis0.4.thisdisease,survive,If15peopleareknowntohavecontractedwhatistheprobabilitythat(a)atleast10(b)from3to8survive,and(c)exactly5survive?24Theprobabilitythatacertain25Theprobabilitythatapatientrecoversfromarareblooddiseaseis0.4.If15peopleareknowntohavecontractedthisdisease,whatistheprobabilitythat(a)atleast10survive,(b)from3to8survive,and(c)exactly5survive?Example2.5Solution:LetX=thenumberofpeoplethatsurvive.(a)(b)25Theprobabilitythatapatient26(c)(b)Example2.6(a)Theinspectoroftheretailerrandomlypicks20itemsAlargechainretailerpurchasesacertainkindofelectronicdevicefromamanufacturer.indicatesthatthedefectiverateofthedeviceis3%.Themanufacturer26(c)(b)Example2.6(a)Theinspe27fromashipment.(b)Supposethattheretailerreceives10shipmentsinaAlargechainretailerpurchasesacertainkindofelectronicdevicefromamanufacturer.Themanufacturerindicatesthatthedefectiverateofthedeviceis3%.Example2.6(a)Theinspectoroftheretailerrandomlypicks20itemsSolution:(a)DenotebyXthenumberofdefectiveDevicesamongthe20.ThenthisXfollowsab(x;20,0.03).willbeatleastonedefectiveitemamongthese20?Whatistheprobabilitythatthereshipmentscontainingatleastonedefectivedevice?shipment.monthandtheinspectorrandomlytests20devicesperWhatistheprobabilitythattherewillbe3Hence27fromashipment.(b)Supposet28Solution:(a)DenotebyXthenumberofdefectiveDevicesamongthe20.ThenthisXfollowsab(x;20,0.03).Hence(b)AssumingtheindependencefromshipmenttoTherefore,shipmentanddenotingbyY.Y=thenumberofshipmentscontainingatleastonedefective.ThenY~b(y;10,0.4562).28Solution:(a)DenotebyXthe29(b)AssumingtheindependencefromshipmenttoTherefore,shipmentanddenotingbyY.Y=thenumberofshipmentscontainingatleastonedefective.ThenY~b(y;10,0.4562).PoissonThepmfofarandomvariableXwhichhasaPoissondistributionwithparameterisgivenby29(b)Assumingtheindependence30PoissonThepmfofarandomvariableXwhichhasaPoissonandwewritedistributionwithparameterisgivenby30Poisson
materialPoissonThepmfofarandomvar3131NumberoftelephoneringsNumberoftrafficaccidentNumberofcustomersatreceptionEarthquakeVolcanicEruptionMassflooding31NumberoftelephoneringsNum32Poissondistribution32Poissondistribution3233单击图形播放/暂停ESC键退出Binomialdistribution
Poissondistribution33单击图形播放/暂停ESC键退出Binomialdistr34Duringalaboratoryexperimenttheaveragenumberofradioactiveparticlespassingthroughacounterin1millisecondis4.Whatistheprobabilitythat6articlesenterthecounterinagivenmillisecond?Example2.7Solution:UsingthePoissondistributionwithx=6and,WefindfromTable1thatExample2.8Tenistheaveragenumberofoiltankersarrivingeachdayacertainportcity.Thefacilitiesattheportcan34Duringalaboratoryexperiment35handleatmost15tankersperday.Example2.8Tenistheaveragenumberofoiltankersarrivingeachdayacertainportcity.ThefacilitiesattheportcanSolution:LetXbethenumberoftankersarrivingeachday.Then,Whatistheprobabilitythatonagivendaytankershavetobeturnedaway?usingTable,wehave35handleatmost15tankersper362.4CumulativeDistributionFunctionsDefinition2.5Thecumulativedistributionfunction(cdf)ofthe
randomvariableXisdefinedtobeandisdenotedbyF(x).PropertiesofF(x):(i)Fisnon-decreasing.(ii)i.e.i.e.if362.4CumulativeDistributionFu37PropertiesofF(x):(i)Fisnon-decreasing.i.e.if(ii)(iii)Fisrightcontinuous.(iv)F(x)isdefinedforallrealnumbersx.
ThecdfofadiscreterandomvariableXisastepfunctionwithjumpsatthei.e.37PropertiesofF(x):(i)Fis38ThecdfofadiscreterandomvariableXisastepfunctionwithjumpsatthe38Thecdfofadiscreterandomv39e.g.39e.g.3940e.g.Example2.9ThepmfofXis40e.g.Example2.9ThepmfofXis41ThepmfofXisFind:1)TheCumulativedistributionfunctionofX.2)X-123Solution:1)-123Example2.941ThepmfofXisFind:1)TheCum42Solution:1)-1232)42Solution:1)-1432)-101231432)-101442.5ContinuousRandomVariablesDefinition2.6XisacontinuousrandomvariableifthereexistsaThefunctionfiscalledtheprobabilitydensityfunctionwiththepropertythatforeverysubsetofrealnonnegativefunctionfdefinedforallrealxnumbersB(pdf)ofX.Propertiesofthepdf(i)442.5ContinuousRandomVariable45Propertiesofthepdf(i)ThisfollowsbysettingB=(ii)145ThisfollowsfromPropertiesofthepdf(i)Thisf46(iii)IfweletB=[a,b]thenThisfollowsfrom(iv)Thisfollowsfrom461(iii)IfweletB=[a,b]t47(iv)ThisfollowsfromNotes(a)IfXiscontinuousthenF(x)iscontinuous.Also,(b)P(a≤X≤b)representsthebetweenx=aandx=b.areaunderthegraphoff
f(x)=F’(x)
atallpointwhereFiscontinuous.47(iv)ThisfollowsfromNotes(a)48f(x)=F’(x)(c)Themeaningofdensityfunction:i.e.
TheprobabilitythatXisinasmallintervalisapproximatelyequaltof(x)timesthewidthoftheinterval(d)ForanyspecifiedvalueofX,sayx0,wehave.(b)P(a≤X≤b)representsthebetweenx=aandx=b.areaunderthegraphoff
48f(x)=F’(x)(c)Themeaningofd49i.e.
TheprobabilitythatXisinasmallintervalisapproximatelyequaltof(x)timesthewidthoftheinterval(d)ForanyspecifiedvalueofX,sayx0,wehave.Hence,thenifXiscontinuousthentheprobabilities49i.e.TheprobabilitythatXis50
Example2.10LetXbeacontinuousr.v.with.pdfFindSolution:50Example2.10FindSolution:50512.6SomeContinuousProbabilityDistributionsUniform(orrectangular)DistributionAuniformrandomvariableXontheinterval(a,b)hasprobabilitydensityfunction(pdf)WewriteX~U(a,b).512.6SomeContinuousProbabilit52Cdf:52Cdf:5253Example2.11
Supposethatalargeconferenceroomforacertaincompanycanbereservedfornomorethan4hours,However,theuseoftheconferenceroomissuchthatNormalDistributionThepdfofaNormalrandomvariable,X,withisgivenbyparametersbothlongandshortconferencesoccurquiteoften.Infact,itcanbeassumedthatlengthXofaconferencehasauniformdistributionontheinterval[0,4].(a)Whatistheprobabilitydensityfunction?(b)Whatistheprobabilitythatanygivenconferencelastsatleast3hours?53Example2.11Supposethatala54NormalDistributionThepdfofaNormalrandomvariable,X,withisgivenbyparametersWewrite54NormalDistributionThepdfof55GeometricCharacteristicsofthedensityforNormalDistribution55GeometricCharacteristicsoft56565657575758Cdf:58Cdf:5859NormalDistributionisoneofthemostimportantandCommonlyobserveddistribution.Forexample,measuringuncertainty,humanphysicalcharacteristicssuchasheight,weight,etc…MeasurementsformanufacturedproductsmadeundersameConditions,i.e.length,diameter,mass,height,etc…,allseemtoobeynormaldistribution.ApplicationandBackgroundoftheNormalDistribution
Gaussianmaterial59NormalDistributionis60InthespecialcasewhenandthedistributioniscalledthestandardNormaldistribution.i.e.Wewrite60Inthespecialcasewhen61ForastandardNormalrandomvariableXdistributioniscalledthestandardNormaldistribution.i.e.Wewrite61ForastandardNormalrandomv62Example2.12Givenastandardnormaldistribution,findtheareaunderthecurvethatlies(a)totherightofz=1.84(b)betweenz=-1.97andz=0.86.Example2.13Givenastandardnormaldistribution,findthevalueofksuchthat62Example2.12Givenastandardn63Figure2.10AreasforExample2.16(a)P(Z>k)=0.3015,Example2.13Givenastandardnormaldistribution,findthevalueofksuchthatATheorem:IfThenand(b)P(k<Z<-0.18)=0.4197.63Figure2.10AreasforExample264ForaNormalrandomvariableXATheorem:IfThenExample2.1464ForaNormalrandomvariableX65Example2.14GivenarandomvariableXhavinganormaldistributionwith,FindtheprobabilitythatXassumesavaluebetween45and62.Example2.15GiventhatXhasanormaldistributionwithand,findtheprobabilitythatXassumesavaluegreaterthan362.ExponentialDistributionThepdfofanExponentialrandomvariablewithParameterisgivenby65Example2.14Givenarandomvar66ExponentialDistributionThepdfofanExponentialrandomvariablewithParameterisgivenbyWewrite66ExponentialDistributionThepd67Somecomponentsordeviceshavealifespanthatobeystheexponentialdistribution.Forexample,lifespanofmobiledevices,electricpowerdevices,animals,andothersallobeythisexponentialdistribution.ApplicationandBackgroundCdf:67Somecomponentsordev68If5ofthesecomponentsareinstalledindifferentSupposethatasystemcontainsacertaintypeofcomponentwhosetimeinyearstofailureisgivenbyT.TherandomvariableTismodelednicelybytheExample2.16exponentialdistributionwithmeantimetofailureSystemswhatistheprobabilitythatatleast2arestillfunctioningattheendof8years?68If5ofthesecomponentsarei692.7FunctionsofRandomVariablesa)whenther.v.xisdiscreteThepmfofYtakesonagivenvalue,sayyj,isSupposether.v.xhastheprobabilitydistributionbelowExample2.17xi012345P(xi)p(0)
p(1)p(2)p(3)p(4)p(5)LetY=(X-2)2,Findthepmfofther.v.Y.692.7FunctionsofRandomVariab70Supposether.v.xhastheprobabilitydistributionbelowExample2.17xi012345P(xi)p(0)
p(1)p(2)p(3)p(4)p(5)LetY=(X-2)2,Findthepmfofther.v.Y.Solution:01
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- AI动画制作软件在小学美术绘本教学中的创新实践课题报告教学研究课题报告
- 2026年亚东县住建局关于招聘项目专业技术人员的备考题库含答案详解
- 2026年扬州市公安局面向社会公开招聘警务辅助人员备考题库带答案详解
- 2026年“环境友好高分子材料教育部工程研究中心(四川大学)”主任招聘备考题库及参考答案详解1套
- 2026年空天材料轻量化制造报告及未来五至十年航天科技报告
- 2025年度吉林省公安机关考试录用特殊职位公务员(人民警察)备考题库及参考答案详解一套
- 烤烟收购安全知识培训课件
- 2026年宁波市鄞州区横溪镇人民政府招聘编外人员备考题库完整答案详解
- 2026年中国科学院深海科学与工程研究所招聘备考题库完整答案详解
- 2026年生物识别门禁系统创新报告及未来五至十年智慧安防发展报告
- 农村个人土地承包合同模板
- 2025届北京市海淀区一零一中学数学七年级第一学期期末综合测试模拟试题含解析
- 初中道德与法治课中提升学生政治认同素养的策略研究
- 糖尿病的急救和护理
- 中医养生的吃野山参粉养生法
- 小学道德与法治-认识居民身份证教学课件设计
- 采购灭火器施工方案
- 小学生古诗词大赛备考题库(300题)
- 国家开放大学最新《监督学》形考任务(1-4)试题解析和答案
- GB/T 25085.3-2020道路车辆汽车电缆第3部分:交流30 V或直流60 V单芯铜导体电缆的尺寸和要求
- GB/T 242-2007金属管扩口试验方法
评论
0/150
提交评论