BETBJHHKTPLOT催化剂比表面积_第1页
BETBJHHKTPLOT催化剂比表面积_第2页
BETBJHHKTPLOT催化剂比表面积_第3页
BETBJHHKTPLOT催化剂比表面积_第4页
BETBJHHKTPLOT催化剂比表面积_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1物理吸附理论简单介绍

1.1.1吸附现象及其描述吸附现象:

吸附作用指的是一种物质的原子或分子附着在另一种物质表面上的过程-----物质在界面上变浓的过程。界面上的分子与相里面的分子所受的作用力不同而引起的。*气-固接触面来说,由于固体表面分子受力不均衡,就产生一个剩余力场,这样就对气体分子产生吸附作用。*吸附的分子仍是在不断运动的(例如振动)。*气体分子能克服固体表面的引力,会离开表面造成脱附。*吸附与脱附之间可以建立动态平衡.第一页第二页,共56页。吸附剂:具有吸附能力的固体物质.吸附质:被吸附剂所吸附的物质,(如氮气).

通常采用氮气,氩气或氧气为吸附质进行多孔物的比表面,孔体积,孔径的大小和分布的测定.也可通过完整的吸附脱附曲线计算出介孔部分和微孔部分的体积和表面积等.吸附平衡等温线:以压力为横坐标,恒温条件下吸附质在吸附剂上的吸附量为纵坐标的曲线.

通常用比压(相对压力)p/p0表示压力,p

为气体的真实压力,p0为气体在测量温度下的饱和蒸汽压.第二页第三页,共56页。▀物理吸附*物理吸附是吸附质分子靠范德华力(分子引力)在吸附剂表面上吸附,它类似于蒸汽的凝聚和气体的液化。*表面上剩余力场是表面原子配位不饱和造成的,作用力较弱,致使物理吸附分子的结构变化不大,接近于原气体或液体中分子的状态。*物理吸附由于是范氏力起作用,而范氏力在同类或不同类的任何分子间都存在,所以是非专一性的,在表面上可吸附多层。第三页第四页,共56页。▀化学吸附*化学吸附类似于化学反应,吸附质分子与吸附剂表面原子间形成吸附化学键。*被化学吸附的分子与原吸附质分子相比,由于吸附键的强烈影响,结构变化较大。*由于化学吸附同化学反应一样只能在特定的吸附剂-吸附质之间进行所以具有专一性,并且在表面只能吸附一层。第四页第五页,共56页。比表面(specificsurfacearea)与分散度▀比表面--通常用来表示物质分散的程度,有两种常用的表示方法:

1)一种是单位质量的固体所具有的表面积;

2)另一种是单位体积固体所具有的表面积。▀分散度--把物质分散成细小微粒的程度称为分散度。物质分割得越小,分散度越高,比表面也越大。W和V分别为固体的质量和体积,S为其表面积第五页第六页,共56页。把边长为1cm的立方体逐渐分割成小立方体的情况:边长l/m立方体数比表面S/(m2/m3)1×10-216×102

1×10-31036×103

1×10-51096×105

1×10-710156×107

1×10-910216×109

从表上可以看出,当将边长为10-2m的立方体分割成10-9m的小立方体时,比表面增长了一千万倍。可见达到nm级的超细微粒具有巨大的比表面积,因而具有许多独特的表面效应,成为新材料和多相催化方面的研究热点。比表面(specificsurfacearea)与分散度第六页第七页,共56页。吸附现象及其描述吸附量表示方法*在一定条件下,单位重量的固体吸附剂所吸附的吸附质的量或体积(一般换算成标准状态STP)吸附现象描述在测定吸附量过程中发现,吸附剂吸附一种气体吸附质时,其吸附量(α)

α=f(T,p)(1-1)T=常数α=f(p)称吸附等温线(1-2)

p=常数α=f(T)称吸附等压线(1-3)

α=常数p=f(T)称吸附等量线(1-4)第七页第八页,共56页。吸附现象及其描述吸附等温线形式*假设温度控制在气体临界温度下,

α=f(p/p0)(1-5)式中p0--吸附质饱和蒸汽压*气体吸附量普遍采用的是以换算到标准状态(STP)时的气体体积容量(cm3或ml)表示,于是方程(1-5)改写为:

v=f(p/p0)(1-6)第八页第九页,共56页。

Brunauer分类的五种等温线类型Ⅰ、Ⅱ、Ⅳ型曲线是凸形Ⅲ、Ⅴ型是凹形第九页第十页,共56页。Ⅰ型等温线相当于朗格谬尔单层可逆吸附过程。Ⅱ型等温线相当于发生在非孔或大孔固体上自由的单一多层可逆吸附过程,位于p/p0=0.05-0.10的B点,是等温线的第一个陡峭部,它表示单分子层饱和吸附量。Ⅲ型等温线不出现B点,表示吸附剂与吸附质之间的作用很弱.相对压力p/p0吸附量ν第十页第十一页,共56页。Ⅳ型等温线是一种特殊类型的等温线,反应的是固体均匀表面上谐式多层吸附的结果。(有毛细凝聚现象发生)Ⅴ型等温线很少遇到,而且难以解释,虽然反映了吸附质与吸附剂之间作用微弱的Ⅲ型等温线特点,但在高压区又表现出有孔充填(毛细凝聚现象)。第十一页第十二页,共56页。

Ⅳ型、Ⅴ型曲线则有吸附滞后环的可能原因

吸附时有孔壁的多分子层吸附和在孔中凝聚两种因素产生,而脱附仅由毛细管凝聚所引起。这就是说,吸附时首先发生多分子层吸附,只有当孔壁上的吸附层达到足够厚度时才能发生凝聚现象;而在与吸附相同的p/p0比压下脱附时,仅发生在毛细管中的液面上的蒸汽,却不能使p/p0下吸附的分子脱附,要使其脱附,就需要更小的p/p0

,故出现脱附的滞后现象,实际就是相同p/p0下吸附的不可逆性造成的。第十二页第十三页,共56页。吸附等温方程

吸附现象的描述除用上述的等温线外,有些吸附现象可以用数学方程来描述。描述吸附现象比较重要的数学方程有:朗格谬尔(Langmuir)等温方程

BET吸附等温方程弗朗得利希(Freundich)等温方程焦姆金(Temkin)等温方程第十三页第十四页,共56页。单分子层吸附等温方程

——朗格谬尔(Langmuir)等温方程模型的基本假定:吸附表面在能量上是均匀的,即各吸附位具有相同的能量;被吸附分子间的作用力可略去不计;属单层吸附,且每个吸附位吸附一个质点;吸附是可逆的。用θ表示覆盖度,即吸附剂表面被气体分子覆盖的分数,未被覆盖分数应为(1-θ),则吸附速率=kap(1-θ)(1-7)

脱附速率=kdθ(1-8)

第十四页第十五页,共56页。单分子层吸附等温方程

——朗格谬尔(Langmuir)等温方程当达到动态平衡时,

(1-9)(1-10)

其中式中:p――吸附质蒸气吸附平衡时的压力;ka,kd――分别为吸附和脱附速率常数;K——该吸附过程的吸附系数,即吸附平衡的平衡常数;K0——指数表达式的指前因子,近似认为与温度无关。第十五页第十六页,共56页。单分子层吸附等温方程

——朗格谬尔(Langmuir)等温方程如果用v(STP,ml/g)表示吸附量,vm(STP,ml/g)表示单分子层饱和吸附量,则,式(1-10)化简得:

(1-11)

式(1-10)与式(1-11)都称为朗格谬尔吸附等温式,他们在用v对p作图时的形状与Ⅰ型吸附等温线相同。实际上,分子筛或只含微孔的活性炭吸附蒸汽时的吸附等温线就是Ⅰ型的,因此Ⅰ型又称为朗格谬尔吸附等温线。式(1-11)在用p/v对p作图时是一条直线,其斜率为1/vm,截距为1/(vmK),由此可以求出单分子层饱和吸附量vm。第十六页第十七页,共56页。多分子层吸附等温方程

——BET吸附等温式

单分子层吸附等温方程无法描述除Ⅰ型等温线以外的其他等温线。为了解决这个困难,布朗诺尔(Brunauer)、埃米特(Emmett)和泰勒(Teller)提出了多分子层吸附模型,并且建立了相应的吸附等温方程,通常称为BET等温方程。BET模型假定:吸附表面在能量上是均匀的,即各吸附位具有相同的能量;被吸附分子间的作用力可略去不计;固体吸附剂对吸附质——气体的吸附可以是多层的,第一层未饱和吸附时就可由第二层、第三层等开始吸附,因此各吸附层之间存在着动态平衡;自第二层开始至第n层(n→∞),各层的吸附热都等于吸附质的液化热。第十七页第十八页,共56页。多分子层吸附等温方程

——BET吸附等温式按照朗格谬尔吸附等温方程的推导方法同样可得到BET吸附等温方程:(1-12)式中p0――吸附温度下吸附质的饱和蒸汽压;

vm——单分子层饱和吸附量;

C——BET方程C常数,其值为exp{(E1-E2)/RT},

E1为第一吸附层的吸附热。由式(1-12)可见,当物理吸附的实验数据按p/v(p0-p)与p/p0作图时应得到一条直线。直线的斜率m=(C-1)/(vmC),在纵轴上的截距为b=1/(vmC),所以

(1-13)(1-14)第十八页第十九页,共56页。根据直线的斜率和截距,可求出形成单分子层的吸附量Vm=1/(斜率+截距)和常数C=斜率/截距+1.以P/V(P0-P)对P/P0作图,得一直线5第十九页第二十页,共56页。1.2表面积计算

常用的计算方法有:

BET法

B点法经验作图法其它方法第二十页第二十一页,共56页。1.2.1BET法BET吸附等温方程(1-12)――――单层饱和吸附量vm:

(1-13)

设每一个吸附分子的平均截面积为Am(nm2),此Am就是该吸附分子在吸附剂表面上占据的表面积:

(1-14)式中NA——阿伏伽德罗常数(6.02x1023)。第二十一页第二十二页,共56页。1.2.1BET法*埃米特和布郎诺尔曾经提出77K(-195℃)时液态六方密堆积的氮分子横截面积取0.162nm2,将它代入式(1-14)后,简化得到BET氮吸附法比表面积的常见公式:

(1-15)*实验结果表明,多数催化剂的吸附实验数据按BET作图时的直线范围一般是在p/p00.05-0.35之间。*C常数与吸附质和表面之间作用力场的强弱有关。给定不同的C值,并以v/vm对p/p0作图,就得到下图的一组曲线。第二十二页第二十三页,共56页。常数c作参数,以吸附重量或吸附体积(W/Wm或V/Vm)对x=P/P0作图。a)c﹥2,II型吸附等温线;b)c﹤2,III型吸附等温线BET公式适用比压范围:0.05≤x≤0.356第二十三页第二十四页,共56页。1.2.1BET法*随C值的增加,吸附等温曲线由Ⅲ型变为Ⅱ型,曲线在v/vm=1处的弯曲越来越接近直角。这反映了第一吸附层和其它吸附层之间吸附力场的差异越来越大。*当C值很大时,就可以由实验数据确定vm的值。在C值比较小时,尽管也可以由BET公式计算得到vm的值,但此时由于实验数据的微小变动就能引起vm值较大变化。从图形上看,随着曲线弯曲趋于平缓而不明显,vm不确切增大。当C值接近于1时,甚至根本无法求算vm的值。第二十四页第二十五页,共56页。一点法氮吸附时C常数通常都在50~200之间,由于C常数较大,所以在BET作图时的截距1/(vmC)很小,在比较粗略的计算中可以忽略,即可以把p/p0在0.20~0.25左右的一个实验点和原点相连,由它的斜率的倒数计算vm值,通常称为一点法或单点法。只有当C值>>1的前提下,二者误差一般在10%以内。多点法相对于一点法来说,常规BET作图测定比表面要进行多个实验点(一般取五点)测量,因此又称多点法。第二十五页第二十六页,共56页。1.2.2B点法埃米特和布郎诺尔将Ⅱ型等温线和Ⅳ型等温线上的第二段直线部分起始的扭转点称为B点。当C值很大时(C值大于100,B点容易确定;C<80时,vm与vB近似相等;),B点相应的吸附量vB可以当作饱和吸附量,因此可由吸附等温线上的B点直接确定vm,通过式(1-14)计算比表面Sg,这种方法称为B点法。

第二十六页第二十七页,共56页。1.2.3经验作图法(t-图法)德.博尔(DeBoer)建立起来的v-t作图法对于固体表面上无阻碍地形成多分子层的物理吸附,BET理论给出吸附层数:

(1-16)C为常数时,则可改写为:

(1-17)第二十七页第二十八页,共56页。1.2.3经验作图法

令单层的厚度为tm(nm),则吸附层厚度t(nm)由下式给出:

(1-18)

Fc(p/p0)表达了吸附层厚度随p/p0而改变的函数关系。对于77.4K时固体表面上的氮吸附来说,C值虽然不可能在各种样品上都相等,但受C变动的影响并不大,已由德.博尔等人从实验上求得(称为氮吸附的公共曲线)。第二十八页第二十九页,共56页。T图法计算微孔分子筛的总表面积和微孔体积采用标准化的v—t图法(1)根据氮吸附数据计算i=1,2,…,n各点的t值;第二十九页第三十页,共56页。0.975是氧化物类催化剂的适用因子,t面积可被视为催化剂基质(非微孔部分)表面积;(3)计算BET表面积;其中Vm是单分子层吸附量,根据P/V(P0-P)-P/P0作图得到的截距求得(2)根据得到的t图求出斜率St(外表面积)和截距It(孔体积),并计算t面积,第三十页第三十一页,共56页。(4)计算分子筛表面积(微孔表面积)和微孔体积,分子筛表面积=BET表面积-t面积微孔体积=1.547×10-3×It.第三十一页第三十二页,共56页。典型多孔固体的v—t曲线图1图2图3图4截距:孔体积It斜率:外表面积St第三十二页第三十三页,共56页。1.3微孔结构分析微孔充填率θ:在单一吸附质体系,吸附势作用下,吸附剂被吸附质充占的体积分数是吸附体积V与极限吸附体积V0之比,定义为微孔充填率θ.

式中β是亲和系数,(对于苯为1);n为系数,(活性炭-苯体系的n为2);k为特征常数

A为固体表面吸附势Dubinin-Radushkevich(D-R)方程:1)D-R方程第三十三页第三十四页,共56页。D-R方程的对数表达式作lgV-[lg(p0/p)]2图,得截距lgV0,可计算出微孔体积V0作lgV-[lg(p0/p)]2图,得截距lgVm,可经过Vm计算出微孔表面积,相对压力p/p0一般小于10-2Kaganer对D-R方程改进a.微孔表面积的计算第三十四页第三十五页,共56页。b.吸附能与平均孔宽的计算苯作为参比吸附质时:吸附能:平均孔宽:式中:

M,Mref分别为吸附质和参比吸附质的相对分子量;

ρ,ρref分别为吸附质和参比吸附质在吸附温度T时的液体密度;

k为D-R图的斜率.第三十五页第三十六页,共56页。例:活性炭的氮吸附等温线、吸附势分布和微孔体积分布ColloidandSurfaceA,1996,118:203第三十六页第三十七页,共56页。2)Horvaih-Kawazoe(H-K)方程a.H-K原方程:假设:①依照吸附压力大于或小于对应的孔尺寸的一定值,微孔完全充满或完全倒空;②吸附相表现为二维理想气体.适合狭缝孔模型:第三十七页第三十八页,共56页。b.H-K-S-F方程c.H-K球形孔展开式第三十八页第三十九页,共56页。d.H-K改进式Nav-----阿伏伽德罗常数;Na,NA----单位吸附质面积和单位吸附剂面积的分子数;Aa,AA----吸附质和吸附剂的Lennard-Jones势常数;σ----气体原子与零相互作用能处表面的核间距;L----狭缝孔两平面层的核间距;d0----吸附质和吸附剂原子直径算术平均值.适用于狭缝孔、圆柱孔、球形孔第三十九页第四十页,共56页。例:H-K方法计算微孔分布比较第四十页第四十一页,共56页。八面沸石分子筛微孔分布第四十一页第四十二页,共56页。采用分子统计热力学方程,关联等温线与吸附质-吸附剂系统的微观性质。DFT理论基于Tarazona状态方程的解,得到多孔体吸附等温线,用于孔结构分析。3)密度函数法(DFT)--无须任何校正第四十二页第四十三页,共56页。微孔固体吸附表征HK-DFT法H-K法和DFT法计算活性炭样品的微孔分布第四十三页第四十四页,共56页。毛细孔凝聚理论•Kelvin方程1.方程的推导液体在毛细管内会形成弯曲液面,弯曲液面的附加压力可以用Laplace方程表示(宋世谟等,物理化学)(12)

如果要描述一个曲面,一般用两个曲率半径因此,应为平均曲率半径,表示为:

球形曲面:圆柱形曲面:,1.4中孔孔结构分析第四十四页第四十五页,共56页。设一单组分体系,处于气()液()两相平衡中。此时,气液两相的化学势相等:如果给其一个微小的波动,使得体系在等温条件下,从一个平衡态变化至另一个平衡态。则根据(12)式有:

(13)(14)将(13)式带入上式得到:

因此,(14)式可以写做:

(15)第四十五页第四十六页,共56页。Kelvin方程:

2.关于Kelvin方程的几点说明:

Kelvin方程给出了发生毛细孔凝聚现象时孔尺寸与相对压力之间的定量关系。也就是说,对于具有一定尺寸的孔,只有当相对压力达到与之相应的某一特定值时,毛细孔凝聚现象才开始。而且孔越大发生凝聚所需的压力越大,当时,,表明当大平面上发生凝聚时,压力等于饱和蒸汽压。在发生毛细孔凝聚之前,孔壁上已经发生多分子层吸附,也就是说毛细凝聚是发生在吸附膜之上的,在发生毛细孔凝聚过程中,多分子层吸附还在继续进行。研究问题时,我们经常将毛细凝聚和多分子层分开讨论,这只是处理问题的一个简化手段,但并不代表这两个过程是完全分开的。(16)第四十六页第四十七页,共56页。关于Kelvin半径

(17)称为Kelvin半径,在实际应用时,为了简化问题,通常取,此时

适用范围。Kelvin方程是从热力学公式中推导出来的,对于具有分子尺度孔径的孔并不适用(不适于微孔)。对于大孔来说,由于孔径较大,发生毛细孔凝聚时的压力十分接近饱和蒸汽压,在实验中很难测出。因此,Kelvin方程在处理中孔凝聚时是最有效的。

第四十七页第四十八页,共56页。3.Kelvin方程对Ⅳ和Ⅴ型等温线的解释:临界温度以下,气体在中孔吸附剂上发生吸附时,首先形成单分子吸附层,对应图中的AB段,当单分子层吸附接近饱和时(达到B点),开始发生多分子层的吸附,从A点到C点,由于只发生了多分子层吸附,都可以用BET方程描述。当相对压力达到与发生毛细凝聚的Kelvin半径所对应的某一特定值,开始发生毛细孔凝聚。如果吸附剂的孔分布比较窄(中孔的大小比较均一),CD段就会比较陡,如果孔分布比较宽,吸附量随相对压力的变化就比较缓慢如CD‘段。当孔全部被填满时,吸附达到饱和,为DE段。对于Ⅳ和Ⅴ型等温线的区别,可以参考Ⅱ和Ⅲ型等温线。当吸附剂与吸附质之间的作用比较弱时,就会出现Ⅴ型等温线。第四十八页第四十九页,共56页。发生毛细孔凝聚时孔尺寸与相对压力的关系(77KN2吸附)(Do

DD,1998)

r(nm)p(tor)p/p01251020252974756306917257320.3910.6250.8290.9090.9540.963第四十九页第五十页,共56页。4.吸附滞后现象吸附脱附曲线存在回线是Ⅳ型等温线的显著特征。以一端封闭的圆筒孔和两端开口的圆筒孔为例()

对于一端封闭的圆筒孔,发生凝聚和蒸发时,气液界面都是球形曲面,,无论是凝聚还是蒸发相对压力都可以表示为:,因此吸附和脱附分支之间没有回线

对于两端开口的圆筒孔,发生毛细孔凝聚时,气液界面是圆柱形,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论