2023大语言模型和未来工作_第1页
2023大语言模型和未来工作_第2页
2023大语言模型和未来工作_第3页
2023大语言模型和未来工作_第4页
2023大语言模型和未来工作_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IncollaborationwithAccenture

JobsofTomorrow:LargeLanguageModelsandJobs

WHITE PAPER

SEPTEMBER 2023

Images:GettyImages

Contents

Foreword 3

Executivesummary 4

Introduction:Howwilllargelanguagemodelsimpact 5

thejobsoftomorrow?

Identifyingexposurepotentialoftasksandjobs 7

Exposedtasks 7

Detailedexamplesofexposedjobs 9

Analysisbyoccupation 10

Analysisbyindustry 14

Analysisbyfunction 16

LLMsandthegrowthanddeclineofjobsandtasks 17

Expectedgrowthanddeclineoftasks 17

Expectedgrowthanddeclineofjobs 17

Conclusion:Ensuringthatlargelanguagemodelsworkforworkers 19

Appendices 20

A1Exposurepotentialbyindustrygroups 20

A2Exposurepotentialbyfunctiongroups 28

A3Methodology 30

Contributors 32

Endnotes 33

Disclaimer

Thisdocumentispublishedbythe

WorldEconomicForumasacontributiontoaproject,insightareaorinteraction.Thefindings,interpretationsandconclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedandendorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarily

representtheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,Partnersorotherstakeholders.

©2023WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformationstorageandretrievalsystem.

JobsofTomorrow:LargeLanguageModelsandJobs 2

Executivesummary

Asadvancesingenerativeartificialintelligence(AI)continueatanunprecedentedpace,largelanguagemodels(LLMs)areemergingastransformativetoolswiththepotentialtoredefinethejoblandscape.Therecentadvancementsinthesetools,likeGitHub’sCopilot,MidjourneyandChatGPT,areexpected

tocausesignificantshiftsinglobaleconomiesandlabourmarkets.Theseparticulartechnologicaladvancementscoincidewithaperiodofconsiderablelabourmarketupheavalfromeconomic,geopolitical,greentransitionandtechnologicalforces.The

WorldEconomicForum’s

FutureofJobsReport

2023

predictsthat23%ofglobaljobswillchangeinthenextfiveyearsduetoindustrytransformation,

includingthroughartificialintelligenceandothertext,imageandvoiceprocessingtechnologies.

Thiswhitepaperprovidesastructuredanalysisofthepotentialdirect,near-termimpactsofLLMsonjobs.With62%oftotalworktimeinvolvinglanguage-basedtasks,1thewidespreadadoptionofLLMs,suchasChatGPT,couldsignificantlyimpactabroadspectrumofjobroles.

ToassesstheimpactofLLMsonjobs,thispaperprovidesananalysisofover19,000individualtasksacross867occupations,assessingthepotentialexposureofeachtasktoLLMadoption,classifyingthemastasksthathavehighpotential

forautomation,highpotentialforaugmentation,lowpotentialforeitherorareunaffected(non-languagetasks).ThepaperalsoprovidesanoverviewofnewrolesthatareemergingduetotheadoptionofLLMs.

Thelonger-termimpactsofthesetechnologiesinreshapingindustriesandbusinessmodelsare

beyondthescopeofthispaper,butthestructuredapproachproposedherecanbeappliedtootherareasoftechnologicalchangeandtheirimpactontasksandjobs.

TheanalysisrevealsthattaskswiththehighestpotentialforautomationbyLLMstendtoberoutineandrepetitive,whilethosewiththehighestpotentialforaugmentationrequireabstractreasoningandproblem-solvingskills.Taskswithlowerpotential

forexposurerequireahighdegreeofpersonalinteractionandcollaboration.

ThejobsrankinghighestforpotentialautomationareCreditAuthorizers,CheckersandClerks(81%ofworktimecouldbeautomated),ManagementAnalysts(70%),Telemarketers(68%),Statistical

Assistants(61%),andTellers(60%).

Jobswiththehighestpotentialfortaskaugmentationemphasizemathematicalandscientificanalysis,suchasInsuranceUnderwriters(100%ofworktimepotentiallyaugmented),BioengineersandBiomedical

Engineers(84%),Mathematicians(80%),and

Editors(72%).

Jobswithlowerpotentialforautomationoraugmentationarejobsthatareexpectedto

remainlargelyunchanged,suchasEducational,Guidance,andCareerCounsellorsandAdvisers(84%oftimespentonlowexposuretasks),Clergy(84%),ParalegalsandLegalAssistants(83%),andHomeHealthAides(75%).

Inadditiontoreshapingexistingjobs,

theadoptionofLLMsislikelytocreatenewroleswithinthecategoriesofAIDevelopers,InterfaceandInteractionDesigners,AIContentCreators,DataCurators,andAIEthicsandGovernanceSpecialists.

Anindustryanalysisisdonebyaggregatingpotentialexposurelevelsofjobstotheindustrylevel,notingthatjobsmayexistinmorethanoneindustry.Resultsrevealthattheindustrieswiththehighestestimatesoftotalpotentialexposure(automationplusaugmentationmeasures)arebothsegmentsoffinancialservices:financialservicesandcapitalmarketsandinsuranceandpensionmanagement.Thisisfollowedbyinformationtechnologyanddigitalcommunications,andthenmedia,entertainmentandsports.Additionallistsofjobsrankedbyhighestexposurepotentialforeachmajorindustrycategoryarecompiledintheappendix.

Similarly,afunctiongroupanalysisrevealsthatthetwothematicareaswiththegreatest

totalpotentialexposuretoLLMsareinformationtechnology,with73%ofworkinghoursexposed,andfinance,with70%ofworkinghoursexposed.Aswiththeindustrygroups,additionallistsofjobsrankedbyhighestexposurepotentialforeachfunctiongroup

arecompiledintheAppendices.

ThesenewfindingsconnectdirectlytoearlierworkdonebytheCentrefortheNewEconomyandSocietyinthe

FutureofJobsReport2023

.ManyofthejobsfoundtohavehighpotentialforautomationbyLLMswerealsoexpected

bybusinessleaderstoundergoemploymentdeclinewithinthenextfiveyears,suchasbanktellersandrelatedclerks,dataentryclerks,andadministrativeandexecutivesecretaries.Meanwhile,jobswithhighpotentialforaugmentationareexpectedtogrow,suchasAIandMachineLearningSpecialists,DataAnalystsandScientists,andDatabaseandNetworkProfessionals.Together,thesetwo

publicationsidentifyandreaffirmsalientthemesintheconnectionbetweentechnologicalchangeandlabourmarkettransformation.

ThefindingsofthisreportshedlightonhowimplementingLLMscouldalterthelandscapeofjobs,providingvaluableinsightsforpolicy-makers,educatorsandbusinessleaders.Ratherthanleadingtojobdisplacement,LLMsmayusherinaperiodoftask-basedtransformationofoccupations,requiringproactivestrategiestopreparetheworkforceforthesejobsoftomorrow.

JobsofTomorrow:LargeLanguageModelsandJobs 4

Introduction:Howwilllargelanguagemodelsimpactthejobsoftomorrow?

Languagecapabilitiesoverlapsubstantiallywithtasksperformedonthejob,

withestimatessuggestingthatupto62%ofworktime

involveslanguage-basedtasks.

Labourmarketsareundergoingrapidtransformationfromthetrajectoryofgrowth,geoeconomics,sustainabilityandtechnology.TheFutureofJobsReport2023foundthatbusinessleadersexpect23%ofglobaljobstochangeinthenextfiveyears.2Inparticular,generativeartificialintelligence(AI)

hasundergoneaprofoundleapincapabilities,embodiedinproductssuchasGitHub’sCopilotforprogramming,MidjourneyforimagegenerationandChatGPTasauniversallanguageassistant.TheFutureofJobsReport2023alsofoundthatAIandtext,imageandvoiceprocessingtechnologiesmoregenerallyaretopofmindforbusinesses.Thereportfoundthat75%ofsurveyrespondentsreporthavingplanstoadoptAIintheirorganization’soperations,and62%reporthavingplanstoadopttext,imageandvoiceprocessingtechnologies.3Thishasraisedquestionsabouthowthisnewtechnologywillaffectorganizationsandlabourmarketsaroundtheworld.

Thiswhitepaperexaminesthepotentialnear-term,directimpactonjobsofaparticulartypeof

generativeAI,largelanguagemodels(LLMs),whichhavebeenhighlyvisibleinpublicdebateoverthepastyearduetotheirhuman-likeabilitytocreateandunderstandlanguage.AsLLMserviceshaveexplodedinpopularity,withfreeservicessuchasChatGPTreachingasmanyas100millionactiveuserswithinthefirsttwomonthsofitsdebut,4

thecapabilitiesofthesemodels,pairedwiththeiraccessibilityandrapidadoptionrate,suggestthatmanyworktasks–andjobsthatemphasizethem–couldbeimpactedbytheuseofLLMsintheyearstocome.Bysomeestimates,upto62%ofworktimeinvolveslanguage-basedtasks.5Yet,artificialintelligenceandtext,imageandvoiceprocessingtechnologiesalsohavethepotentialtoaugmentworkandcreatenewjobs.Inaddition,manyrolesremainwhollyunaffectedbythesedevelopments.

Rapidtechnologicalchangeoftengeneratesanticipationregardingitseffectsondailylife,particularlyjobs.Intheaggregate,previousinnovationshaveledtomoreemploymentopportunities,better-qualityjobsandahigherqualityoflife,buttheyalsocreatedisruptionanddisplacement.6Thispaperaimstosupportthedetailedanalysisrequiredtotakeaclear-eyedviewaroundimpact,opportunityandpreparation.

GenerativeAI,LLMsandlanguagetasks

ThenewestformsofgroundbreakinggenerativeAImodelsarecreatedviadeeplearning,whichistheprocessoftrainingfoundationmodelsonverylargesetsofdata.Thesefoundationmodelsaretypicallycreatedintheformofaneuralnetwork,whosestructureisinspiredbythearrangementofneuronsinthehumanbrain.Largefoundationmodelsaretrainedonvastamountsofdataandhaveseeminglysuper-humanlevelsofpredictivecapacity,whichcanbeharnessedbyproducingtextorimagesinresponsetoawrittenprompt.7

Sofar,generativeAImodelshavebeenconfiguredintoavarietyofdifferenttoolstoservedifferentcontexts,suchasimage,audioorvideo

creation,identifyingfinancialfraudandothersecurityrisks,andahostofgenerallanguagecapabilities,includingtheabilitytogeneratenatural,mathematicalandcomputationallanguage.WhilethereisabroadrangeofimplementationsofgenerativeAI,thisstudywillfocusonLLMsandtheiruniquelanguage-generatingcapabilities,asthesemodelshavethegreatestpotentialtoimpactthelargestnumberofjobsinthenearterm.

LLMscanperformabroadspectrumoflanguagetasks,usuallyinresponsetoasimpleuserprompt,onnearlyanytopic:

LLMscanreformulateandprovidedetailedfeedbackonaprovidedsetoftext,includingsummarizingit,translatingittoanotherlanguage,proofreadingit,discussingitsstyleortoneofvoiceandevenrewritingitinadifferentstyleortoneofvoice.

LLMscanalsogeneratenewtextandprovidesomedegreeofexpertiseontopicspresentintheLLM’strainingdata,suchasintheformofaliteraturerevieworcompletingatasktypicallydonebyaresearchassistant.8

Asprogramminglanguagesaretext,LLMscanserveasprogrammingassistants.

ImplementationslikeGitHub’sCopilothavebeenshowntoincreaseprogrammerproductivityby56%.9

JobsofTomorrow:LargeLanguageModelsandJobs 5

ByintegratingLLMswithothersystems,thesecapabilitiescanbeextendedtoagreaterrangeofabstracttasks,suchasschedulingmeetings,placingorders,respondingtoemails,orprovidingresearchonaparticulartopic.

GiventhelargeoverlapbetweenLLMcapabilitiesandcurrentjobtasks,howwillintroducingLLMsintotheworkplacechangejobs?Whichpartsofajobwillbeimpactedthemost,andwhichjobswillbeimpactedmost?Finally,withtheintroductionofthesenewtechnologies,whichnewjobscanbeexpectedtoarise?

Atask-basedapproachtojobexposure

Toanswerthesequestions,themethodsdeployedinthiswhitepaperassessthepotentialexposureoflanguage-basedjobtaskstotheabilityofLLMstoperformthesetasks.TheapproachistofirstthinkofajobasconsistingofmanydifferenttasksandthenassesshoweachtaskmaybeaffectedbyLLMs.Themagnitudeofimpactonajobultimatelydependsonthedegreeoflanguage-basedskillsrequiredforspecifictasksinthatjobandthetimespentonthosetasks.Language-dependent,standardized,routineandprocess-orientedtasksareprimecandidatesforautomationandreplacementbyLLMs.Atthesametime,thoserequiringagreaterdegreeofhumaninteraction

aremorelikelytobeaugmentedandperformedincollaborationwithLLMs.

lessonsandclasses(27%).10SoftwareDeveloperscouldturntoLLMstogeneratestandardizedblocksofcodewithclearfunctionalparameters,speedingupthedevelopmentprocessandallowingformoretimetobespentonhigh-levelarchitecturaltasks.

SoftwareDevelopersalsoperformmanytaskswithhighpotentialforautomation,suggestingthatmanyjobswillbetransformedratherthanautomated

oraugmented.

TheresearchmethodsemployedinthispaperaimtoidentifywhichtaskswillbeexposedtoLLMsandhowtheywillbeimpacted:whethertheyhavethepotentialtobeautomatedandreplacedbyLLMsoraugmentedandenhancedbyLLMs.DataforanalysiscomesfromO*NETandtheUnitedStates

BureauofLaborStatistics(BLS),whichcharacterizes867jobswithrespecttoover19,000individualtasks.Usingbothmachinelearningandmanualmethods,jobtasksareindividuallyratedwithrespecttotheirpotentialexposuretotheadoptionofLLMs,therebyclassifyingthemintooneoffourcategories:

Highpotentialforautomation:Goingforward,

thetaskwillbeperformedbyLLMs,nothumans.

Highpotentialforaugmentation:Humanswillcontinuetoperformthetask,andLLMswillincreasehumanproductivity.

Lowpotentialforautomationoraugmentation:HumanswillcontinuetoperformthetaskwithnosignificantimpactfromLLMs.

Unaffected(i.e.non-languagetasks).

ThreeintenteachershavealreadyusedChatGPTforlessonplanning(30%),generatingcreativeideasforclasses(30%)andbuildingbackgroundknowledgeforlessonsandclasses(27%).

Forexample,somejobtasksareroutineandpredictableandareperformedbypeopleworkingindividually,suchasclerksandadministrators,whichinvolvesreadingandenteringdata,cross-referencingrecordsbetweendifferentdatabasesandreviewingtransactions.Thesetasksaremorelikelytobeexposedtoandultimatelyautomatedbythe

introductionofLLMs,implyingthattheywillnolongerbeperformedbyhumans.Theoutcomeisthatjobsemphasizingthesetaskswilleithertransformtotakeonnon-automatabletasksorgointodecline.Otherjobtasksrequireagreatdealofabstractreasoning,creativityandproblem-solving.Whilelanguage

tasksmaynotbetheirprimaryproduct,theymayrelyheavilyonlanguageandcommunication.Forexample,MathematiciansandEditorsrelyheavilyuponlanguage,yetneedtoincorporatecreativeinsightsfromtheirfieldsofexpertise.Similarly,SoftwareDevelopersworkalotwithcomputerlanguagesbutalsoneedtograspcomplexsystemsatvariouslevelsofabstractiontocreateafinishedsoftwareproduct.WorkersinthesejobswouldnothavetheirtasksreplacedbyLLMs;rather,LLMswouldsuperchargetheirabilitytocompletethesetasks.Teachers,forexample,couldrelyonLLMsforassistanceinlessonplanningandcorrectingstudentwork.AccordingtoonestudyintheUS,threein

tenteachershavealreadyusedChatGPTforlessonplanning(30%),generatingcreativeideasforclasses(30%)andbuildingbackgroundknowledgefor

Jobtasksarethenmappedtotheoccupationsinwhichtheyaredeployedalongwithashareoftimespentoneachtask,andwithbothofthesemetrics,ameasureofpotentialexposuretoLLMsiscreatedattheoccupationlevel.

Chapter1ofthispaperpresentstheseresultsfortasksandjobsindetail,usingthedetailedoccupationslistfromtheStandardOccupationSystem(SOC)fromtheUSBureauofLaborStatistics,thehighestresolutionlistavailable,featuring867occupationtitles.11Thischapteralsoprovidesanalysisofthedifferencesbetweenindustriesandfunctionsintermsoftheexpected

impactofLLMsonjobs.Inchapter2,thesedetailedoccupationsareaggregatedandmappedtotheoccupationclassificationsystemusedintheFutureofJobsSurvey2022todirectlyconnectresultsonexposureofjobstoLLMstosurveyresultsofglobalbusinessleadersonthepotentialforgrowthordeclineofspecificjobs,andtheforcesunderlyingthesetrends,ascoveredingreaterdetailintheFutureofJobsReport2023.

JobsofTomorrow:LargeLanguageModelsandJobs 6

Identifyingexposurepotentialoftasksandjobs

LLMsholdtransformativepotentialandaresettosignificantlyreshapethefutureemploymentlandscape.

ThischapteroutlinestaskexposuretoLLMs,providingdeeperanalysisontwojobshighlylikelytobeimpacted,andranksjobsbytheirautomationandaugmentationpotential.ItalsoidentifiesemergingjobsduetoLLMadoptionandsummarizesexposurerisksbyindustryandjobfunction.

Exposedtasks

Thetaskswiththehighestpotentialforaugmentationrequiremore

abstractreasoningskills,especiallythosethatcombineinteraction

withpeople.

Apreliminaryanalysisrevealswhichtaskshavethehighestpotentialforautomationoraugmentationandwhichhavelowerornopotential(seeTable1).ThetaskswiththehighestpotentialforautomationbyanLLMtendtobemoreroutine,suchasperformingadministrativeorclericalactivities,andsometasksthatrelatetoelementaryanalysis,suchasdesigningdatabasesoranalysingdata.Thetaskswiththehighestpotentialforaugmentationrequiremoreabstractreasoningskills,especiallythosethatcombineinteractionwithpeople.Atthetopofthelistisevaluatingpersonnelcapabilities

orperformance,suchasinthecontextoftheresponsibilitiesofahumanresourcesprofessional,followedbycollectingdataaboutconsumerneedsoropinions.Forthelatter,whilerunningasurvey,forexample,couldbeahighlyautomatedprocess

viaemailandtheinternet,thecraftingandwordingofsurveyquestionsstillrequireahighdegreeofattentionandapprovalbythepersoncollectingthedata.

Taskswithlowerpotentialforexposurerequireahighdegreeofpersonalinteractionandcollaboration,suchasnegotiationofcontracts,developmentofeducationalprogrammes,andotherscientificandtechnicalwork,thelatterof

whichalreadyemployastrongdegreeoftechnicalaugmentation.Finally,non-languagetasksare,

asexpected,thosethatemphasizephysicalmovement,suchasloadingproducts,materialsorequipmentfortransport,assemblyactivities,

agriculturalactivities,andgroomingandhairstyling.

1

JobsofTomorrow:LargeLanguageModelsandJobs 7

TABLE1

Keytasksimpacted

Level Task

Higherpotentialforautomation

Performadministrativeorclericalactivities

Designdatabases

Analysedatatoimproveoperations

Monitorexternalaffairs,trendsorevents

Obtaininformationaboutgoodsorservices

Documenttechnicaldesigns,proceduresoractivities

Higherpotentialforaugmentation

Evaluatepersonnelcapabilitiesorperformance

Collectdataaboutconsumerneedsoropinions

Readdocumentsormaterialstoinformworkprocesses

Evaluatepatientorclientconditionortreatmentoptions

Prepareinformationalorinstructionalmaterials

Testperformanceofcomputerorinformationsystems

Lowerpotentialforexposure(automationoraugmentation)

Negotiatecontractsoragreements

Advocateforindividualorcommunityneeds

Collaborateinthedevelopmentofeducationalprogrammes

Directscientificortechnicalactivities

Coordinatewithotherstoresolveproblems

Evaluatedesigns,specificationsorothertechnicaldata

Non-languagetasks

Loadproducts,materialsorequipmentfortransportorfurtherprocessing

Assembleequipmentorcomponents

Preparemixturesorsolutions

Performagriculturalactivities

Groomorstylehair

Installenergyorheatingequipment

JobsofTomorrow:LargeLanguageModelsandJobs 8

Detailedexamplesofexposedjobs

ToprovideadetailedexampleofhowthetasksinvolvedinajobdeterminehowLLMswillimpactthejob,Figure1presentsananalysisofanexposedandnon-exposedjobandthetaskexposure

ofeach.TheleftpanelofthefigureprovidesanoverviewofSoftwareDevelopers,ahighlyexposedjobintheanalysis,showinghighpotentialforbothaugmentationandautomationoftasks.Atotal

of28.7%oftimespentintheoccupationhashighpotentialforautomationbyLLMs,including

“analysedatatoimproveoperations”and“analysetheperformanceofsystemsofequipment”.Incontrast,upto43.2%oftimespentontasksintheoccupationhashighpotentialforaugmentation,including“preparinginformationalorinstructionalmaterialsandevaluatingthecharacteristics,

usefulnessorperformanceofproductsortechnologies”.

TherightpanelofFigure1providesanoverviewofHumanResourceManagers,whichisalessexposedjob.Only16.1%oftimehaspotentialforautomation,including“determineresourceneedsofprojectsoroperationsandmanagebudgets

orfinances”,and22.2%oftimehaspotentialforaugmentation,including“explainregulations,policiesorproceduresandtrainothersonoperationalorworkprocedures”.Themajorityof

tasksinvolved,totalling61.7%oftimespent,havelowerpotentialforexposure,asthesetasksinvolveworkingdirectlywithindividualsandcoordinatingandcommunicatingwithlargegroups.

FIGURE1 Exampleofanexposedandnon-exposedjob

SoftwareDevelopers(moreexposed) HumanResourceManagers(lessexposed)

28.7%

28%

43.2%

16.1%

61.7%

22.2%

Higherpotentialforautomation:

Higherpotentialforautomation:

Analysedatatoimproveoperations

Analyseperformanceofsystemsorequipment

Determineresourceneedsofprojectsoroperations

Managebudgetsorfinances

Higherpotentialforaugmentation:

Higherpotentialforaugmentation:

Prepareinformationalorinstructionalmaterials

Lowerpotentialforautomationoraugmentation:

Evaluatethecharacteristics,usefulnessorperformanceofproductsortechnologies

Explainregulations,policiesorprocedures

Trainothersonoperationalorworkprocedures

Coordinatewithotherstoresolveproblems

Communicatewithothersaboutbusinessstrategies

Interviewpeopletoobtaininformation

Coordinategroup,communityorpublicactivities

Lowerpotentialforautomationoraugmentation:

Automation Augmentation Lowerpotential Non-languagetasks

JobsofTomorrow:LargeLanguageModelsandJobs 9

Analysisbyoccupation

Jobswithpotentialforautomation

Resultsfromthetask-basedanalysisrevealthatjobswiththehighestpotentialforautomationoftasksbyLLMsemphasizeroutineandrepetitiveproceduresanddonotrequireahighdegree

ofinterpersonalcommunication.RoleswiththehighestamountofpotentiallyautomatableworktimeareCreditAuthorizers,CheckersandClerks

(81%oftime),ManagementAnalysts(70%),

Telemarketers(68%),StatisticalAssistants(61%)andTellers(60%).Jobswithhighpotentialforautomationoftenincludevariouskindsofofficeclerks,particularlythosefocusedonrecord-keepingandmanaginginformation–taskswhereLLMshavedemonstratedastrongdegreeofcompetency.Forexample,LegalSecretariesandAdministrativeAssistantsspendapproximately54%oftheirtimeontaskswithhighautomationpotential.

FIGURE2 Jobswiththehighestpotentialforautomation

Occupations

Exposure

CreditAuthorizers,CheckersandClerks

88%

81%

7%

12%

ManagementAnalysts

76%

70%

7%

24%

Telemarketers

87%

68%

18%

13%

StatisticalAssistants

74%

61%

13%

26%

Tellers

93%

60%

34%

7%

ForensicScienceTechnicians

60%

58%

1%

4%

37%

ReceptionistsandInformationClerks

69%

58%

11%

31%

BrokerageClerks

Production,PlanningandExpeditingClerks

74%

72%

58%

57%

16%

15%

17%

18%

10%

10%

FileClerks

63%

56%

7% 11%

26%

WordProcessorsandTypists

63%

55%

5%

40%

Bookkeeping,AccountingandAuditingClerks

78%

55%

23%

22%

LegalSecretariesandAdministrativeAssistantsLoanInterviewersandClerks

BillandAccountCollectors

77%

80%

63%

54%

54%

53%

23%

27%

9%

21%

12%

13%

11%

7%

17%

0 10 20 30 40 50 60 70 80 90 100

Automation Augmentation Lowerpotential Non-languagetasks

JobsofTomorrow:LargeLanguageModelsandJobs 10

Jobswithpotentialforaugmentation

ThesameanalysismethodsdemonstratethatthejobswiththehighestpotentialforaugmentationbyLLMsemphasizecriticalthinkingandcomplexproblem-solvingskills,especiallythoseinscience,technology,engineeringandmathematics(STEM)fields(seeFigure3).ToppingthelistisInsuranceUnderwriters,withanalysissuggestingthattheyspend100%oftheirtimeontasksthathave

thepotentialtobeaugmentedbygenerativeAI

systems.ThisisfollowedbyBioengineersandBiomedicalEngineers(84%oftimeaugmentable),Mathematicians(80%)andEditors(72%).Theremainingtop15jobsarelikewisetechnicalorhighlyspecialized,oftenrequiringadvanceddegreesortraining,such

asDatabaseArchitectsandStatisticians.Notethatmanyjobswiththehighestpotentialforaugmentationalsohavesomepotentialforautomation,resultinginveryhightotalexposureforthesejobs,suchasMedicalTranscriptionists,

InsuranceAppraisersandAssessorsofRealEstate.

FIGURE3 Jobswiththehighestpotentialforaugmentation

Occupations Exposure

InsuranceUnderwriters

100%

100%

BioengineersandBiomedicalEngineers

100%

16%

84%

MathematiciansEditors

DatabaseArchitectsStatisticians

93%

72%

86%

84%

12%

15%

15%

72%

80%

72%

68%

28%

7%

14%

16%

TrainingandDevelopmentSpecialistsClerksDatabaseAdministrators

InsuranceAppraisers,AutoDamageGraphicDesigners

PropertyAppraisersandAssessorsAppraisersandAssessorsofRealEstate

74%

83%

100%

79%

88%

88%

6%

16%

14%

26%

26%

34%

68%

66%

65%

62%

62%

66%

26%

18%

17%

3%

12%

12%

OperationsResearchAnalystsMedicalTranscriptionistsInterpretersandTranslators

78%

100%

76%

18%

16%

40%

60%

60%

60%

22%

24%

0 10 20 30 40 50 60 70 80 90 100

Automation Augmentation Lowerpotential Non-languagetasks

JobsofTomorrow:LargeLanguageModelsandJobs 11

Jobswithlower

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论