




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IncollaborationwithAccenture
JobsofTomorrow:LargeLanguageModelsandJobs
WHITE PAPER
SEPTEMBER 2023
Images:GettyImages
Contents
Foreword 3
Executivesummary 4
Introduction:Howwilllargelanguagemodelsimpact 5
thejobsoftomorrow?
Identifyingexposurepotentialoftasksandjobs 7
Exposedtasks 7
Detailedexamplesofexposedjobs 9
Analysisbyoccupation 10
Analysisbyindustry 14
Analysisbyfunction 16
LLMsandthegrowthanddeclineofjobsandtasks 17
Expectedgrowthanddeclineoftasks 17
Expectedgrowthanddeclineofjobs 17
Conclusion:Ensuringthatlargelanguagemodelsworkforworkers 19
Appendices 20
A1Exposurepotentialbyindustrygroups 20
A2Exposurepotentialbyfunctiongroups 28
A3Methodology 30
Contributors 32
Endnotes 33
Disclaimer
Thisdocumentispublishedbythe
WorldEconomicForumasacontributiontoaproject,insightareaorinteraction.Thefindings,interpretationsandconclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedandendorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarily
representtheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,Partnersorotherstakeholders.
©2023WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformationstorageandretrievalsystem.
JobsofTomorrow:LargeLanguageModelsandJobs 2
Executivesummary
Asadvancesingenerativeartificialintelligence(AI)continueatanunprecedentedpace,largelanguagemodels(LLMs)areemergingastransformativetoolswiththepotentialtoredefinethejoblandscape.Therecentadvancementsinthesetools,likeGitHub’sCopilot,MidjourneyandChatGPT,areexpected
tocausesignificantshiftsinglobaleconomiesandlabourmarkets.Theseparticulartechnologicaladvancementscoincidewithaperiodofconsiderablelabourmarketupheavalfromeconomic,geopolitical,greentransitionandtechnologicalforces.The
WorldEconomicForum’s
FutureofJobsReport
2023
predictsthat23%ofglobaljobswillchangeinthenextfiveyearsduetoindustrytransformation,
includingthroughartificialintelligenceandothertext,imageandvoiceprocessingtechnologies.
Thiswhitepaperprovidesastructuredanalysisofthepotentialdirect,near-termimpactsofLLMsonjobs.With62%oftotalworktimeinvolvinglanguage-basedtasks,1thewidespreadadoptionofLLMs,suchasChatGPT,couldsignificantlyimpactabroadspectrumofjobroles.
ToassesstheimpactofLLMsonjobs,thispaperprovidesananalysisofover19,000individualtasksacross867occupations,assessingthepotentialexposureofeachtasktoLLMadoption,classifyingthemastasksthathavehighpotential
forautomation,highpotentialforaugmentation,lowpotentialforeitherorareunaffected(non-languagetasks).ThepaperalsoprovidesanoverviewofnewrolesthatareemergingduetotheadoptionofLLMs.
Thelonger-termimpactsofthesetechnologiesinreshapingindustriesandbusinessmodelsare
beyondthescopeofthispaper,butthestructuredapproachproposedherecanbeappliedtootherareasoftechnologicalchangeandtheirimpactontasksandjobs.
TheanalysisrevealsthattaskswiththehighestpotentialforautomationbyLLMstendtoberoutineandrepetitive,whilethosewiththehighestpotentialforaugmentationrequireabstractreasoningandproblem-solvingskills.Taskswithlowerpotential
forexposurerequireahighdegreeofpersonalinteractionandcollaboration.
ThejobsrankinghighestforpotentialautomationareCreditAuthorizers,CheckersandClerks(81%ofworktimecouldbeautomated),ManagementAnalysts(70%),Telemarketers(68%),Statistical
Assistants(61%),andTellers(60%).
Jobswiththehighestpotentialfortaskaugmentationemphasizemathematicalandscientificanalysis,suchasInsuranceUnderwriters(100%ofworktimepotentiallyaugmented),BioengineersandBiomedical
Engineers(84%),Mathematicians(80%),and
Editors(72%).
Jobswithlowerpotentialforautomationoraugmentationarejobsthatareexpectedto
remainlargelyunchanged,suchasEducational,Guidance,andCareerCounsellorsandAdvisers(84%oftimespentonlowexposuretasks),Clergy(84%),ParalegalsandLegalAssistants(83%),andHomeHealthAides(75%).
Inadditiontoreshapingexistingjobs,
theadoptionofLLMsislikelytocreatenewroleswithinthecategoriesofAIDevelopers,InterfaceandInteractionDesigners,AIContentCreators,DataCurators,andAIEthicsandGovernanceSpecialists.
Anindustryanalysisisdonebyaggregatingpotentialexposurelevelsofjobstotheindustrylevel,notingthatjobsmayexistinmorethanoneindustry.Resultsrevealthattheindustrieswiththehighestestimatesoftotalpotentialexposure(automationplusaugmentationmeasures)arebothsegmentsoffinancialservices:financialservicesandcapitalmarketsandinsuranceandpensionmanagement.Thisisfollowedbyinformationtechnologyanddigitalcommunications,andthenmedia,entertainmentandsports.Additionallistsofjobsrankedbyhighestexposurepotentialforeachmajorindustrycategoryarecompiledintheappendix.
Similarly,afunctiongroupanalysisrevealsthatthetwothematicareaswiththegreatest
totalpotentialexposuretoLLMsareinformationtechnology,with73%ofworkinghoursexposed,andfinance,with70%ofworkinghoursexposed.Aswiththeindustrygroups,additionallistsofjobsrankedbyhighestexposurepotentialforeachfunctiongroup
arecompiledintheAppendices.
ThesenewfindingsconnectdirectlytoearlierworkdonebytheCentrefortheNewEconomyandSocietyinthe
FutureofJobsReport2023
.ManyofthejobsfoundtohavehighpotentialforautomationbyLLMswerealsoexpected
bybusinessleaderstoundergoemploymentdeclinewithinthenextfiveyears,suchasbanktellersandrelatedclerks,dataentryclerks,andadministrativeandexecutivesecretaries.Meanwhile,jobswithhighpotentialforaugmentationareexpectedtogrow,suchasAIandMachineLearningSpecialists,DataAnalystsandScientists,andDatabaseandNetworkProfessionals.Together,thesetwo
publicationsidentifyandreaffirmsalientthemesintheconnectionbetweentechnologicalchangeandlabourmarkettransformation.
ThefindingsofthisreportshedlightonhowimplementingLLMscouldalterthelandscapeofjobs,providingvaluableinsightsforpolicy-makers,educatorsandbusinessleaders.Ratherthanleadingtojobdisplacement,LLMsmayusherinaperiodoftask-basedtransformationofoccupations,requiringproactivestrategiestopreparetheworkforceforthesejobsoftomorrow.
JobsofTomorrow:LargeLanguageModelsandJobs 4
Introduction:Howwilllargelanguagemodelsimpactthejobsoftomorrow?
Languagecapabilitiesoverlapsubstantiallywithtasksperformedonthejob,
withestimatessuggestingthatupto62%ofworktime
involveslanguage-basedtasks.
Labourmarketsareundergoingrapidtransformationfromthetrajectoryofgrowth,geoeconomics,sustainabilityandtechnology.TheFutureofJobsReport2023foundthatbusinessleadersexpect23%ofglobaljobstochangeinthenextfiveyears.2Inparticular,generativeartificialintelligence(AI)
hasundergoneaprofoundleapincapabilities,embodiedinproductssuchasGitHub’sCopilotforprogramming,MidjourneyforimagegenerationandChatGPTasauniversallanguageassistant.TheFutureofJobsReport2023alsofoundthatAIandtext,imageandvoiceprocessingtechnologiesmoregenerallyaretopofmindforbusinesses.Thereportfoundthat75%ofsurveyrespondentsreporthavingplanstoadoptAIintheirorganization’soperations,and62%reporthavingplanstoadopttext,imageandvoiceprocessingtechnologies.3Thishasraisedquestionsabouthowthisnewtechnologywillaffectorganizationsandlabourmarketsaroundtheworld.
Thiswhitepaperexaminesthepotentialnear-term,directimpactonjobsofaparticulartypeof
generativeAI,largelanguagemodels(LLMs),whichhavebeenhighlyvisibleinpublicdebateoverthepastyearduetotheirhuman-likeabilitytocreateandunderstandlanguage.AsLLMserviceshaveexplodedinpopularity,withfreeservicessuchasChatGPTreachingasmanyas100millionactiveuserswithinthefirsttwomonthsofitsdebut,4
thecapabilitiesofthesemodels,pairedwiththeiraccessibilityandrapidadoptionrate,suggestthatmanyworktasks–andjobsthatemphasizethem–couldbeimpactedbytheuseofLLMsintheyearstocome.Bysomeestimates,upto62%ofworktimeinvolveslanguage-basedtasks.5Yet,artificialintelligenceandtext,imageandvoiceprocessingtechnologiesalsohavethepotentialtoaugmentworkandcreatenewjobs.Inaddition,manyrolesremainwhollyunaffectedbythesedevelopments.
Rapidtechnologicalchangeoftengeneratesanticipationregardingitseffectsondailylife,particularlyjobs.Intheaggregate,previousinnovationshaveledtomoreemploymentopportunities,better-qualityjobsandahigherqualityoflife,buttheyalsocreatedisruptionanddisplacement.6Thispaperaimstosupportthedetailedanalysisrequiredtotakeaclear-eyedviewaroundimpact,opportunityandpreparation.
GenerativeAI,LLMsandlanguagetasks
ThenewestformsofgroundbreakinggenerativeAImodelsarecreatedviadeeplearning,whichistheprocessoftrainingfoundationmodelsonverylargesetsofdata.Thesefoundationmodelsaretypicallycreatedintheformofaneuralnetwork,whosestructureisinspiredbythearrangementofneuronsinthehumanbrain.Largefoundationmodelsaretrainedonvastamountsofdataandhaveseeminglysuper-humanlevelsofpredictivecapacity,whichcanbeharnessedbyproducingtextorimagesinresponsetoawrittenprompt.7
Sofar,generativeAImodelshavebeenconfiguredintoavarietyofdifferenttoolstoservedifferentcontexts,suchasimage,audioorvideo
creation,identifyingfinancialfraudandothersecurityrisks,andahostofgenerallanguagecapabilities,includingtheabilitytogeneratenatural,mathematicalandcomputationallanguage.WhilethereisabroadrangeofimplementationsofgenerativeAI,thisstudywillfocusonLLMsandtheiruniquelanguage-generatingcapabilities,asthesemodelshavethegreatestpotentialtoimpactthelargestnumberofjobsinthenearterm.
LLMscanperformabroadspectrumoflanguagetasks,usuallyinresponsetoasimpleuserprompt,onnearlyanytopic:
LLMscanreformulateandprovidedetailedfeedbackonaprovidedsetoftext,includingsummarizingit,translatingittoanotherlanguage,proofreadingit,discussingitsstyleortoneofvoiceandevenrewritingitinadifferentstyleortoneofvoice.
LLMscanalsogeneratenewtextandprovidesomedegreeofexpertiseontopicspresentintheLLM’strainingdata,suchasintheformofaliteraturerevieworcompletingatasktypicallydonebyaresearchassistant.8
Asprogramminglanguagesaretext,LLMscanserveasprogrammingassistants.
ImplementationslikeGitHub’sCopilothavebeenshowntoincreaseprogrammerproductivityby56%.9
JobsofTomorrow:LargeLanguageModelsandJobs 5
ByintegratingLLMswithothersystems,thesecapabilitiescanbeextendedtoagreaterrangeofabstracttasks,suchasschedulingmeetings,placingorders,respondingtoemails,orprovidingresearchonaparticulartopic.
GiventhelargeoverlapbetweenLLMcapabilitiesandcurrentjobtasks,howwillintroducingLLMsintotheworkplacechangejobs?Whichpartsofajobwillbeimpactedthemost,andwhichjobswillbeimpactedmost?Finally,withtheintroductionofthesenewtechnologies,whichnewjobscanbeexpectedtoarise?
Atask-basedapproachtojobexposure
Toanswerthesequestions,themethodsdeployedinthiswhitepaperassessthepotentialexposureoflanguage-basedjobtaskstotheabilityofLLMstoperformthesetasks.TheapproachistofirstthinkofajobasconsistingofmanydifferenttasksandthenassesshoweachtaskmaybeaffectedbyLLMs.Themagnitudeofimpactonajobultimatelydependsonthedegreeoflanguage-basedskillsrequiredforspecifictasksinthatjobandthetimespentonthosetasks.Language-dependent,standardized,routineandprocess-orientedtasksareprimecandidatesforautomationandreplacementbyLLMs.Atthesametime,thoserequiringagreaterdegreeofhumaninteraction
aremorelikelytobeaugmentedandperformedincollaborationwithLLMs.
lessonsandclasses(27%).10SoftwareDeveloperscouldturntoLLMstogeneratestandardizedblocksofcodewithclearfunctionalparameters,speedingupthedevelopmentprocessandallowingformoretimetobespentonhigh-levelarchitecturaltasks.
SoftwareDevelopersalsoperformmanytaskswithhighpotentialforautomation,suggestingthatmanyjobswillbetransformedratherthanautomated
oraugmented.
TheresearchmethodsemployedinthispaperaimtoidentifywhichtaskswillbeexposedtoLLMsandhowtheywillbeimpacted:whethertheyhavethepotentialtobeautomatedandreplacedbyLLMsoraugmentedandenhancedbyLLMs.DataforanalysiscomesfromO*NETandtheUnitedStates
BureauofLaborStatistics(BLS),whichcharacterizes867jobswithrespecttoover19,000individualtasks.Usingbothmachinelearningandmanualmethods,jobtasksareindividuallyratedwithrespecttotheirpotentialexposuretotheadoptionofLLMs,therebyclassifyingthemintooneoffourcategories:
Highpotentialforautomation:Goingforward,
thetaskwillbeperformedbyLLMs,nothumans.
Highpotentialforaugmentation:Humanswillcontinuetoperformthetask,andLLMswillincreasehumanproductivity.
Lowpotentialforautomationoraugmentation:HumanswillcontinuetoperformthetaskwithnosignificantimpactfromLLMs.
Unaffected(i.e.non-languagetasks).
ThreeintenteachershavealreadyusedChatGPTforlessonplanning(30%),generatingcreativeideasforclasses(30%)andbuildingbackgroundknowledgeforlessonsandclasses(27%).
Forexample,somejobtasksareroutineandpredictableandareperformedbypeopleworkingindividually,suchasclerksandadministrators,whichinvolvesreadingandenteringdata,cross-referencingrecordsbetweendifferentdatabasesandreviewingtransactions.Thesetasksaremorelikelytobeexposedtoandultimatelyautomatedbythe
introductionofLLMs,implyingthattheywillnolongerbeperformedbyhumans.Theoutcomeisthatjobsemphasizingthesetaskswilleithertransformtotakeonnon-automatabletasksorgointodecline.Otherjobtasksrequireagreatdealofabstractreasoning,creativityandproblem-solving.Whilelanguage
tasksmaynotbetheirprimaryproduct,theymayrelyheavilyonlanguageandcommunication.Forexample,MathematiciansandEditorsrelyheavilyuponlanguage,yetneedtoincorporatecreativeinsightsfromtheirfieldsofexpertise.Similarly,SoftwareDevelopersworkalotwithcomputerlanguagesbutalsoneedtograspcomplexsystemsatvariouslevelsofabstractiontocreateafinishedsoftwareproduct.WorkersinthesejobswouldnothavetheirtasksreplacedbyLLMs;rather,LLMswouldsuperchargetheirabilitytocompletethesetasks.Teachers,forexample,couldrelyonLLMsforassistanceinlessonplanningandcorrectingstudentwork.AccordingtoonestudyintheUS,threein
tenteachershavealreadyusedChatGPTforlessonplanning(30%),generatingcreativeideasforclasses(30%)andbuildingbackgroundknowledgefor
Jobtasksarethenmappedtotheoccupationsinwhichtheyaredeployedalongwithashareoftimespentoneachtask,andwithbothofthesemetrics,ameasureofpotentialexposuretoLLMsiscreatedattheoccupationlevel.
Chapter1ofthispaperpresentstheseresultsfortasksandjobsindetail,usingthedetailedoccupationslistfromtheStandardOccupationSystem(SOC)fromtheUSBureauofLaborStatistics,thehighestresolutionlistavailable,featuring867occupationtitles.11Thischapteralsoprovidesanalysisofthedifferencesbetweenindustriesandfunctionsintermsoftheexpected
impactofLLMsonjobs.Inchapter2,thesedetailedoccupationsareaggregatedandmappedtotheoccupationclassificationsystemusedintheFutureofJobsSurvey2022todirectlyconnectresultsonexposureofjobstoLLMstosurveyresultsofglobalbusinessleadersonthepotentialforgrowthordeclineofspecificjobs,andtheforcesunderlyingthesetrends,ascoveredingreaterdetailintheFutureofJobsReport2023.
JobsofTomorrow:LargeLanguageModelsandJobs 6
Identifyingexposurepotentialoftasksandjobs
LLMsholdtransformativepotentialandaresettosignificantlyreshapethefutureemploymentlandscape.
ThischapteroutlinestaskexposuretoLLMs,providingdeeperanalysisontwojobshighlylikelytobeimpacted,andranksjobsbytheirautomationandaugmentationpotential.ItalsoidentifiesemergingjobsduetoLLMadoptionandsummarizesexposurerisksbyindustryandjobfunction.
Exposedtasks
Thetaskswiththehighestpotentialforaugmentationrequiremore
abstractreasoningskills,especiallythosethatcombineinteraction
withpeople.
Apreliminaryanalysisrevealswhichtaskshavethehighestpotentialforautomationoraugmentationandwhichhavelowerornopotential(seeTable1).ThetaskswiththehighestpotentialforautomationbyanLLMtendtobemoreroutine,suchasperformingadministrativeorclericalactivities,andsometasksthatrelatetoelementaryanalysis,suchasdesigningdatabasesoranalysingdata.Thetaskswiththehighestpotentialforaugmentationrequiremoreabstractreasoningskills,especiallythosethatcombineinteractionwithpeople.Atthetopofthelistisevaluatingpersonnelcapabilities
orperformance,suchasinthecontextoftheresponsibilitiesofahumanresourcesprofessional,followedbycollectingdataaboutconsumerneedsoropinions.Forthelatter,whilerunningasurvey,forexample,couldbeahighlyautomatedprocess
viaemailandtheinternet,thecraftingandwordingofsurveyquestionsstillrequireahighdegreeofattentionandapprovalbythepersoncollectingthedata.
Taskswithlowerpotentialforexposurerequireahighdegreeofpersonalinteractionandcollaboration,suchasnegotiationofcontracts,developmentofeducationalprogrammes,andotherscientificandtechnicalwork,thelatterof
whichalreadyemployastrongdegreeoftechnicalaugmentation.Finally,non-languagetasksare,
asexpected,thosethatemphasizephysicalmovement,suchasloadingproducts,materialsorequipmentfortransport,assemblyactivities,
agriculturalactivities,andgroomingandhairstyling.
1
JobsofTomorrow:LargeLanguageModelsandJobs 7
TABLE1
Keytasksimpacted
Level Task
Higherpotentialforautomation
Performadministrativeorclericalactivities
Designdatabases
Analysedatatoimproveoperations
Monitorexternalaffairs,trendsorevents
Obtaininformationaboutgoodsorservices
Documenttechnicaldesigns,proceduresoractivities
Higherpotentialforaugmentation
Evaluatepersonnelcapabilitiesorperformance
Collectdataaboutconsumerneedsoropinions
Readdocumentsormaterialstoinformworkprocesses
Evaluatepatientorclientconditionortreatmentoptions
Prepareinformationalorinstructionalmaterials
Testperformanceofcomputerorinformationsystems
Lowerpotentialforexposure(automationoraugmentation)
Negotiatecontractsoragreements
Advocateforindividualorcommunityneeds
Collaborateinthedevelopmentofeducationalprogrammes
Directscientificortechnicalactivities
Coordinatewithotherstoresolveproblems
Evaluatedesigns,specificationsorothertechnicaldata
Non-languagetasks
Loadproducts,materialsorequipmentfortransportorfurtherprocessing
Assembleequipmentorcomponents
Preparemixturesorsolutions
Performagriculturalactivities
Groomorstylehair
Installenergyorheatingequipment
JobsofTomorrow:LargeLanguageModelsandJobs 8
Detailedexamplesofexposedjobs
ToprovideadetailedexampleofhowthetasksinvolvedinajobdeterminehowLLMswillimpactthejob,Figure1presentsananalysisofanexposedandnon-exposedjobandthetaskexposure
ofeach.TheleftpanelofthefigureprovidesanoverviewofSoftwareDevelopers,ahighlyexposedjobintheanalysis,showinghighpotentialforbothaugmentationandautomationoftasks.Atotal
of28.7%oftimespentintheoccupationhashighpotentialforautomationbyLLMs,including
“analysedatatoimproveoperations”and“analysetheperformanceofsystemsofequipment”.Incontrast,upto43.2%oftimespentontasksintheoccupationhashighpotentialforaugmentation,including“preparinginformationalorinstructionalmaterialsandevaluatingthecharacteristics,
usefulnessorperformanceofproductsortechnologies”.
TherightpanelofFigure1providesanoverviewofHumanResourceManagers,whichisalessexposedjob.Only16.1%oftimehaspotentialforautomation,including“determineresourceneedsofprojectsoroperationsandmanagebudgets
orfinances”,and22.2%oftimehaspotentialforaugmentation,including“explainregulations,policiesorproceduresandtrainothersonoperationalorworkprocedures”.Themajorityof
tasksinvolved,totalling61.7%oftimespent,havelowerpotentialforexposure,asthesetasksinvolveworkingdirectlywithindividualsandcoordinatingandcommunicatingwithlargegroups.
FIGURE1 Exampleofanexposedandnon-exposedjob
SoftwareDevelopers(moreexposed) HumanResourceManagers(lessexposed)
28.7%
28%
43.2%
16.1%
61.7%
22.2%
Higherpotentialforautomation:
Higherpotentialforautomation:
Analysedatatoimproveoperations
Analyseperformanceofsystemsorequipment
Determineresourceneedsofprojectsoroperations
Managebudgetsorfinances
Higherpotentialforaugmentation:
Higherpotentialforaugmentation:
Prepareinformationalorinstructionalmaterials
Lowerpotentialforautomationoraugmentation:
Evaluatethecharacteristics,usefulnessorperformanceofproductsortechnologies
Explainregulations,policiesorprocedures
Trainothersonoperationalorworkprocedures
Coordinatewithotherstoresolveproblems
Communicatewithothersaboutbusinessstrategies
Interviewpeopletoobtaininformation
Coordinategroup,communityorpublicactivities
Lowerpotentialforautomationoraugmentation:
Automation Augmentation Lowerpotential Non-languagetasks
JobsofTomorrow:LargeLanguageModelsandJobs 9
Analysisbyoccupation
Jobswithpotentialforautomation
Resultsfromthetask-basedanalysisrevealthatjobswiththehighestpotentialforautomationoftasksbyLLMsemphasizeroutineandrepetitiveproceduresanddonotrequireahighdegree
ofinterpersonalcommunication.RoleswiththehighestamountofpotentiallyautomatableworktimeareCreditAuthorizers,CheckersandClerks
(81%oftime),ManagementAnalysts(70%),
Telemarketers(68%),StatisticalAssistants(61%)andTellers(60%).Jobswithhighpotentialforautomationoftenincludevariouskindsofofficeclerks,particularlythosefocusedonrecord-keepingandmanaginginformation–taskswhereLLMshavedemonstratedastrongdegreeofcompetency.Forexample,LegalSecretariesandAdministrativeAssistantsspendapproximately54%oftheirtimeontaskswithhighautomationpotential.
FIGURE2 Jobswiththehighestpotentialforautomation
Occupations
Exposure
CreditAuthorizers,CheckersandClerks
88%
81%
7%
12%
ManagementAnalysts
76%
70%
7%
24%
Telemarketers
87%
68%
18%
13%
StatisticalAssistants
74%
61%
13%
26%
Tellers
93%
60%
34%
7%
ForensicScienceTechnicians
60%
58%
1%
4%
37%
ReceptionistsandInformationClerks
69%
58%
11%
31%
BrokerageClerks
Production,PlanningandExpeditingClerks
74%
72%
58%
57%
16%
15%
17%
18%
10%
10%
FileClerks
63%
56%
7% 11%
26%
WordProcessorsandTypists
63%
55%
5%
40%
Bookkeeping,AccountingandAuditingClerks
78%
55%
23%
22%
LegalSecretariesandAdministrativeAssistantsLoanInterviewersandClerks
BillandAccountCollectors
77%
80%
63%
54%
54%
53%
23%
27%
9%
21%
12%
13%
11%
7%
17%
0 10 20 30 40 50 60 70 80 90 100
Automation Augmentation Lowerpotential Non-languagetasks
JobsofTomorrow:LargeLanguageModelsandJobs 10
Jobswithpotentialforaugmentation
ThesameanalysismethodsdemonstratethatthejobswiththehighestpotentialforaugmentationbyLLMsemphasizecriticalthinkingandcomplexproblem-solvingskills,especiallythoseinscience,technology,engineeringandmathematics(STEM)fields(seeFigure3).ToppingthelistisInsuranceUnderwriters,withanalysissuggestingthattheyspend100%oftheirtimeontasksthathave
thepotentialtobeaugmentedbygenerativeAI
systems.ThisisfollowedbyBioengineersandBiomedicalEngineers(84%oftimeaugmentable),Mathematicians(80%)andEditors(72%).Theremainingtop15jobsarelikewisetechnicalorhighlyspecialized,oftenrequiringadvanceddegreesortraining,such
asDatabaseArchitectsandStatisticians.Notethatmanyjobswiththehighestpotentialforaugmentationalsohavesomepotentialforautomation,resultinginveryhightotalexposureforthesejobs,suchasMedicalTranscriptionists,
InsuranceAppraisersandAssessorsofRealEstate.
FIGURE3 Jobswiththehighestpotentialforaugmentation
Occupations Exposure
InsuranceUnderwriters
100%
100%
BioengineersandBiomedicalEngineers
100%
16%
84%
MathematiciansEditors
DatabaseArchitectsStatisticians
93%
72%
86%
84%
12%
15%
15%
72%
80%
72%
68%
28%
7%
14%
16%
TrainingandDevelopmentSpecialistsClerksDatabaseAdministrators
InsuranceAppraisers,AutoDamageGraphicDesigners
PropertyAppraisersandAssessorsAppraisersandAssessorsofRealEstate
74%
83%
100%
79%
88%
88%
6%
16%
14%
26%
26%
34%
68%
66%
65%
62%
62%
66%
26%
18%
17%
3%
12%
12%
OperationsResearchAnalystsMedicalTranscriptionistsInterpretersandTranslators
78%
100%
76%
18%
16%
40%
60%
60%
60%
22%
24%
0 10 20 30 40 50 60 70 80 90 100
Automation Augmentation Lowerpotential Non-languagetasks
JobsofTomorrow:LargeLanguageModelsandJobs 11
Jobswithlower
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB31/T 329.3-2015重点单位重要部位安全技术防范系统要求第3部分:金融单位
- DB31/T 1356.3-2022公共数据资源目录第3部分:编码规范
- DB31/T 1247-2020快递包装基本要求
- DB31/T 1179-2019第三方环保服务规范
- DB31/T 1135-2019健康旅游服务基地建设运营管理规范
- DB31/T 1115-2018职业性尘肺病的诊断路径
- DB31/T 1085-2018邮政企业安全生产标准化基本要求
- DB31/T 1082-2018冷库射流风机节能改造技术规范
- DB31/ 387-2018锅炉大气污染物排放标准
- 2025带你深入了解合同法:掌握关键条款与履行要点
- 年产50万吨水泥稳定级配碎石及年产30万吨沥青混凝土拌合站项目环评资料环境影响
- 消防设施维护保养报价文件
- 国家开放大学电大《水利水电工程建筑物》期末题库及答案
- 【培训课件】管理沟通
- 2024-2030年中国外资医院行业发展现状及投资管理模式分析报告
- 停车场环境卫生保洁方案
- 管道直饮水项目可行性研究报告
- 《公路桥梁挂篮设计与施工技术指南》
- 期中复习-首字母填空精练100题 2024-2025学年人教版英语八年级上册
- 临床富血小板血浆介绍、分类、制备技术及质量控制要点
- 2024年地铁施工负责人安全考试题库-判断题
评论
0/150
提交评论