《平行线的性质》_第1页
《平行线的性质》_第2页
《平行线的性质》_第3页
《平行线的性质》_第4页
《平行线的性质》_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5.3平行线的性质5.3.1平行线的性质复习回顾两直线平行

1、同位角相等2、内错角相等3、同旁内角互补平行线的判定方法是什么?反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?心动不如行动猜一猜∠1和∠2相等吗?b12ac交流合作,探索发现65°65°cab12合作交流一量一量b2ac1拼一拼∠1=∠2

是不是任意一条直线去截平行线a、b

所得的同位角都相等呢?想一想两直线平行,同位角相等.平行线的性质1结论

两条平行线被第三条直线所截,

同位角相等.性质发现∴∠1=∠2.∵a∥b,简写为:符号语言:b12ac

如图:已知a//b,那么

2与

3相等吗?为什么?解∵a∥b(已知),∴∠1=∠2(两直线平行,

同位角相等).

又∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).合作交流二b12ac3两直线平行,内错角相等.平行线的性质2结论

两条平行线被第三条直线所截,

内错角相等.性质发现∴∠2=∠3.∵a∥b,符号语言:简写为:b12ac3解:∵a//b(已知),

如图,已知a//b,那么

2与

4有什么关系呢?为什么?合作交流三b12ac4∴

1=

2(两直线平行,

同位角相等).

1+

4=180°

(邻补角定义),

2+

4=180°

(等量代换).两直线平行,同旁内角互补.平行线的性质3结论

两条平行线被第三条直线所截,

同旁内角互补.性质发现∴

2+

4=180°.∵a∥b,符号语言:简写为:b12ac4

例如图,已知直线a∥b,∠1=500,

求∠2的度数.abc12变式1:已知条件不变,求∠3,∠4的度数?34师生互动,典例示范

如图在四边形ABCD中,已知AB∥CD,∠B=600.①求∠C的度数;②由已知条件能否求得∠A的度数?ABCD施展你的才能

如图,在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于1420,第二次拐的角∠C是多少度?为什么?1420BCAD?解:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等).又∵∠B=142°(已知),∴∠B=∠C=142°(等量代换).展示你的才华5.3.2命题、定理下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断?1、对顶角相等;2、画一个角等于已知角;3、两直线平行,同位角相等;4、a、b两条直线平行吗?5、温柔的李明明;6、玫瑰花是动物;7、若a2=4,求a的值;8、若a2=b2,则a=b。否是否否是否是是对事情作了判断的语句是否正确?练习2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。如:画线段AB=CD。判断一件事情的语句叫做命题。注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。如:相等的角是对顶角。命题是由题设(或条件)和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。

两直线平行,同位角相等。题设(条件)结论命题一般都写成“如果…,那么…”的形式。“如果”后接的部分是题设,“那么”后接的部分是结论。如命题:正数与负数的和为0改写为:如果两个数是正数与负数,那么他们的和为0。注意:添加“如果”、“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套。指出下列各命题的题设和结论,并改写成“如果……那么……”的形式。练习1、对顶角相等;2、内错角相等;3、两平线被第三直线所截,同位角相等;4、3<2;5、同平行于一直线的两直线平行;6、直角三角形的两个锐角互余;7、等角的补角相等;

正确的命题叫真命题,错误的命题叫假命题。确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法。下列句子哪些是命题?是命题的,指出是真命题还是假命题?1、猪有四只脚;2、内错角相等;3、画一条直线;4、四边形是正方形;5、你的作业做完了吗?

6、同位角相等,两直线平行;7、对顶角相等;8、同垂直于一直线的两直行;9、过点P画线段MN的垂线;10、x>2练习1、数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。2、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。公理和定理都可作为判断其他命题真假的依据。公理举例:经过两点有且只有一条直线。2、线段公理:两点的所有连线中,线段最短。4、平行线判定公理:同位角相等,两直线平行。5、平行线性质公理:两直线平行,同位角相等。1、直线公理:3、平行公理:经过直线外一点,有且只有一条直线与已知直线平行。同角或等角的补角相等。2、余角的性质:同角或等角的余角相等。4、垂线的性质:①过一点有且只有一条直线与已知直线垂直;5、平行公理的推论:如果两条直线都和第三条直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论