版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级第一学期期中练习之图形面积一、计算图形面积(一)正方形与长方形:1、如图,将一张边长为acm的正方形纸板的四角各剪去一个边长为xcm的小正方形,然后将它折成一个纸盒,求纸盒的容积.(纸板的厚度忽略不计,结果用含有a、x的代数式表示)答案:2、如图,一张长方形硬纸片的长为12厘米,宽为10厘米,将它的四角各剪下一个边长为x厘米的正方形(阴影部分),然后沿虚线将I、II、III、IV这四个部分折起,构成一个无盖的长方形纸盒.这个纸盒的体积是多少?答案:3、如图,将一块长方形的铁皮剪取去四个角就可以折成一个长方体的无盖盒子,根据图中标注的数据,求这个盒子的底面积.(单位:厘米)答案:4、小明在一个长为厘米,宽为厘米的长方形纸板的四角各剪去一个边长为厘米小正方形,折成无盖纸盒.求(1)无盖纸盒的表面积.(2)无盖纸盒的容积.(纸板厚度不计,结果用含,,的代数式表示).aa2a4aaa2a4aFaaaa6、计算变压器矽钢芯片的一个面(如图所示)的面积(结果用含字母a的代数式表示)答案:7、学校操场的长为a米,宽为b米,由于扩建,长增加了m米,宽增加了n米,求扩建以后操场的面积为多少平方米?答案:平方米8、如图,在一块长方形的土地中修两条路(阴影部分),根据图示所标注的数据,求空白部分的面积.(单位:米)答案:9、如图,长方形的长为a,宽为b,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是().(A)ab-bc+ac-c2(B)ab-bc-ac+c2(C)ab-ac-bc(D)ab-ac-bc-c210、计算下图阴影图形的面积。ab11、如图,正方形广场的边长为aab形的水池,水池四周有一条宽度为的环形小路,那么水池的面积用含a、b的代数式可表示为________平方米.12、求图中阴影部分的面积.(单位:厘米)答案:5513、如图,阴影部分的面积是(A)A. B. C. D.14、如图,是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米),房主计划把卧室以外的地面都铺上地砖,如果他选用的地砖的价格是a元/米,则买地砖至少要多少钱?(用a、x、y的代数式表示)答案:厨房厨房H卫生间GBEMaDFACb房间客厅N15、如图:一套房子的客厅AEFD和房间EBHG分别是边长为a米和b米的正方形,厨房FGNM和卫生间MNHC分别是正方形和长方形.(1)求卫生间MNHC的面积(用含a、b的代数式表示);(2)求当,时,卫生间MNHC的面积的值.16、如图,6个正方形无缝拼接成一个大长方形,中间最小的一个正方形的面积为1,求这个大长方形的面积.答案:14317、如右图是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x,y表示小长方形的长和宽(x>y),请你判断下列四个结论中,哪些是正确的?答案:(1)x+y=7对(2)x-y=2对(3)4xy+4=49对(4)x+y=25错18、右图是一套房子的平面图,尺寸如图.(1)这套房子的总面积是多少?(用含有x,y的代数式表示)答案:23xy(2)若x=1.8米,y=1米,则房子的面积是多少平方米?如果每平方米房价为0.8万元,那么房屋总价多少万元?答案:41.4平方米、33.12万元19、市民购买房屋时,房屋总价是按照建筑面积进行计算的,去除墙壁占地,公共使用面积,一般室内使用面积仅占建筑面积的8成左右,另外购买一套房屋还要交付房屋总价的6%左右的其他费用,如中介费,契税,印花税等。下图为一房屋的建筑结构示意图,请看图回答下列问题。请用代数式表示该房屋的建筑面积。如果x=2.5米,y=3.5米,分别求出该房屋的建筑面积与使用面积。如果该房屋位于上海市内环以内,价格为每平方米15000元,问购买该房屋总2yy2x共要付多少钱?2yy2xyx+yyx+yx+2yx+yx+2yx+y20、如图,宽为60cm的长方形图案由9个大小相等的小长方形拼成,求大长方形的面积.答案:607521、火车站和机场都为旅客提供打包服务,如果长,宽,高分别为x,y,z的箱子按如图所示的方式打包,求打包带至少要多长?(单位:厘米)答案:(二)长方形、正方形与三角形1、如图,正方形ABCD于正方形BEFG,点C在边BG上,已知正方形ABCD的边长为a,正方形BEFG的边长为b,用a、b表示下列面积.(1)CDE的面积;答案:(2)CDG的面积;答案:(3)CGE的面积;答案:(4)DEG的面积.答案:2、已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a求:(1)梯形ADGF的面积;(2)三角形AEF的面积;(3)三角形AFC的面积。3、已知,如图,正方形ABCD和正方形CEFG的边长分别为和,用表示下列面积:求三角形BEF、三角形DEF、三角形BDF的面积。4、如图,已知正方形与正方形,点E、G分别在边ABAD上,正方形ABCD的边长为a,正方形AEFG的边长为b,且a>b求三角形BFG、三角形BFE、梯形BCFE的面积(用含a、b的代数式表示)5、如图,正方形ABCD与正方形BEFG,且A、B、E在一直线上,已知AB=a,BE=b(b<a).(1)用a、b的代数式表示阴影部分面积;(2)当a=5厘米,b=3厘米时,求阴影部分面积.答案:(1)(2)6、如图,已知正方形ABCD与正方形AEFG,点E,G分别在边AB,AD上,正方形ABCD的边长为a,正方形AEFG的边长为b,且a>b.(1)求三角形BFG;(2)三角形BFE;(3)梯形BCFE的面积(用含a,b的代数式表示).答案:(1)(2)(3)(三)长方形、正方形与梯形1、如图,左边是等腰梯形,中间是长方形,右边是等腰三角形,用含的代数式表示这个组合图形的面积。(三)长方形、正方形与圆1、如图所示的图形由左、右两部分构成:左边部分为边长为a的正方形,右边部分为半径是a,圆心角为的扇形.(1)用a表示该图形的周长和面积;(2)当a=6时,求该图形的周长和面积.(保留)答案:(1)24+3(2)36+92、用代数式表示图中阴影部分地周长与面积.(保留)答案:2cm2cm3、如图1阴影部分的面积为(结果保留)。2cm2cm4、用代数式表示图中阴影部分地面积,并计算当r=3时,阴影部分面积.(保留)答案:,5、如右图,已知R=5,r=1,求圆环的面积.(保留)答案:246、如图,一个田径场由两个半园和一个正方形所组成.(1)用a表示该田径场的面积.(2)当a=80米时,求这个田径场的面积.(保留) 答案:(1)(2)6400+16007、如图,半径为R的图中挖出一个边长为a的正方形,求余下部分的周长和面积。8、如图时一个机器零件的截面,大圆的半径为7.6dm,4个小圆的半径都为1.8dm,求阴影部分的面积.(保留)答案:9、已知ABCD是长方形,以DC为直径的圆弧与AB只有一个交点,且AD=a.(1)用含a的代数式表示阴影部分面积;(2)当a=10cm时,求阴影部分面积(取3.14,保留两个有效数字).10、如图,等要直角三角形ABC中,∠C=90O直角边AC=BC=a,分别以点A,点B为圆心以直角边为半径做弧交AB于点E,F。请用代数式表示阴影部分面积。11、学校在运动场上举行200米赛跑,每条跑道的宽为1.22米,比赛的终点线定在如图所示的C处,由于不同跑道上的运动员要经过不同的弯道,因此他们不应从同一起跑线上起跑,问第一,第二两条跑道上运动员的起跑线应相隔多远才比较公平?(保留)(图中A,B分别代表第一,第二两道的起跑线)答案:二、用图形面积验证乘法公式(恒等式)(一)用图形面积的两种表示验证公式1、利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是____________分析:由图乙可知,大正方形的面积为,左上角正方形的面积为,则其面积还可表示为大正方形的面积减去两个长方形的面积再加上一个小正方形的面积(右下角),即.解:.2、在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是(A)(A)a-b=(a+b)(a-b).(B)(a+b)=a+2ab+b.(C)(a-b)=a-2ab+b.(D)a-b=(a-b).aaabb图a图b3、如下图a,边长为a的大正方形中一个边长为b的小正方形,小明将图a的阴影部分拼成了一个矩形,如图b。这一过程可以验证(D)A、a2+b2-2ab=(a-b)2;B、a2+b2+2ab=(a+b)2;C、2a2-3ab+b2=(2a-b)(a-b);D、a2-b2=(a+b)(a-b)4、如图,边长为a,b(a>b)的大小两个正方形的中心重合,边保持平行.如果从正方形中剪去小正方形,那么剩下的图形可分割成四个形状大小相同的梯形,计算剩下的图形面积,验证了公式____________________答案:5、如图,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪拼成一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是(A)A、B、C、D、6、如图(1),A,B,C是三种不同型号的卡片,其中A型是边长为a的正方形,B型是长为b,宽为a的长方形,C是边长是b的正方形.小杰同学用1张A型,2张B型和1张C型卡片拼出了一个新的图形[如图(2)]请根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是:_________________________________________答案:7、如图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于的恒等式。解析:根据图3中的面积写一个等式,需要用两种方法表示空白正方形的面积.首先观察大正方形是有四个矩形和一个空白正方形组成,所以空白正方形的面积等于大正方形的面积剪去四个矩形的面积,即(a+b)2-4ab,空白正方形的面积也等于它的边长的平方,即(a-b)2,根据面积相等有(a+b)2-4ab=(a-b)2.实际是利用实际正方形的面积验证平方式(a+b)2与(a-b)2之间的关系.填(a+b)2-4ab=(a-b)2或(a-b)2+4ab=(a+b)2或(a+b)2-(a-b)2=4ab.8、如图是由边长为a和b的两个正方形组成,通过用不同的方法,计算图4中阴影部分的面积,可以验证的一个公式是.解析:要表示阴影部分的面积,可以从两个方法出发,一是观察阴影部分是由边长为a的正方形减去边长为b的正方形得到的,所以它的面积等于a2-b2,二是阴影部分是由两个直角梯形构成的,所以它的面积又等于两个梯形的面积和。这两个梯形的面积都等于,所以梯形的面积和是(a+b)(a-b),根据阴影部分的面积不变,得(a+b)(a-b)=a2-b2.所以验证的一个公式是(a+b)(a-b)=a2-b2.解:填(a+b)(a-b)=a2-b2.9、如图,在边长为a的正方形中减去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式_____.图5解析:本题是一道数形结合创新题,通过图形的面积计算,验证乘法公式.从图形中的阴影部分可知其面积是两这个正方形的面积差,即a2-b2,又由于图的梯形的上底是2b,下底是2a,高为a-b,所以梯形的面积为=(a+b)(a-b),根据面积相等,得乘法公式:a2-b2=(a+b)(a-b).填a2-b2=(a+b)(a-b).10、如图,验证了一个等式,则这个等式是()(A)(B)(C)(D)aa11、如图一,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪拼成一个矩形(如图二),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是………………………()aa(A)(B)(C)bb(D)(图一) (图二)12、下面的图(1)是由边长为a的正方形剪去一个边长为b的小正方形后余下的图形.把图(1)剪开后,再拼成一个四边形,可以用来验证公式:.(1)请你通过对图(1)的剪拼,画出三种不同拼法的示意图.要求:①拼成的图形是四边形;②在图(1)上画剪切线(用虚线表示);③在拼出的图形上标出已知的边长.(2)选择其中一种拼法写出验证上述公式的过程.分析:本题的重点是数形结合的思想,学会通过面积法推证数学规律和公式.如果对课本上说明乘法公式的几何意义的内容掌握较好的话,解答本题就容易多了.解:(1)不同拼法如下:第一种:第二种:第三种:第四种:(2)验证略.13、已知(如图):用四块底为b、高为a、斜边为c的直角三角形拼成一个正方形,求图形中央的小正方形的面积,你不难找到解法(1)小正方形的面积=解法(2)小正方形的面积=由解法(1)、(2),可以得到a、b、c的关系为:14、已知(如图)用四块大小一样,两直角边的长分别为a、b,斜边的长为c的直角三角形拼成一个正方形ABCD,求图形中央的小正方形EFGH的面积,有(1)=(用a、b表示);(2)=(用c表示);(3)由(1)、(2),可以得到a、b、c的关系为:(二)用拼图验证恒等式1、2、有若干张如图所示的正方形和长方形卡片,如果要拼一个长为,宽为的长方形,则需要A类卡片张,B类卡片张,C类卡片张,请你在答题卷中的大长方形中画出一种拼法.3、阅读下面的材料并解答问题:我们知道,完全平方公式可以用几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如就可以用图①或图②等图形的面积表示:(1)请写出图③所表示的代数恒等式:____________________;(2)试画出一个几何图形,使它的面积能表示为:;(3)请仿照上述方法另写一个含、的代数恒等式,并画出与之对应的几何图形。4、阅读材料并解答问题:我们已经知道,公式(a+b)2=a2+2ab+b2可以用平面图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2的面积表示.(1)请写出图3中所表示的代数恒等式:_______________.(2)试画一个几何图形,使它的面积能表示:(a+b)(a+3b)=(a2+4ab+3b2)(3)请仿照上述另写一个含有a、b的代数式恒等式,并画出与之对应的几何图形.图1图2图3解析:本题是一道和整式乘法有关的创新图形题,体现了数形结合思想.(1)观察图形可知这个长方形的长为(2a+b),宽为(a+2b),根据长方形的面积为长乘以宽,得左边为(2a+b)(a+2b).又长方形的面积等于各部分的面积的和,所以右边为2a2+5ab+2b2.从而得恒等式为(2a+b)(a+2b)=2a2+5ab+2b2.(2)根据已知等式可画如图4.图形的画法不止一种.请你在试一试.图4(3)按题目要求写一个与上述不同的代数式恒等式,画出与代数式恒等式对应的平面图形即可.(相信你一定能试着完成).5、已知,如图5,现有、的正方形纸片和的长方形纸片各若干块,试选用这些纸片(每种纸片至少用一次)在下面的虚线方框中拼成一个长方形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使拼出的长方形面积为,并标出此长方形的长和宽.图5析解:本题是一道和整式乘法有关的拼图探索题,要拼一个长方形的面积是2a2+5ab+2b2,只要找到长方形的长和宽即可,因为(2a+b)(a+2b)=2a2+5ab+2b2,因为从已知可以看出b>a,所以长方形的长为a+2b,宽为2a+b.知道了长方形的边长就可以拼出长方形了.本题的解法不惟一,下面给出两种拼法,如图6所示.图66、有若干张如图所示的正方形和长方形(数量足够多),请你利用这些卡片拼成一些正方形和长方形(卡片可以重叠),利用所拼成的图形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国茶文化师认证考试题库及参考答案
- 铣工操作规程试题及答案
- 《催化裂化操作工》理论知识试题库及答案
- 2026年安全知识考试试题答
- 有色金属行业动态:有色供应干扰已被计价等待流动性或消费驱动
- 银行业“银行资产管理”系列深度之52:2026年银行理财市场展望产品转型提速期配置结构优化期
- 2026年网络安全保密技术员岗位实操考核题库含答案
- 2026年工程造价师资格认证考试含答案
- 甲减患者的饮食调整与食谱
- 2026年供应链管理岗位考试题含答案
- 食堂员工偷窃管理办法
- DLT 5161-2026 电气装置安装工程质量检验及评定
- 纺织公司“十五五”发展规划(2025-2025 年)
- 江苏省常州市2024-2025学年高一年级上册期末质量调研物理试卷(解析版)
- 药厂述职报告
- 资源与运营管理-第一次形考任务-国开-参考资料
- 电源适配器检验作业指导
- 部编本语文五年级上册全册课内句子训练带答案
- DL∕T 1938-2018 垃圾发电厂炉渣处理技术规范
- 2022年华东师范大学公共课《马克思主义基本原理概论》期末试卷B(有答案)
- 六年级上册生命生态安全教案及教学计划
评论
0/150
提交评论