




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省阳江市阳春大朗中学2022年高三数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.把的图像的纵坐标不变,横坐标伸长为原来的三倍,再向右移动一个单位,得到的函数解析式是(
)A.
B.
C.D.参考答案:C略2.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为(
)A. B. C. D.3参考答案:B【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE的高为1,四边形BCDE是边长为1的正方形,分别计算侧面积,即可得出结论.【解答】解:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED==,S△ABC=S△ADE==,S△ACD==,故选:B.【点评】本题考查三视图与几何体的关系,几何体的侧面积的求法,考查计算能力.3.已知函数,若存在唯一的零点,且,则的取值范围是(A)
(B)
(C)
(D)参考答案:C(解1)由已知,,令,得或,当时,;且,有小于零的零点,不符合题意。当时,要使有唯一的零点且>0,只需,即,.选C(解2):由已知,=有唯一的正零点,等价于有唯一的正零根,令,则问题又等价于有唯一的正零根,即与有唯一的交点且交点在在y轴右侧,记,由,,,,要使有唯一的正零根,只需,选C4.已知为上的可导函数,当时,,则关于x的函数的零点个数为(
)
A.1
B.2
C.0
D.0或2参考答案:C5.已知A,B分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,不同两点P,Q在双曲线C上,且关于x轴对称,设直线AP,BQ的斜率分别为λ,μ,则当+λμ取最大值时,双曲线C的离心率为()A. B. C. D.2参考答案:A【考点】KC:双曲线的简单性质.【分析】设P(x0,y0),则Q(x0,﹣y0),y02=b2(﹣1).A(﹣a,0),B(a,0),利用斜率计算公式得到:λμ=﹣,运用基本不等式求得最大值,注意等号成立的条件,再由离心率公式即可得出.【解答】解:设P(x0,y0),则Q(x0,﹣y0),y02=b2(﹣1),即有=,由双曲线的方程可得A(﹣a,0),B(a,0),则λ=,μ=,∴λμ==﹣,+λμ=﹣[(﹣)+(﹣λμ)]≤﹣2=﹣8,当且仅当λμ=﹣4,即有b=2a,c==a,可得离心率e==.故选:A.【点评】本题考查了双曲线的标准方程及其性质,考查直线的斜率公式,利用基本不等式求最值,考查了推理能力与计算能力,属于中档题.6.在平面直角坐标系中,A,B点是以原点O为圆心的单位圆上的动点,则的最大值是
A、4B、3C、2D、1参考答案:B7.已知直线与曲线相切于点(1,3)则的值为(
)A、3
B、
C、5
D、
参考答案:A8.运行如图所示的程序框图,则输出的a、b、c满足()A.c≤b≤a B.a≤b≤c C.a≤c≤b D.b≤c≤a参考答案:A【考点】程序框图.【分析】分析程序运行的功能是比较a、b、c的大小并按大小顺序输出,写出运行结果即可.【解答】解:由程序框图知,程序运行的功能是比较a、b、c的大小并按大小顺序输出,程序运行后输出的是c≤b≤a.故选:A.9.若
的夹角为,则(
)
A.
B.
C.
D.参考答案:B略10.等差数列的前n项和为,已知,,则(
)(A)38
(B)20
(C)10
(D)9参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.如图,点的坐标为,函数过点,若在矩形内随机取一点,则此点取自阴影部分的概率等于__________.参考答案:试题分析:由得,,曲边梯形的面积为,所以所求概率为.考点:几何概型.【名师点睛】几何概型的常见类型的判断方法1.与长度、角度有关的几何概型,其基本事件只与一个连续的变量有关;2.与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;3.与体积有关的几何概型.12.直线y=e2,y轴以及曲线y=ex围成的图形的面积为.参考答案:e2+1【考点】定积分.【专题】计算题.【分析】先求出两曲线y=e2,曲线y=ex的交点坐标(2,e2),再由面积与积分的关系将面积用积分表示出来,由公式求出积分,即可得到面积值.【解答】解:由题意令解得交点坐标是(2,e2)故由直线y=e2,y轴以及曲线y=ex围成的图形的面积为:∫02(e2﹣ex)dx=(e2x﹣ex)=e2+1.故答案为:e2+1.【点评】本题考查定积分在求面积中的应用,解答本题关键是根据题设中的条件建立起面积的积分表达式,再根据相关的公式求出积分的值,用定积分求面积是其重要运用,掌握住一些常用函数的导数的求法是解题的知识保证.13.已知函数f(x)=|x﹣2|+1,g(x)=kx,若方程f(x)=g(x)有且只有一个实根,则实数k的取值集合为.参考答案:{k|k<﹣1,或k≥1,或k=}【考点】根的存在性及根的个数判断.【分析】做出f(x)的函数图象,根据f(x)与g(x)的函数图象只有1个交点即可得出k的范围.【解答】解:做出f(x)的函数图象如图所示:∵方程f(x)=g(x)有且只有一个实根,∴y=ax与y=|x﹣2|+1的函数图象只有一个交点,∴k=或k≥1或k<﹣1.故答案为:14.已知函数,若对于闭区间[a,b]中的任意两个不同的数,都有成立,写出一个满足条件的闭区间__________.参考答案:(答案不唯一)【分析】由题在闭区间单调递减,则求的一个单调减区间即可【详解】由题因为任意两个不同的数,都有则知在闭区间单调递减,即,当k=0时,故答案为15.向量,满足,,则=______.参考答案:1【分析】根据向量数量积的运算,直接计算即可得出结果.【详解】因为向量,满足,,所以,因此故答案为1.【点睛】本题主要考查已知向量数量积求向量的模,熟记运算法则即可,属于基础题型.16.设,则使函数的定义域是R且为奇函数的所有a的值为
。参考答案:答案:1或317.函数()的最小正周期为_____,最大值为____.
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.[选修4-5:不等式选讲]已知正实数a、b满足:a2+b2=2.(1)求的最小值m;(2)设函数f(x)=|x﹣t|+|x+|(t≠0),对于(1)中求得的m,是否存在实数x,使得f(x)=成立,说明理由.参考答案:【考点】基本不等式.【分析】(1)利用基本不等式的性质即可得出;(2)利用绝对值形式的三角不等式的性质即可得出.【解答】解:(1)∵2=a2+b2≥2ab,即,∴.又∴≥2,当且仅当a=b时取等号.∴m=2.(2)函数f(x)=|x﹣t|+|x+|≥≥2=1,∴满足条件的实数x不存在.【点评】本题考查了基本不等式的性质、绝对值形式的三角不等式的性质,考查了计算能力,属于基础题.19.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.参考答案:【考点】简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程即可得出.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.由于曲线C与直线相交于不同的两点M、N,可得△=16(sinα+cosα)2﹣16>0,可得.利用根与系数的关系t1+t2=﹣4(sinα+cosα),t1t2=4.及|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,即可得出.【解答】解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.【点评】本题考查了直线的参数方程、圆的极坐标方程、直线与圆相交弦长问题,属于中档题.20.已知数列{}的前n项和Sn满足(p为大于0的常数),且a1是6a3与a2的等差中项。(I)求数列{an}的通项公式; (II)若an·bn=2n+1,求数列{bn}的前n项和Tn.参考答案:
解:(I)当n=1时,,得.当n≥2时,,,两式相减得an=pan﹣1,即.故{an}是首项为,公比为p的等比数列,∴.由题意可得:2a1=6a3+a2,,化为6p2+p﹣2=0.解得p=或(舍去).∴=.--------------------------------------------(6分)(II)由(I)得,则,+(2n﹣1)×2n+(2n+1)×2n+1,两式相减得﹣Tn=3×2+2×(22+23+…+2n)﹣(2n+1)×2n+1==﹣2﹣(2n﹣1)×2n+1,∴.
--------------------------------------------(12分)
略21.(本小题满分10分)选修4-4:坐标系和参数方程在直角坐标系中,直线的参数方程为(为参数).在极坐标系(与直角坐标系取相同的单位长度,以原点为极点,以轴正半轴为极轴)中,圆的方程为.(I)求圆的直角坐标方程;(II)设圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理教学文献核心要点解析
- 转让美团店铺协议书
- 食堂合作使用协议书
- 买卖二手机合同协议书
- 车险事故双方协议书
- 做生意租赁合同协议书
- 镇区保洁垃圾协议书
- 项目出资合同协议书
- 门窗经销合伙协议书
- 钢琴老师合伙协议书
- 23J916-1 住宅排气道(一)
- 工程合同管理课程设计实践报告
- 专题十五 民事权利与义务(考点讲析+练习)-2025年高考政治三轮冲刺过关(全国适用)
- 小学英语人教PEP版三至六年级全册单词词汇默写打印
- 2023-2024学年湖南省长沙市长沙县八年级(下)月考数学试卷(6月份)(含答案)
- 2023年基金从业资格考试知识点、考点总结
- JGJ80-2016 建筑施工高处作业安全技术规范
- 2023年新疆乌鲁木齐一中自主招生物理试卷试题(含答案)
- 国开(河北)2024年《中外政治思想史》形成性考核1-4答案
- 巴金名著导读《激流三部曲》
- 吸烟与肺结核双重危害的防范
评论
0/150
提交评论