


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TR算法在某大型变风量空调系统变静压控制法中的应用AbstractTheTRalgorithm,alsoknownastheTrustRegionalgorithm,isapowerfuloptimizationmethodthathasbeenextensivelystudiedandappliedinvariousfields.Inthecontextofvariableairvolume(VAV)airconditioningsystems,theTRalgorithmhasemergedasapromisingapproachforcontrollingthestaticpressureandachievingefficientandenergy-savingoperation.ThispaperprovidesanoverviewoftheTRalgorithm,itstheoreticalfoundation,anditspracticalapplicationsinVAVairconditioningsystems.WehighlighttheadvantagesandchallengesofusingtheTRalgorithmforVAVcontrol,anddiscusssomeoftherecentresearchprogressandfutureopportunities.IntroductionVAVairconditioningsystemsarewidelyusedincommercialandindustrialbuildingstoprovidecomfortableindoorenvironmentsandimproveenergyefficiency.ThebasicprincipleofVAVcontrolistoadjusttheflowrateoftheairsupplytomatchtheactualdemandofthespace,whichisusuallymeasuredbytemperatureandhumiditysensors.Inadditiontoflowratecontrol,VAVsystemsalsoneedtomaintainthestaticpressureintheductworkwithinacertainrangetoensurestableandreliableoperationoftheairdistributionsystem.StaticpressurecontrolinVAVsystemsisachallengingtaskduetothenonlinearandtime-varyingcharacteristicsofthesystem.Traditionalcontrolmethods,suchasproportional-integral-derivative(PID)controlandfuzzylogiccontrol,havelimitationsindealingwiththecomplexdynamicsanduncertaintiesoftheVAVsystem.TheTRalgorithm,ontheotherhand,isapromisingoptimizationapproachthatcanhandlenonlinearityanduncertaintywithouttheneedfordetailedsystemmodeling.TRAlgorithmBasicsTheTRalgorithmisatypeofoptimizationmethodthatiterativelysolvesasequenceofsubproblemswithinatrustregion,whichisaregionaroundthecurrentpointintheoptimizationspace.Theobjectivefunctionisapproximatedbyaquadraticmodelderivedfromthefirstandsecond-orderderivativesofthefunctionatthecurrentpoint,andthequadraticmodelisusedtocalculatethenextiteratewithinthetrustregion.Thesizeofthetrustregionisadjustedadaptivelybasedontheperformanceofthequadraticmodelandtheoriginalobjectivefunction.TheTRalgorithmhastheadvantagesofconvergence,robustness,andglobaloptimization,andcanhandleawiderangeofoptimizationproblems,includingnonlinear,nonconvex,andnonsmoothproblems.ApplicationinVAVAirConditioningSystemsTheTRalgorithmhasbeenappliedtoVAVairconditioningsystemsinrecentyearstocontrolthestaticpressureandimproveenergyefficiency.ThebasicideaistousetheTRalgorithmtoadjustthesetpointofthestaticpressurecontrollerbasedonthemeasuredflowrate,temperature,andhumiditydata.TheTRalgorithmcanhandlethenonlinearandtime-varyingcharacteristicsoftheVAVsystem,andcanadaptivelyadjustthesetpointtomaintainthestaticpressurewithinacertainrangewhileminimizingtheenergyconsumptionoftheairdistributionsystem.OneofthechallengesofusingtheTRalgorithminVAVcontrolisthedeterminationofthetrustregionsize.Asmalltrustregionsizemaycausethealgorithmtoconvergeslowlyorprematurely,whilealargetrustregionsizemayleadtoinstabilityoroscillations.Toaddressthisissue,researchershaveproposedvariousmethodstoadaptivelyadjustthetrustregionsizebasedonthemeasurementoftheperformanceandfeasibilityofthecurrentsolution.Anotherchallengeistheselectionoftheobjectivefunctionandtheconstraints.Theobjectivefunctionshouldreflectthetrade-offbetweentheenergyconsumptionandthestaticpressuredeviation,whiletheconstraintsshouldensurethefeasibilityandsafetyoftheairdistributionsystem.Researchershavepresenteddifferentobjectivefunctionsandconstraintsbasedontheirassumptionsandpreferences,suchasthequadraticcostfunction,theweightedsumofcostanddeviation,andtheprobabilisticconstraint-basedapproach.ConclusionandOutlookTheTRalgorithmisapowerfuloptimizationmethodthathasshowngreatpotentialinVAVcontrolforthestaticpressureoptimization.TheTRalgorithmcanhandlethenonlinearandtime-varyingcharacteristicsoftheVAVsystem,andcanadaptivelyadjustthesetpointtomaintainthestaticpressurewithinacertainrangewhileminimizingtheenergyconsumptionoftheairdistributionsystem.However,therearestillsomechallengesandopenissuesthatneedtobeaddressedinthefutureresearch,suchastherobustnessandadaptivityofthetrustregionsize,theselectionoftheobjectivefunctionandtheconstraints,andtheintegrationwithothercontrolstrategiessuchasmodelpredictivecontrolandreinforcementlearning.Furtherresearchintheseareasmayleadtomoreefficient,reliable,andintelligentVAVcontrolsystems.References1.Niu,Y.,&Liu,Y.(2020).StaticpressureoptimizationcontrolofVAVairconditioningsystembasedonTRmethod.BuildingServicesEngineeringResearchandTechnology,41(2),169-191.2.Yang,X.,Chen,N.,&Wang,Y.(2020).Aprobability-constrainedtrustregionmethodforstaticpressureoptimizationinVAVairconditioningsystems.BuildingSimulation,13(6),1251-1266.3.Wang,Y.,Liao,S.,&Liang,J.(2018).TrustregionalgorithmsforHVACsystemoptimization:Areview.EnergyandBuildings,173,214-228.4.Yang,X.,Chen,N.,Wang,Y.,&Li,W.(2019).A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 发现潜力的钥匙CAD工程师认证考试试题及答案
- Unit 9 Hot Soup Lesson 1 I'm thirsty(教学设计)-2023-2024学年北师大版(三起)英语四年级下册
- 2025年中国大型门式数控切割机市场调查研究报告
- 智慧交通的经济效益分析研究试题及答案
- 2025年中国墙面胶粉市场调查研究报告
- 2024电气工程师资格考试核心考点总结试题及答案
- 机械工程师资格考试的个性化策略试题及答案
- 2025年中国分离式千斤顶市场调查研究报告
- 掌握机械工程师资格考试常识与技能试题及答案
- 2024年质量工程师的考前准备工作重要性试题及答案
- 颈椎病针灸穴位治疗
- 2025年中国汽车车灯行业市场现状、前景分析研究报告(智研咨询发布)
- 汤臣倍健营养品市场推广方案
- 2024年湖北省中考语文真题(学生版+解析版)
- 告诉我地址 -从IPv4到IPv6的传奇 课件 2024-2025学年清华大学版(2024)B版初中信息技术七年级上册
- 2024旋翼无人机巡检作业规范
- 医学教程 《急性阑尾炎幻灯》
- 重型货车整车运输协议样本
- 读后续写-期中真题汇编(原卷版)
- (部编版)统编版小学语文教材目录(一至六年级上册下册齐全)
- 允许孩子犯错课件
评论
0/150
提交评论