初一数学下册名校课堂训练:实数测试培优试卷_第1页
初一数学下册名校课堂训练:实数测试培优试卷_第2页
初一数学下册名校课堂训练:实数测试培优试卷_第3页
初一数学下册名校课堂训练:实数测试培优试卷_第4页
初一数学下册名校课堂训练:实数测试培优试卷_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、选择题1.对一组数的一次操作变换记为,定义其变换法则如下:,且规定(为大于的整数),如,,,,则().A. B. C. D.2.若,|y|=7,且,则x+y的值为()A.﹣4或10 B.﹣4或﹣10 C.4或10 D.4或﹣103.如图,数轴上点表示的数可能是()A. B. C. D.4.已知,,是数轴上三点,点是线段的中点,点,对应的实数分别为和,则点对应的实数是()A. B. C. D.5.已知,为两个连续的整数,且,则的值等于()A. B. C. D.6.已知n是正整数,并且n-1<<n,则n的值为()A.7 B.8 C.9 D.107.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;④的平方根是,其中正确的个数有()A.0个 B.1个 C.2个 D.3个8.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+p=0,则m,n,p,q四个有理数中,绝对值最大的一个是()A.p B.q C.m D.n9.按如图所示的运算程序,能使输出y值为1的是()A. B. C. D.10.有一个数阵排列如下:则第行从左至右第个数为()A. B. C. D.二、填空题11.请先在草稿纸上计算下列四个式子的值:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值__________.12.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+的结果是_____.13.现定义一种新运算:对任意有理数a、b,都有a⊗b=a2﹣b,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=.例如:(-3)☆2==2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.15.对于正整数n,定义其中表示n的首位数字、末位数字的平方和.例如:,.规定,.例如:,.按此定义_____.16.如图所示为一个按某种规律排列的数阵:根据数阵的规律,第7行倒数第二个数是_____.17.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得,3S-S=39-1,即2S=39-1,所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是______.18.已知,则的值是__________;19.若+(y+1)2=0,则(x+y)3=_____.20.材料:一般地,n个相同因数a相乘:记为.如,此时3叫做以2为底的8的对数,记为(即).那么_____,_____.三、解答题21.观察下列两个等式:,给出定义如下:我们称使等式成立的一对有理数为“白马有理数对”,记为,如:数对都是“白马有理数对”.(1)数对中是“白马有理数对”的是_________;(2)若是“白马有理数对”,求的值;(3)若是“白马有理数对”,则是“白马有理数对”吗?请说明理由.(4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)22.对数运算是高中常用的一种重要运算,它的定义为:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=logaN,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,loga(M•N)=logaM+logaN.(I)解方程:logx4=2;(Ⅱ)log28=(Ⅲ)计算:(lg2)2+lg2•1g5+1g5﹣2018=(直接写答案)23.探究与应用:观察下列各式:1+3=21+3+5=21+3+5+7=21+3+5+7+9=2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)24.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2,)=_______.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30)25.已知,在计算:的过程中,如果存在正整数,使得各个数位均不产生进位,那么称这样的正整数为“本位数”.例如:2和30都是“本位数”,因为没有进位,没有进位;15和91都不是“本位数”,因为,个位产生进位,,十位产生进位.则根据上面给出的材料:(1)下列数中,如果是“本位数”请在后面的括号内打“√”,如果不是“本位数”请在后面的括号内画“×”.106();111();400();2015().(2)在所有的四位数中,最大的“本位数”是,最小的“本位数”是.(3)在所有三位数中,“本位数”一共有多少个?26.阅读下列解题过程:为了求的值,可设,则,所以得,所以;仿照以上方法计算:(1).(2)计算:(3)计算:27.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”.(1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均为正整数),在m的所有表示结果中,当nq﹣np取得最小时,称“m=pq+n4”是m的“最小分解”,此时规定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色数”的F(m)的最大值.28.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而<2于是可用来表示的小数部分.请解答下列问题:(1)的整数部分是_______,小数部分是_________;(2)如果的小数部分为的整数部分为求的值;(3)已知:其中是整数,且求的平方根.29.定义:对任意一个两位数,如果满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与的商记为例如:,对调个位数字与十位数字后得到新两位数是,新两位数与原两位数的和为,和与的商为,所以根据以上定义,完成下列问题:(1)填空:①下列两位数:,,中,“奇异数”有.②计算:..(2)如果一个“奇异数”的十位数字是,个位数字是,且请求出这个“奇异数”(3)如果一个“奇异数”的十位数字是,个位数字是,且满足,请直接写出满足条件的的值.30.阅读下面的文字,解答问题:大家知道是无理数,而无理是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是的小数部分,又例如:∵,即,∴的整数部分为2,小数部分为。请解答(1)的整数部分是______,小数部分是_______。(2)如果的小数部分为a,的整数部分为b,求的值。(3)已知x是的整数部分,y是其小数部分,直接写出的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】因为,,,,,所以,,所以,故选D.2.B解析:B【分析】先根据平方根、绝对值运算求出的值,再代入求值即可得.【详解】解:由得:,由得:,,,或,则或,故选:B.【点睛】本题考查了平方根、绝对值等知识点,熟练掌握各运算法则是解题关键.3.D解析:D【分析】先对四个选项中的无理数进行估算,再根据P点的位置即可得出结果.【详解】解:∵1<<2,=2,3<<4,2<<3,∴根据点P在数轴上的位置可知:点P表示的数可能是,故选D.【点睛】本题主要考查了无理数的估算,能够正确估算出无理数的范围是解决本题的关键.4.D解析:D【分析】由为中点,得到,求出的长,即为的长,从而确定出对应的实数即可.【详解】解:如图:根据题意得:,则点对应的实数是,故选:D.【点睛】此题考查了实数与数轴,弄清数轴上两点间的距离表示方法是解本题的关键.5.B解析:B【分析】先估算出的取值范围,利用“夹逼法”求得a、b的值,然后代入求值即可.【详解】解:∵16<18<25,∴4<<5.∵a,b为两个连续的整数,且a<<b,∴a=4,b=5,∴.故选:B.【点睛】本题考查了估算无理数的大小,熟知估算无理数的大小要用逼近法是解答此题的关键.6.C解析:C【分析】根据实数的大小关系比较,得到5<<6,从而得到3+的范围,就可以求出n的值.【详解】解:∵<<,即5<<6,∴8<3+<9,∴n=9.故选:C.【点睛】本题考查实数的大小关系,解题的关键是能够确定的范围.7.C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;④的平方根是,故④说法错误;故其中正确的个数有:2个.故选:C.【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.8.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.9.D解析:D【分析】逐项代入,寻找正确答案即可.【详解】解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m-1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确的所代入代数式及代入得值.10.B解析:B【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列,便知第20行第一个数为210,而每行的公差为等差数列,则第20行第10个数为426,故选B.二、填空题11.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.12.﹣2b【详解】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【详解】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.13.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.8【解析】解:当a>b时,a☆b==a,a最大为8;当a<b时,a☆b==b,b最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:8【解析】解:当a>b时,a☆b==a,a最大为8;当a<b时,a☆b==b,b最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.145【分析】根据题意分别求出F1(4)到F8(4),通过计算发现,F1(4)=F8(4),然后根据所得的规律即可求解.【详解】解:F1(4)=16,F2(4)=F(16)=37,F3(4解析:145【分析】根据题意分别求出F1(4)到F8(4),通过计算发现,F1(4)=F8(4),然后根据所得的规律即可求解.【详解】解:F1(4)=16,F2(4)=F(16)=37,F3(4)=F(37)=58,F4(4)=F(58)=89,F5(4)=F(89)=145,F6(4)=F(145)=26,F7(4)=F(26)=40,F8(4)=F(40)=16,……通过计算发现,F1(4)=F8(4),∴,∴;故答案为:145.【点睛】本题考查了有理数的乘方,新定义运算,能准确理解定义,多计算一些数字,进而确定循环规律是解题关键.16.【分析】观察数阵中每个平方根下数字的规律特征,依据规律推断所求数字.【详解】观察可知,整个数阵从每一行左起第一个数开始,从左到右,从上到下,是连续的正整数的平方根,而每一行的个数依次为2、4解析:【分析】观察数阵中每个平方根下数字的规律特征,依据规律推断所求数字.【详解】观察可知,整个数阵从每一行左起第一个数开始,从左到右,从上到下,是连续的正整数的平方根,而每一行的个数依次为2、4、6、8、10…则归纳可知,第7行最后一个数是,则第7行倒数第二个数是.【点睛】本题考查观察与归纳,要善于发现数列的规律性特征.17..【解析】试题分析:设S=1+m+m2+m3+m4+…+m2016…①,在①式的两边都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…②②一①得:解析:.【解析】试题分析:设S=1+m+m2+m3+m4+…+m2016…①,在①式的两边都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…②②一①得:mS―S=m2017-1.∴S=.考点:阅读理解题;规律探究题.18.10【分析】根据二次根式的性质和绝对值的性质求出a,b计算即可;【详解】∵,∴,∴,∴.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可.解析:10【分析】根据二次根式的性质和绝对值的性质求出a,b计算即可;【详解】∵,∴,∴,∴.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可.19.0【分析】根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【详解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)解析:0【分析】根据非负数的性质列式求出x、y,然后代入代数式进行计算即可得解.【详解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)3=0.故答案为:0.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.3;.【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主解析:3;.【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.三、解答题21.(1);(2)2;(3)不是;(4)(6,)【分析】(1)根据“白马有理数对”的定义,把数对分别代入计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1-3,∴(-2,1)不是“白马有理数对”,∵5+=,5×-1=,∴5+=5×-1,∴是“白马有理数对”,故答案为:;(2)若是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1mn-1∴(-n,-m)不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=,∴(6,)是“白马有理数对”,故答案为:(6,).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.22.(I)x=2;(Ⅱ)3;(Ⅲ)-2017.【分析】(I)根据对数的定义,得出x2=4,求解即可;(Ⅱ)根据对数的定义求解即;;(Ⅲ)根据loga(M•N)=logaM+logaN求解即可.【详解】(I)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴log28=3,故答案为3;(Ⅲ)解:(lg2)2+lg2•1g5+1g5﹣2018=lg2•(lg2+1g5)+1g5﹣2018=lg2+1g5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义.23.(1)2、3、4、5;(2)第n个等式为1+3+5+7+…+(2n+1)=n2;(3)﹣1.008016×106.【分析】(1)根据从1开始连续n各奇数的和等于奇数的个数的平方即可得到.(2)根据规律写出即可.(3)先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n个等式为1+3+5+7+…+(2n+1)=(3)原式=﹣(1+3+5+7+9+…+2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.24.(1)3,0,-2(2)(4,30)【解析】分析:(1)根据阅读材料,应用规定的运算方式计算即可;(2)应用规定和同底数幂相乘的性质逆用变形计算即可.详解:(1)∵33=27∴(3,27)=3∵50=1∴(5,1)=1∵2-2=∴(2,)=-2(2)设(4,5)=x,(4,6)=y则,=6∴∴(4,30)=x+y∴(4,5)+(4,6)=(4,30)点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质.25.(1)×,√,×,×;(2)3332;1000;(3)(个).【分析】(1)根据“本位数”的定义即可判断;(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000;(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有(个).【详解】解:(1)有进位;没有进位;有进位;有进位;故答案为:×,√,×,×.(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000,故答案为:3332,1000.(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有(个).【点睛】本题考查了新定义计算题,准确理解新定义的内涵是解题的关键.26.(1);(2);(3).【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据得:(2)设,则,∴,∴即:(3)设,则,∴,∴即:同理可求⸫∵【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.27.(1)1022;(2)3066,2226;(3)【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x、y即可,从而求出所有特色数;(3)根据最小分解的定义可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=,故将(2)中特色数分解,找到最小分解,然后将n、p、q的值代入F(m)=,再比较大小即可.【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),根据题意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x=3+7k,(k是非负整数)∴此方程的一位整数解为:x=4,y=5(此时2x+y>10,故舍去);x=3,y=7(此时2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此时2x﹣y<0,故舍去);∴特色数是3066,2226.(3)根据最小分解的定义可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=,由(2)可知:特色数有3066和2226两个,对于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解时:n=2,p=50,q=61∴F(3066)=对于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论