




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FeatureSelectionforRanking
Cenfangming2007.10ABSTRACT
TherealityisthatmanyfeatureselectionmethodsusedinclassificationaredirectlyappliedtorankingWearguethatbecauseofthestrikingdifferencesbetweenrankingandclassification,itisbettertodevelopdifferentfeatureselectionmethodsforranking.
InthispaperweproposeanewfeatureselectionmethodDefinetherankingaccuracyintermsofaperformancemeasureoralossfunctionastheimportanceofthefeatureandthecorrelationbetweentherankingresultsoftwofeaturesasthesimilaritybetweenthem.Wealsodemonstratehowtosolvetheoptimizationprobleminanefficientway.Wehavetestedtheeffectivenessofourfeatureselectionmethodontwoinformationretrievaldatasetsandwithtworankingmodel1.INTRODUCTION
RankingSVMandRankNet
First,featureselectioncanhelpenhanceaccuracyinmanymachinelearningproblems,whichstronglyindicatesthatfeatureselectionisalsonecessaryforranking
Second,featureselectioncanalsohelpimprovetheefficiencyoftraining.Ininformationretrieval,especiallyinwebsearch,usuallythedatasizeisverylargeandthustrainingofrankingmodelsiscomputationallycostly.
Therehavebeennomethodsoffeatureselectiondedicatedlyproposedforranking.Mostofthemethodsusedinrankingweredevelopedforclassification.Featureselectionmethodsinclassificationfallintothreecategorie
Thefirstcategory,whichisnamedfilter,featureselectionisdefinedasapreprocessingstepandcanbeindependentfromlearning.thatinformationgain(IG)andchi-square(CHI)areamongthemosteffectivemethodsoffeatureselectionforclassification.
ThesecondcategoryreferredtoaswrapperutilizesthelearningsystemasablackboxtoscoresubsetsoffeaturesThethirdcategorycalledtheembeddedmethodperformsfeatureselectionwithintheprocessoftraining.Second,theevaluationmeasures(e.g.meanaverageprecision(MAP)andnormalizeddiscountedcumulativegain(NDCG))usedinrankingproblemsaredifferentfromthosemeasuresusedinclassification
1)inrankingusuallyprecisionismoreimportantthanrecallwhileinclassificationbothprecisionandrecallareimportant;
SeveralproblemsmayarisewhenapplyingthefeatureselectionmethodstorankingFirst:existingfeatureselectionmethodsforclassificationarenotsuitableforranking.Inranking,anumberoforderedcategoriesareused,representingtherankingrelationshipbetweeninstances,whileinclassificationthecategoriesare“flat”
2)
inrankingcorrectlyrankingthetop-ninstancesismorecriticalwhileinclassificationmakingacorrectclassificationdecisionisofequalsignificanceforallinstances.
Thefollowingarethepropertiesofthenovelmethodforfeatureselectioninranking1)Themethodmakesuseofrankinginformation,insteadofsimplyviewingtheranksasflatcategories.2)Inspiredbytheworkin[1][14][27],itconsidersthesimilaritiesbetweenfeatures,andtriestoavoidselectingredundantfeatures.3)Itmodelsfeatureselectionforrankingasamulti-objectiveoptimizationproblem.Thefinalobjectiveistofindasetoffeatureswithmaximumimportanceandminimumsimilarity.4)Itprovidesagreedysearchalgorithmtosolvetheoptimizationproblem.Thecorrespondingsolutionproducedisproventobeequivalenttotheoptimalsolutiontotheoriginalproblemundercertaincondition.2.FEATURESELECTIONMETHOD
2.1OverviewSupposethegoalistoselect(1≤t≤m)featuresfromtheentirefeatureset{1,2,…,}.Inourmethodwefirstdefinetheimportancescoreofeachfeature,anddefinethesimilaritybetweenanytwofeaturesand.Thenweemployanefficientalgorithmtomaximizethetotalimportancescoresandminimizethetotalsimilarityscoresofasetoffeatures.
2.2ImportanceoffeatureWefirstassignanimportancescoretoeachfeature.Specifically,weproposeusinganevaluationmeasurelikeMAPandNDCGoralossfunction(e.g.pair-wiserankingerrors[10][13])tocomputetheimportancescore.Intheformer,wefirstrankinstancesusingthefeature,evaluatetheperformanceintermsofthemeasure,andthentaketheevaluationresultastheimportancescore.Inthelatter,wealsorankinstancesusingthefeature,andthenviewascoreinverselyproportionaltothecorrespondinglossastheimportancescore
2.3SimilaritybetweenfeaturesInthiswork,wemeasurethesimilaritybetweenanytwofeaturesonthebasisoftheirrankingresults.Thatis,weregardeachfeatureasarankingmodel,andthesimilaritybetweentwofeaturesisrepresentedbythesimilaritybetweentherankingresultsthattheyproduce.wechooseKendall’s𝜏asanexample.TheKendall’s𝜏valueofqueryqforanytwofeatures𝑣𝑖and𝑣𝑗canbecalculatedasfollows,
2.4Optimizationformulation
wewanttoselectthosefeatureswithlargesttotalimportancescoresandsmallesttotalsimilarityscores.Mathematically,thiscanberepresentedasfollows:
In(1),therearetwoobjectives:tomaximizethesumoftheimportancescoresofindividualfeatures,andtominimizethesumofsimilarityscoresbetweenanytwofeatures.wetakeacommonapproachinoptimizationandconvertmulti-objectiveprogrammingtosingleobjectiveprogrammingusinglinearcombination.
2.5Solutiontooptimizationproblem
Theoptimizationin(2)isatypical0-1integerprogrammingproblem.Onepossibleapproachwouldbetoperformexhaustivesearch.However,thetimecomplexityofit,𝑂(𝐶𝑚),istoohightomakeitapplicableinrealapplications.Weneedtolookformorepracticalsolutions.
Inthiswork,weproposeagreedysearchalgorithmfortacklingtheissueAlgorithmGAS(GreedysearchAlgorithmoffeatureSelection)1.ConstructanundirectedgraphG0,inwhicheachnoderepresentsafeature,theweightofnode𝑣is𝜔andtheweightofanedgebetweennode𝑣andnode𝑣is 2.ConstructasetStocontaintheselectedfeatures.InitiallyS0=∅.
3.Fori=1…t,(1)Selectthenodewiththelargestweight,withoutlossofgenerality,supposethattheselectednodeis
(2)Apunishmentisconductedonalltheothernodesaccordingtotheirsimilaritieswith𝑣.Thatis,theweightsofalltheothernodesareupdatedasfollows.(3)Add𝑣tothesetSandremoveitfromgraphGtogetherwithalltheedgesconnectedtoit:4.OutputSt.
Theorem1:WiththegreedysearchalgorithminFig.1onecanfindtheoptimalsolutiontoproblem(2),providedthat𝑆𝑡𝑡,where𝑆denotestheselectedfeaturesetwith𝑡Proof:Thecondition𝑆𝑡indicatesthatwhenselectingthe(t+1)-thfeature,wedonotchangethealready-selectedtfeatures.Denote𝑆𝑡={𝑣𝑘|𝑖i=1,…,t},where𝑣istheki-thfeatureselectedinthei-thiteration.Thenthetaskturnsouttobethatoffindingthe(t+1)-thfeaturesothatthefollowingobjectivecanbemet.
Since,wecanrewrite(3)as
Andsince𝑆𝑡and={𝑣|i=1,…,t𝑡},(4)equals 3.EXPERIMENTSETTINGS
3.1DatasetsInourexperiments,weusedtwobenchmarkdatasets.1)Thefirstdatasetisthe.govdatawhichwasusedinthetopicdistillationtaskofWebtrackofTREC2004[28].2)TheseconddatasetistheOHSUMEDdata[9],whichwasusedinmanyexperimentsininformationretrieval[6][10],includingtheTREC-9filteringtrack[26].3.2Evaluationmeasures
3.2.1Meanaverageprecision(MAP)
MAPisameasureonprecisionofrankingresultsItisassumedthattherearetwotypesofdocuments:positiveandnegative(relevantandirrelevant).Precisionatnmeasurestheaccuracyoftopnresultsforaquery.Averageprecisionofaqueryiscalculatedbasedonprecisionatn:
3.2.2Normalizeddiscountcumulativegain(NDCG)
NDCGisdesignedformeasuringrankingaccuracieswhentherearemultiplelevelsofrelevancejudgment.Givenaquery,NDCGatpositionninisdefined3.3Rankingmodel3.3.1RankingSVM
RankingSVMmakesanextensionofSVMtoranking;incontrasttotraditionalSVMwhichworksoninstances,RankingSVMutilizesinstancepairsandtheirpreferencelabelsintraining.TheoptimizationformulationofRankingSVMisasfollows:
3.3.2RankNet
RankNetalsousesinstancepairsintraining.itemploysaneuralnetworkastherankingfunctionandrelativeentropyaslossfunction.Letbetheestimatedposteriorprobability𝑃andbethe“true”posteriorprobability,andlet.ThelossforaninstancepairinRankNetisdefinedas
3.4Algorithmsforcomparison
Ourproposedalgorithmhastwovariants.Welisttheminthefollowingtable.
Forcomparison,weselectedIGandCHIasthebaselines.IGmeasuresthereductioninuncertainty(entropy)inclassificationpredictionwhenknowingthefeature.CHImeasuresthedegreeofindependencebetweenthefeatureandthecategories.wealsoused“WithAllFeatures(WAF)”asanotherbaseline,inordertoshowthebenefitofconductingfeatureselection.4.EXPERIMENTALRESULTS
4.1The.govdataFig.2showstheperformancesofthefeatureselectionmethodsonthe.govdatasetwhentheyworkaspreprocessorsofRankingSVM.Fig.3showstheperformanceswhenusingRankNetastherankingmodel.Inthefigures,thex-axisrepresentsthenumberofselectedfeatures.ExperimentalresultsindicatethatinmostcasesGAS-LcanoutperformGAS-E,althoughnotsignificantlyExperimentalresultsalsoindicatethatwithGAS-LandGAS-EasfeatureselectionmethodstherankingperformancesofRankingSVMaremorestablethanthosewithIGandCHIasfeatureselectionmethods.4.2OHSUMEDdataFig.4showstheresultsofdifferentfeatureselectionmethodsontheOHSUMEDdatasetwhentheyworkaspreprocessorsofRankingSVMFig.5showstheresultsofdifferentfeatureselectionmethodsontheOHSUMEDdatasetwhentheyworkaspreprocessorsofRankNet4.3Discussions
Fromtheresultsofthetwodatasets,wemadethefollowingobservations:1)Featureselectioncanimprovetherankingperformancemoresignificantlyforthe.govdatasetthanfortheOHSUMEDdataset.
2)OurproposedalgorithmsoutperformIGandCHImoresignificantlyforthe.govdatasetthanfortheOHSUMEDdataset.
Tofigureoutthereasons,weconductedthefollowingadditionalexperiments.WefirstplottedtheimportanceofeachfeatureinthetwodatasetsinFig.6.Thex-axisrepresentsfeaturesandthey-axisrepresentstheirMAPvalueswhentheyareregardedasrankingmodels.Furthermore,weplottedthesimilaritybetweenanytwofeatures(intermsofKendall’s𝜏)inthetwo\datasetsinFig.7.Here,bothx-axisandy-axisrepresentfeatures,andthelevelofdarknessrepresentsthestrengthofsimilarity(thedarker,themoresimilar).Basedonthediscussionsabove,weconcludethatiftheeffectsoffeaturesvarylargelyandthereareredundantfeatures,ourmethodcanworkverywell.Whenapplyingourmethodinpractice,therefore,onecanfirsttestthetwoaspects.5.CONCLUSIONSANDFUTUREWORK
Inthispaper,wehaveproposedanoptimizationmethodforfeatureselectioninranking.hecontributionsofthispaperincludethefollowingpoints.1)Wehavediscussedthedifferencesbetweenclassificationandranking,andmadeclearthelimitationsoftheexistingfeatureselectionmethodswhenappliedtoranking.2)Wehaveproposedanovelmethodtoselectfeaturesforranking,inwhichtheproblemisformalizedasanoptimizationissue.3)Wehaveevaluatedtheproposedmethod
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业银行2025资阳市笔试英文行测高频题含答案
- 交通银行2025本溪市秋招笔试专业知识题专练及答案
- 建设银行2025九江市秋招无领导模拟题角色攻略
- 工商银行2025周口市秋招英文面试题库及高分回答
- 交通银行2025渭南市秋招笔试价值观测评题专练及答案
- 邮储银行2025乌兰察布市秋招无领导小组面试案例题库
- 建设银行2025黄南藏族自治州信息科技岗笔试题及答案
- 农业银行2025合肥市秋招笔试热点题型专练及答案
- 班组建安全和培训课件
- 中国银行2025松原市秋招笔试创新题型专练及答案
- 孤独症相关培训课件
- xx公司风险管理制度
- 2025年导游证考试试题
- 延长劳动合同期限协议书
- 生态农业规划生态农业规划农业生态园规划方案
- 2025年有机生态肥行业深度研究报告
- 汽车贴膜合同协议书
- 大学生学习投入程度测量与评估方法研究
- 学前教育自然科学课程
- 2024年5月12日河北省省直事业单位招聘(综合类)工作人员《职业能力测验》试题真题试卷答案解析
- 2025年注安道路运输安全实务真题卷(附解析)
评论
0/150
提交评论