




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第18页中英文翻译原文ToimageedgeexaminationalgorithmresearchAbstract:Digitalimageprocessingtookarelativequiteyoungdiscipline,isfollowingthecomputertechnologyrapiddevelopment,daybydayobtainsthewidespreadapplication.Theedgetooktheimageonekindofbasiccharacteristic,inthepatternrecognition,theimagedivision,theimageintensificationaswellastheimagecompressionandsooninthedomainhasamorewidespreadapplication.Imageedgedetectionmethodmanyandvaried,inwhichbasedonbrightnessalgorithm,isstudiesthetimetobemostlong,thetheorydevelopsthematurestmethod,itmainlyisthroughsomedifferenceoperator,calculatesitsgradientbasedonimagebrightnessthechange,thusexaminestheedge,mainlyhasRobert,Laplacian,Sobel,Canny,operatorsandsoonLOG。Firstasawholeintroduceddigitalimageprocessingandtheedgedetectionsurvey,hasenumeratedseveralkindofatpresentcommonlyusededgedetectiontechnologyandthealgorithm,andselectstwokindstouseVisualtheClanguageprogrammingrealization,throughwithdrawstheimageresulttotwoalgorithmsthecomparison,theresearchdiscussestheirgoodandbadpoints.Foreword:Inimageprocessing,asabasiccharacteristic,theedgeoftheimage,whichiswidelyusedintherecognition,segmentation,intensificationandcompressoftheimage,isoftenappliedtohigh-leveldomain.Therearemanykindsofwaystodetecttheedge.Anyway,therearetwomaintechniques:oneisclassicmethodbasedonthegraygradeofeverypixel;theotheroneisbasedonwaveletanditsmulti-scalecharacteristic.Thefirstmethod,whichisgotthelongestresearch,gettheedgeaccordingtothevarietyofthepixelgray.ThemaintechniquesareRobert,Laplace,Sobel,CannyandLOGalgorithm.Thesecondmethod,whichisbasedonwavelettransform,utilizestheLipschitzexponentcharacterizationofthenoiseandsingularsignalandthenachievethegoalofremovingnoiseanddistillingtherealedgelines.Inrecentyears,anewkindofdetectionmethod,whichbasedonthephaseinformationofthepixel,isdeveloped.Weneedhypothesizenothingaboutimagesinadvance.Theedgeiseasytofindinfrequencydomain.It’sareliablemethod.Inchapterone,wegiveanoverviewoftheimageedge.Andinchaptertwo,someclassicdetectionalgorithmsareintroduced.Thecauseofpositionalerrorisanalyzed,andthendiscussedamoreprecisionmethodinedgeorientation.Inchapterthree,wavelettheoryisintroduced.Thedetectionmethodsbasedonsamplingwavelettransform,whichcanextractmaimedgeoftheimageeffectively,andnon-samplingwavelettransform,whichcanremaintheoptimumspatialinformation,arerecommendedrespectively.Inthelastchapterofthisthesis,thealgorithmbasedonphaseinformationisintroduced.UsingthelogGaborwavelet,two-dimensionfilterisconstructed,manykindsofedgesaredetected,includingMachBand,whichindicatesitisaoutstandingandbio-simulationmethod。Mayalltheworkinthispaperisofsomevaluetoresearchandapplicationsofimageedgedetection.Firstchapterintroduction§1.1imageedgeexaminationintroductionTheimageedgeisoneofimagemostbasiccharacteristics,ofteniscarryingimagemajorityofinformations。Buttheedgeexistsintheimageirregularstructureandinnotthesteadyphenomenon,alsonamelyexistsinthesignalpointofdiscontinuityplace,thesespotshavegiventheimageoutlineposition,theseoutlinesarefrequentlywewhentheimageryprocessingneedstheextremelyimportantsomerepresentativecondition,thisneedsustoexamineandtowithdrawitsedgetoanimage。Buttheedgeexaminationalgorithmisintheimageryprocessingquestiononeofclassicaltechnicaldifficultproblems,itssolutioncarriesonthehighlevelregardingusthecharacteristicdescription,therecognitionandtheunderstandingandsoonhasthesignificantinfluence;Alsobecausetheedgeexaminationallhasinmanyaspectstheextremelyimportantusevalue,thereforehowthepeoplearedevotingcontinuouslyinstudyandsolvethestructuretoleavehavethegoodnatureandthegoodeffectedgeexaminationoperatorquestion。Intheusualsituation,wemaythesignalinsingularpointandthepointofdiscontinuitythoughtisintheimageperipheralpoint,itsnearbygradationchangesituationmayreflectfromitsneighboringpictureelementgradationdistributiongradient。Accordingtothischaracteristic,weproposedmanykindsofedgeexaminationoperator:IfRobertoperator,Sobeloperator,Prewittoperator,Laplaceoperatorandsoon.Thesemethodsmanyarewaitfortheprocessingpictureelementtocarryonthegradationanalysisforthecentralneighborhoodachievementthefoundation,realizedandhasalreadyobtainedthegoodprocessingeffecttotheimageedgeextraction.。Butthiskindofmethodsimultaneouslyalsoexistshastheedgepictureelementwidth,thenoisejammingisseriousandsoontheshortcomings,evenifusessomeauxiliarymethodstoperformthedenoising,alsocorrespondingcanbringtheflawwhichtheedgefuzzyandsoonovercomeswithdifficulty。Alongwiththewaveletanalysisappearance,itsgoodtimefrequencypartialcharacteristicbythewidespreadapplicationintheimageryprocessingandinthepatternrecognitiondomain,becomesinthesignalprocessingthecommonlyusedmethodandthepowerfultool。Throughthewaveletanalysis,mayinterweavedecomposesinthesameplaceeachkindofcompositesignalthedifferentfrequencytheblocksignal,butcarriesontheedgeexaminationthroughthewavelettransformation,mayuseitsmulti-criteriaandthemulti-resolutionnaturefully,realeffectiveexpressestheimagetheedgecharacteristic。Whenthewavelettransformationcriterionreduces,ismoresensitivetotheimagedetail;Butwhenthecriterionincreases,theimagedetailisfilteredout,theexaminationedgewillbeonlythethickoutline.Thischaracteristicisextremelyusefulinthepatternrecognition,wemaybecalledthisthickoutlinetheimagethemainedge.Ifwillbeableanimagemainedgeclearintegrityextraction,thistothegoaldivision,therecognitionandsoonfollowingprocessingtobringtheenormousconvenience.Generallyspeaking,theabovemethodallistheworkwhichdoesbasedontheimageluminanceinformation。Inthemultitudinousscientificresearchworkerunder,hasobtainedtheverygoodeffectdiligently.But,becausetheimageedgereceivesphysicalconditionandsoontheilluminationinfluencesquitetobebigabove,oftenenablesmanytohaveacommonshortcomingbasedonbrightnessedgedetectionmethod,thatistheedgeisnotcontinual,doesnotsealup.Consideredthephaseinformationintheimageimportanceaswellasitsstablecharacteristic,causesusingthephaseinformationtocarryontheimageryprocessingintonewresearchtopic。Inthispapersoonintroducesonekindbasedonthephaseimagecharacteristicexaminationmethod--phaseuniformmethod.Itisnotusestheimagetheluminanceinformation,butisitsphasecharacteristic,namelysuppositionimageFouriercomponentphasemostconsistentspotachievementcharacteristicpoint.Notonlyitcanexaminebrightnesscharacteristicsandsoonstepcharacteristic,linecharacteristic,moreovercanexamineMachbeltphenomenonwhichproducesasaresultofthehumanvisionsensationcharacteristic.Becausethephaseuniformitydoesnotneedtocarryonanysuppositiontotheimagecharacteristictype,thereforeithastheverystrongversatility。§1.2imageedgedefinitionTheimagemajoritymaininformationallexistsintheimageedge,themainperformancefortheimagepartialcharacteristicdiscontinuity,isintheimagethegradationchangequitefierceplace,alsoisthesignalwhichweusuallysaidhasthestrangechangeplace。Thestrangesignalthegradationchangewhichmovestowardsalongtheedgeisfierce,usuallywedividetheedgeforthestepshapeandtheroofshapetwokindoftypes(asshowninFigure1-1).Inthestepedgetwosidegreylevelshavetheobviouschange;Buttheroofshapeedgeislocatedthegradationincreaseandthereducedintersectionpoint.Mayportraytheperipheralpointinmathematicsusingthegradationderivativethechange,tothestepedge,theroofshapeedgeasksitsstep,thesecondtimederivativeseparately。Toanedge,hasthepossibilitysimultaneouslytohavethestepandthelineedgecharacteristic.Forexampleonasurface,changesfromaplanetothenormaldirectiondifferentanotherplanecanproducethestepedge;Ifthissurfacehastheedgesandcornerswhichtheregularreflectioncharacteristicalsotwoplanesformquitetobesmooth,thenworksaswhenedgesandcornerssmoothsurfacenormalaftermirrorsurfacereflectionangle,asaresultoftheregularreflectioncomponent,canproducethebrightlightstripontheedgesandcornerssmoothsurface,suchedgelookedlikehaslikelysuperimposedalineedgeinthestepedge.Becauseedgepossibleandinsceneobjectimportantcharacteristiccorrespondence,thereforeitistheveryimportantimagecharacteristic。Forinstance,anobjectoutlineusuallyproducesthestepedge,becausetheobjectimageintensityisdifferentwiththebackgroundimageintensity。§1.3paperselectedtopictheorysignificanceThepaperselectedtopicoriginatesinholdstheimportantstatusandthefunctionpracticalapplicationtopicintheimageproject.Theso-calledimageprojectdisciplineisrefersfoundationdisciplineandsoonmathematics,opticsprinciples,thedisciplinewhichintheimageapplicationunifieswhichaccumulatesthetechnicalbackgrounddevelops.Theimageprojectcontentisextremelyrich,andsoondividesintothreelevelsdifferentlyaccordingtotheabstractdegreeandtheresearchtechnique:Imageryprocessing,imageanalysisandimageunderstanding。AsshowninFigure1-2,inthechart,theimagedivisionisinbetweentheimageanalysisandtheimageryprocessing,itsmeaningis,theimagedivisionisfromtheimageryprocessingtotheimageanalysisessentialstep,alsoisfurtherunderstandstheimagethefoundation。Theimagedivisionhastheimportantinfluencetothecharacteristic.Theimagedivisionandbasedonthedivisiongoalexpression,thecharacteristicextractionandtheparametersurveyandsoontransformstheprimitiveimageasamoreabstractmorecompactform,causesthehigh-levelimageanalysisandpossiblyunderstandsinto.Buttheedgeexaminationistheimagedivisioncorecontent,thereforetheedgeexaminationholdstheimportantstatusandthefunctionintheimageproject.Thereforetheedgeexaminationresearchalwaysisintheimageengineeringresearchthehotspotandthefocalpoint,moreoverthepeopleenhanceunceasinglytoitsattentionandtheinvestment。§1.4thisarticleprimetasks§1.4.1AlgorithmcontentIntroducedandhasanalyzedtheclassicsimageedgeexaminationalgorithm,summarizedeachalgorithmgoodandbadpoints,hasgiventheimageedgeexaminationresult,andemphaticallytaketheLOGalgorithmastheexample,embarkedfromthenoiseandtheedgeshapeviewpointhasanalyzedthereasonwhichtheedgepositionerrorproduced;IntroducedinonekindofLOGalgorithmthequiteprecisedefiniteedgemethod。§1.4.2WavelettheoryHasstudiedthewaveletelementarytheory,summarizedthesignalaswellasthenoiseLipindexnature,andinbasedoninthenon-samplingwavelettransformationimagecharacteristicextractionalgorithmfoundation,unifiestheauto-adapteddenoisingmethod,hasmadecertainimprovementtothismethod,obtainedthequitesatisfactoryeffect,denoisingabilityhadthequitebigenhancement;Thenintroducedonekindbasedonthesamplingwaveletexaminationimagemainedgemethod。§1.4.3NovelalgorithmThesystemhasstudiedonekindquitenovelbasedonthephaseimagecharacteristicextractionalgorithm--phaseuniformalgorithm,andhasgivenitssimplealgorithm.Hasgivenintheunidimensionalsituationalgorithmsimulationstep,analyzedexpandedtothetwo-dimensionalmethod,andexplainedbytheedgeexaminationresultthephaseuniformalgorithmconformedtothehumanvisioncharacteristic。§1.5thisarticlecontentarrangementInthefirstchapter,theauthorhasgivenanoutlineexplanationtotheimageedgeexamination,andexplainedcarriesontheimageedgeexaminationthevitalsignificance.Insecondchapter,thesystemintroducedthequiteclassicalimageedgeexaminationoperatorandtheconcreterealizationprinciple,haveanalyzedeachalgorithmexistenceinsufficiencybytheedgeexaminationresult.Finally,fromthenoiseinfluenceandedgeshapeobtaining,taketheLOGalgorithmastheexample,hasanalyzedthereasonwhichthefalseedgeaswellasedgeshiftingproduces.FinallyintroducedinonekindofLOGalgorithmthequiteprecisedefiniteedgemethod.Inthirdchapter,theauthorsystemintroducedthepresentquitepopularwavelettheory,andintroducedemphaticallythemulti-criterionconceptandthesignalLipindex,andbythenoiseandthesignalLipindexcharacteristic,carriesontheextractioninthenon-samplingwavelettransformationfoundationtotheimageedge.Inordertostrengthentheedgeimageanti-chirpability,butalsothealgorithmhasmadecertainimprovementregardingthis,theauto-adapteddenoisingmethodwilluseintheedgedetection,hasobtainedthesatisfyingeffect.Finallyalsointroducesonekindbasedonthesamplingwaveletexaminationimagemainedgemethod.Inthethisarticlefourthchapter,introducedonekindquitenovelbasedonthephaseimagecharacteristicextractionalgorithm--phaseuniformalgorithm.Fromunidimensionalalgorithmintroductionobtaining,hasgivenundertheunidimensionalsignalsimulationresult,andexpandsgraduallytwo-dimensionally.Explainedthroughthesimulationresultthisalgorithmrobustnessquiteisstrong,moreoverconformstohumanity'svisualsystemperformance.SecondchapterclassicalimageedgeexaminationalgorithmThischapterfirstsimplyintroducedaclassicsstepedgeexaminationessentialmethodin2.1.Then2.2and2.3distinctionselaboratedspecificallytheclassicalderivativeoperatorandthelinearfilteringoperatorrealizationmethod,andhasgiveneachalgorithmresultcomparisonin2.4.In2.5,comparedwiththeconcreteanalysisnoiseandtheedgeshapethereasonwhichproducedtotheedgepointingaccuracyinfluenceaswellasthefalseedge,andhasgivenintheunidimensionalsituationsimulationresult,hasdrawntheconclusion.In2.6,theimagepositiveandnegativeedgewhichpicksoutusingtheLOGalgorithm,comparedwiththepreciselocalizationimagerealedge,thefinaloutputwastwovaluesinglepictureelementimage.§2.1classicaledgeexaminationessentialmethodWeknewthat,theedgeexaminationessenceisusessomealgorithmtowithdrawintheimagetheobjectandthebackgroundjunctiondemarcationline.Wedefinetheedgefortheimageinthegradationoccurtherapidchangeregionboundary.Theimagegradationchangesituationmayusetheimagegradationdistributionthegradienttoreflect,thereforewemayusethepartialimagedifferentialtechnologytoobtaintheedgeexaminationoperator.Theedgeexaminationalgorithmhasthefollowingfoursteps(itsprocessasshowninFigure2-1):Filter:Theedgeexaminationalgorithmmainlyisbasedonanimageintensitystepandthesecondtimederivative,butthederivativecomputationisverysensitivetothenoise,thereforemustusethefiltertoimproveandthenoiserelatededgedetectorperformance.Needstopointoutthat,themajorityfilterhavealsocausedtheedgeintensitylosswhilenoisereduction,therefore,strengthenstheedgeandbetweenthenoisereductionneedscompromised.Enhancement:Strengthenstheedgethefoundationisdeterminestheimageeachneighborhoodintensitythechangevalue.Theenhancementalgorithmmay(orpartial)theintensityvaluehastheneighborhoodtheremarkablechangespottorevealsuddenly.Theedgestrengthensisgenerallycompletesthroughthecomputationgradientpeak-to-peakvalue.Examination:Hasmanypointgradientpeak-to-peakvalueintheimagequitetobebig,buttheseinthespecificapplicationdomainnotallistheedge,thereforeshouldusesomemethodtodeterminewhichselectistheperipheralpoints.Thesimpleedgeexaminationcriterionisthegradientpeak-to-peakvaluethresholdvaluecriterion.Localization:Ifsomeapplicationsituationrequestdefiniteedgeposition,thentheedgepositionmaycomeuptheestimateinthesub-pictureelementresolution,theedgepositionalsomayestimate.Intheedgeexaminationalgorithm,thefirstthreestepsuseextremelyuniversally.Thisisbecauseunderthemajoritysituations,needstheedgedetectortopointoutmerelytheedgeappearsinimagesomepictureelementneighbor,butisnotunnecessarytopointouttheedgetheexactlocationorthedirection.Theedgeexaminestheerrorusuallyisreferstotheedgetoclassifytheerrorbymistake,namelydistinguishedthevacationedgetheedgeretains,butdistinguishedtherealedgethevacationedgeremoves.Theedgeerrorofestimationisdescribestheedgepositionandthelateralerrorwiththeprobabilitystatisticalmodel.Weexaminetheedgetheerrorandtheedgeerrorofestimationdifferentiate,isbecausetheircomputationalmethodiscompletelydifferent,itserrormodelcompletelyisalsodifferent.Theedgeexaminationisexaminestheimagepartialremarkablechangethemostfundamentaloperation.Intheunidimensionalsituation,thestepedgeconcernswiththeimagefirstderivativepartialpeakvalue.Thegradientisthefunctionchangeonekindofmeasure,butanimagemayregardasistheimageintensitycontinuousfunctionsamplingpointarray.Therefore,issimilarwiththeunidimensionalsituation,theimagegreylevelremarkablechangeavailablegradientdiscreteapproximationfunctionexamines.Thegradientisfirstderivativetwo-dimensionalequivalent-like,definesforthevectorasaresultofeachkindofreason,theimagealwaysreceivesthestochasticnoisethedisturbance,maysaythenoiseisubiquitous.Becausetheclassicaledgeexaminationmethodhasintroducedeachformdifferentiate,thuscausesinevitablytothenoiseextremelysensitive,carriesouttheedgeexaminationresultisfrequentlyexaminesthenoiseregardperipheralpoint,butbutthegenuineedgealsoasaresultofreceivesthenoisejammingnottoexamine.Thusregardinghasthenoiseimage,onegoodedgeexaminationmethodshouldhavethegoodnoiseabatementability,simultaneouslyalsohasthecompleteedgemaintenancecharacteristic。2-11looksbyFigureplace,doesnothaveinthenoisesituationintheimage,thePrewittoperator,theRobertoperator,theSobeloperatoraswellasthedifferentialgradientoperator,allcanthequiteaccurateexaminationedge.But,afterjoinsthewhitegaussiannoise,theRobertoperatorreceivestheinfluenceissmallest,nextisthePrewittoperator,receivesaffectsinabigwayistheSobeloperator,butregardingthedifferentialgradientoperator,thenistheimageoverallcontrastgradienthasobviousdepression.2-17mayseebyFigure,indoesnothaveinthenoisesituation,theCannyoperator,theLOGoperatorandtheLaplaceoperatorallmayobtainthequitegoodexaminationeffect,but,theLOGoperatoralwayscanproducethefalseedge,thisanditszerocrossingexaminationmethodconcerns.Afteraddsonthenoise,traditionalexaminationoperator(Laplaceoperator)theexaminationqualitydroppedobviously,buttheLOGoperatorhasproducedmorefalseedgesunderthenoisecondition.ButtheCannyoperatorexaminationresultiscontinuouslyextremelysatisfying.Aboutthenoisetotheedgealgorithminfluence,weinthenextsection,taketheLOGalgorithmastheexample,makesthequiteexhaustiveanalysisandtheelaboration.Thischapterfirstfromthetraditionbasedonimagegradationfirstderivativeedgeobtaining,introducedtheclassicsedgeexaminationoperatoraswellasafterwardsdevelopedthelinearfilteringedgeexaminationmethod,comparedwiththeyrespectivecharacteristic,aswellasineachkindofnoisesituationexaminationability,andhasgiventhesimulationresult,finallydiscovered,theCannyoperatorandwithdrewtheedgeaspectinthenoiseeliminationtohavethequitegoodeffect.Inthischapterfinal,butalsotaketheLOGoperatorastheexample,hasanalyzedtheimagenoiseandtheedgeshapetoitsexaminationresultanalysis,andhasgiventhesimulationresult,explainedunderthetraditionalfixedcriterionexaminationmethod,theimageedgesymmetryaswellasthecriterionchoicetoexaminestheresulttohavetheverytremendousinfluence.Finally,weaccordingtoAmlantheKundurecommendation20kindoftemplateshapes,examinesintheLOGalgorithmintheedgeimage,withdrawsthepositiveandnegativeboundarythecentralposition,takesourfinaltwovaluesinglepictureelementboundaryoutput.ThirdchapterbasedonwaveletthoughtimageedgeexaminationAlthoughtheedgedetectionhadthedifferentialgradientoperator,theLaplaceoperator,theSobeloperator,theLOGoperatoraswellastheCannyoperatorandsoonmanymethods,butthesealgorithmsdonothavetheautomaticfocalvariationthought.Butinfact,asaresultofreasonsandsoonphysicsandillumination,ineachimageedgeusuallyproducesinthedifferentcriterionscope,formsthedifferenttypetheedge(forexampleedgesandsoonstep,roof),theseinformationsareunknown.Moreover,intheimagealwayshasthenoise,therefore,accordingtotheimagecharacteristic,canauto-adaptedexaminetheimagetheedgeiscorrectlyextremelydifficult.Easytoimagine,isnotimpossibletoexaminealledgeswiththesolecriterionedgeexaminationoperator,simultaneously,foravoidsaffectingtheedgeexaminationduringfiltrationnoisetheaccuracy,examinestheedgewiththemulti-criterionmethodmoreandmoretobringtopeople'sattention.Becausethewavelettransformationhasthegoodtimefrequencylocalizationcharacteristicaswellasmulti-criterionanalysisability[10,11,12],has“thefocalvariation”inthedifferentcriterionthefunction,suitsintheexaminationsuddenchangesignal,isexaminesthiskindofsignalthepowerfultool,thereforeobtainedthewidespreadapplication.Thischapterontakethewavelettransformationasthefoundation,aftertheusewaveletfiltertheimagecharacteristic,insamplingandinthenon-samplingfoundation,theexaminationimageedge,andgavesomeimprovementcomment.Basedonthenon-samplingwavelettransformationedgedetection,thespatialinformationwhichthemaintenanceoptimizes,hasobtainedthequitegoodeffect,but,whenwemerelyareinterestedtotheimageapproximateoutlinetime,thesamplingwavelettransformpairweareperhapsmorepractical.ThesamplingwavelettransformationistheMallattowersystemalgorithmwhichthefaceexplainsthingsinfrontofthischaptermentioned,itcanobtaintheprimitiveimageindifferentcriteriondetail.Whenthedecompositioncriterionincreases,notonlyhasfilteredthenoise,butalsowithdrewtheimageapproximateoutline.Wemayuseunderthegreatcriteriontheedgeimagetoinstructthesmallcriterionlowerlimbtheextraction.Thus,hasremovedthesmalldetailwhichtheverysensitivemajorityofnoisesandweisnotcaredaboutverymuchunderthesmallcriterion,isonlytheimagemainoutlinewhichretainsustocareabout.ItsflowchartasshowninFigure3-7.Mustpayattentioninhere,thetransformationcriteriondonothavetootobebig,otherwisemadetheinstructiontheedgetootobeshort,easytocreatetheedgeinformationtolosetoomany,theoutlinewasstiff,wasnotgentle.Andafterthedecompositioncriterionexcessivelyaremany,ashiftingcancauseslightlyinthegreatcriterioninthesmallcriteriontheverybigmistake.Amongthem,thisalgorithmdifficultyprovidestheinstructioninthegreatcriterionedgeforthesmallcriterionthepart.Becausethegreatcriterionedgewillbesamplinglatertheobtaineddata,thereforeaboveitinapointcorrespondenceandsmallcriterionfourspots.Ifinsmallcriterionfourspotintensityenoughbig,weondetermineitastheboundarypoint.ThisalgorithmsimulationresultasshowninFigure3-8.Inhere,ourhavenotusedthewaveletinversetransformationwhichintheusualmethoduses,but,hasstillobtainedthequitegoodresult.§3.5thischaptersectionThischapterinafterintroductionwaveletedgeexaminationprinciple,application,introducedusesinscoringthesignalirregularityLipindex,andexplainedundercertaincondition,alsomayestimatefunctionf(t)withthewavelettransformationinat0Lipindex.Thus,relatedthewavelettransformationandthesignalLipindex.Whencarriesontheedgeexaminationusingthewavelet,appliesnon-samplingthewavelettransformation,andhasmadesomeimprovementstothetraditionalmethod,unifiestheauto-adaptedfiltermethodwiththesignalirregularityexamination,inthenoisequitebigsituation,hasobtainedthequitesatisfyingdenoisingeffect.Inthischapterfinal,butalsodiscussedinthesamplingwavelettransformationfoundation,carriesontheimagethemainedgeextractionmethod.Thismethodistakeswiththegreatcriterionunderedgeimageinstructsunderthesmallcriteriontheedgeimagetocarryonthechoices,thesimulationresultindicatedthismethodiseffective.FourthchapterbasedonphaseinformationimageedgeexaminationalgorithmWeknewthat,theimagecharacteristicexaminationisimageryprocessing,patternrecognition,basedoncontentdomainandsoonimageretrievalkeytechnologies.Howexaminesaswellastheeffectivedescriptionimagecharacteristic,sincelongagoreceivesthemultitudinousdisciplinescontinuouslytheattention.Theoverwhelmingmajorityimagecharacteristicexaminationalgorithmalliscarriesonbasedontheimagebrightnessgradient.Notesthephaseinformationtheimportanceandthestability,causestocarryontheimageryprocessingintonewresearchtopicusingthephaseinformation.Thischapter,wewilllaunchthediscussiononthisquitenoveltopic,willinferitsrationale,andexplainedbyitssimulationresultbasedonthephasecharacteristicextractionalgorithmsuperiority.§4.1signalphaseinformationWeknewthat,classi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 普外引流管的护理
- 消防监控室半年度工作总结
- 幼师岗位培训心态
- 辽宁省大连市2026届英语九上期末复习检测试题含解析
- 食堂员工防疫培训
- 副职领导年度工作总结
- 2026届惠州市重点中学九年级化学第一学期期中质量检测模拟试题含解析
- 河北省秦皇岛市2026届化学九年级第一学期期中监测模拟试题含解析
- 2026届山西省朔州市名校英语九年级第一学期期末教学质量检测试题含解析
- 部编人教版四年级语文下册《习作:我的动物朋友》示范教学课件
- 金川公司社招历年考试题
- JB∕T 13357-2018 起重机械用制动电动机能效限额
- 无人机培训公司合同范本
- 医院培训课件:《静脉血栓栓塞症(VTE)专题培训》
- 2024年安徽马鞍山市公安局辅警招聘笔试参考题库附带答案详解
- 阿芬太尼在术后恢复中的重要作用
- 室内高尔夫行业分析
- 微商培训的课件目录
- 《农业保险承保理赔电子化作业规范》
- 常见呼吸道传染病课件
- 《影视艺术鉴赏》课件
评论
0/150
提交评论