抽油机中英文对照外文翻译文献_第1页
抽油机中英文对照外文翻译文献_第2页
抽油机中英文对照外文翻译文献_第3页
抽油机中英文对照外文翻译文献_第4页
抽油机中英文对照外文翻译文献_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

抽油机中英文对照外文翻译文献抽油机中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Studyondesignandsimulationanalysisofthedoublehorse-headpumpingunitbasedonthecompoundbalancestructure.AbstractDoublehorse-headpumpingunit,beingoneofthemostclassicalmechanicalequipment,hashighefficiencyandgoodbalanceabilityduringtheoilextractionowingtoitshorse-headstructureconnectingwiththerodbythesteelwirerope.Butitscharacteristicofenergyconsumptionreductionislimitedbecauseofthemotortorquefluctuationandnegativetorqueappearingwhilethepumpingunitisworkingintheupstrokeanddownstroke.Thecompoundbalancedesignisappliedtothedoublehorse-headpumpingunitbythecrankbalanceandwalkingbeambalance,whichiscompletedbytheequalenergyprincipleduringtheupanddowncirculationoftheoilsuctionunit.Thefiniteelementmodelofthewholeequipmentisbuilt,andthesimulationanalysisiscompletedbythesoftwareADAMS,undertheconditionsofthecompoundbalanceandthatofthecrankbalance.Theoutputtorqueofthecrank,theforcesfromthebackhorse-headrope,andtheconnectionpinarecalculated.Fromtheviewpointofsystemdesigntocomparewiththetraditionalcrankbalancepumpingunit,thecompoundbalancedesigncanreducethetorquefluctuationgreatly,decreasetheforcesofsteelwireropeconnectingwiththebackhorse-head,andgetridofthestructureproblemsfromthetraditionalpumpingunit.Thestresstestofthedoublehorse-headpumpingunitdesignedbythecompoundbalancemethodiscompletedintheoilfields.Ithasprovedthecorrectnessandreasonabilityofthecompoundbalancedesign.Themethodologyofthecompoundbalancedesignishelpfulinimprovingtheworkefficiencyandreliabilityandbringingaboutbetterabilitiesofenergyconsumptionreductionforthepumpingunitduringitsworkcirculation.KeywordsDoublehorse-headpumpingunit,compoundbalance,systemsimulation,finiteelement,energyconsumptionreduction.IntroductionInrecentyears,itismoreandmoreimportantforthepumpingunittohavethecharacteristicsofhigheffi-ciency,energyconsumptionreduction,andgoodreliabilityinthecourseofoilextraction.Moreresearchersfocusontheaspectsaboutelectricmotorperformanceimprovement,crankbalanceefficientoptimization,andnewpumpingunitdevelopment,especiallyinUnitedStaes,Russia,France,Canada,andChina.ByAPIrules,Chineseresearchershavedesignedmanykindsofnew-typepumpingunits,suchasdoublehorse-headpumpingunit,bendingbeampumpingunit,andlong-strokepumpingunitwithoutbeam,whichareadaptedtoChineseoilfieldssituations.Thedoublehorse-headpumpingunitisonekindofclassicalpetroleummachineryusedinoilextractionattheonshoreoilfields.Itsstructurecomprisesafourbarmechanismwhoseparametersaredynamicwhileitisworking,whichcanavoidthedeadangelproblemandgivealongstrokeduringrunning.Itcanbringaboutbettercounterbalanceefficiencyandhasbetterenergyconsumptionreductionabilitycomparedtoothertypesofpumpingunits.SoitiswidelyusedinChineseonshoreoilfieldsnowadays.Asisknown,thenegativetorquesfromthemotorofthepumpingunitcannotbeeliminatedcompletelyduringtheupstrokeanddownstroke.Itsnettorqueofthecrankhasalittlewaveandthepolishedrodloadsarecomplex,whicharethekeyproblemsandhavebroughtamoreseriouseffectontheoilextraction.Duringtheworkcirculationsofthedoublehorseheadpumpingunit,thepolishedrodloadsaredifferentintheupstrokeanddownstroke.Theloadsinupstrokeareconsistedofthesuckerrodsself-weightandoilliquidweightintherods,buttheoilliquidweightintherodsonlyduringthedownstroke.Theloaddifferencemakesthetorque–timecurveirregularinsinediagramfromthecrankshaft.Soitisimportantastohowtoreducethetorquefluctuation,whichcanimprovethetechnologylevelofenergyconsumptionreductionforthedoublehorse-headpumpingunit.Thecompoundbalancedesignisaneffectivemethodtosolvethisproblem.Theenergymethodisusedinthedoublehorse-headpumpingunitdesign.Finiteelementmethodisappliedtobuildthemodelofthecompound-balancedpumpingunit.Underthesameworkingconditions,thestructuresimulationsofdifferentdesignaredone.Aftercomparingthecalculatedtorque–timecurves,theoptimizeddesignischosen.Thentheanalysisandtestofstressforthecompound-balancedpumpingunitarecompletedtogiveanevaluationaboutdesignscientificityandrationality.Compoundbalancedesignmethodology.Adoublehorse-headpumpingunithasmanyelementssuchashorseheads,beam,crank,gearreducer,etc.(showninFigure1).Figure1.Doublehorse-headpumpingunitLikeallkindsofthebeampumpingunit,agreatdealofenergyconsumptionoccurswhileworking.Thereasonbeingtheexistenceoftheloaddifferenceforpumpingbetweentheupstrokeandthedownstroke.Sothemotor’sworkandoutputtorquesarechangingduringthewholeworkcirculation.However,themotorisalwaysworkingwiththesamespeedandinthesamerotatingdirectionafteritisstarted.Underthiscondition,theelectriccurrentimpactandfluctuationwilloccurbecauseofthedifferenceinloads,whichwillbringaboutabadeffectontheelectricnetwork,increaseelectricenergyconsumption,andshortenmotor’sworklife.Thebadeffectwillbereflectedinthetorquecurvefluctuations.Thebiggerthetorquefluctuation,thehigherthemotorimpactandgreatertheenergyconsumption.Howtodecreasethefluctuation?Itdependsonthecounterweights,energyconsumptiondifferencefromthepumpingcycles,andmakingthemotorworkequallyintheupstrokeanddownstrokeasmuchaspossible.Beambalanceandcrankbalancearethetwobasictypesofunit.Thevalueofbalanceweightisconstantanditspositioncanbeadjustedforthecrankbalanceway.Generally,thebeampumpingunithasthetraditionalbalancewaywiththecrankcounterweight,whichcanreducethepeakvaluefluctuationofthetorquefromthemotorinsomeways.Butitislimitedbecausethecrankcounterweightadjustmentisdiffi-cultandinaccurate,alsoimportantisthefactthatthecrankbalanceweightcannotbechangedafterdesigning.Thebeambalanceweightvaluecanbechangedandinstalledeasilywhenitspositionisfixedforthebeambalanceway.So,thecompoundbalancemethodhasabsorbedthemeritsofthetwowaysabove.Thecompoundbalancepumpingunithastwobalanceweights.Thebeamweightandcrankweightmovedownwardsintheupstroke.Thereleasedpotentialenergy,includingtheworkofelectricmotor,equalstotheworkofthepolishedrodloadsduringthiscourse.Inthedownstroke,alltheweightsmoveupwardsbutthepolishedrodgoesdownwards.Theworkofmotor,includingthatofthepolishedrodloads,equalstothepotentialenergytoliftupthetwoweights.Ifthecompoundbalancedesignisperfect,thesuperpositioncurveofthetorquesfromthepolishedrodloadsandthebalanceweightswillbeanapproximateregularsinecurvewithlessfluctuation.Thepeakvalueofthesuperpositioncurveislessthanthepowerofprimemotor,whichistheultimateaimtodesignthepumpingunitbythecompoundbalancemethod.Thecompoundbalancedesignistheprocessofthecompoundbalancecalculation,whichcanobtainthemainparametersofthebeambalanceweightandthebalanceradiusofthecrank.CompoundbalancecalculationInordertoobtainagoodbalancedesignonthedoublehorse-headpumpingunit,thebalancecalculationisakeystep,dependingonthedesignaimi.e.thetwopeakvaluesofoutputtorquesfromthereducergearboxareequalasmuchaspossibleduringtheupstrokeanddownstroke.ThestructureandforcessketchofthepumpingunitisshowninFigure2.Figure2.Structureandforcessketchofthepumpingunit.Itshowsthatpointoisthebeamfulcrumandpointo0isthegyrationcenterofthecrank.Thebeam,connectingrod,andcrankconstitutethelinkmechanism.Withthestartoftheelectricmotor,themechanismisdriven,andtherotatingmovementoftheprimemotoristransformedintotheupanddownreciprocatingmovementofthepolishedrod.Duringtheworkcycle,thestructuremustbeartheforcesfromtheself-weights,thebalanceweights,andthepolishedrodloads.Thecompoundbalancestructureisdesignedbyenergytheory.Theliftedverticaldistancesofthebeambalanceweight,beamself-weight,crankbalanceweight,andcrankself-weightaredefinedseparatelyash1,h2,h3,andh4,andtheirstoredenergyareW1,W2,W3,andW4,respectively(1)(2)(3)(4)(5)(6)(7)(8)whereKCrepresentsthedistanceoa,showninFigure2.beamrepresentstheswingangleofbeam.and0separatelyrepresentthecrankrotatingangleatthestartingandstoppingofupstroke.QbeamandQcrankseparatelyrepresentthebeambalanceweightandthecrankbalanceweight.LbeamandLcrankseparatelyrepresentthedistanceofando0g,asshowninFigure2.qbeamandqcrankaretheself-weightsofbeamsystemandcrank.Thesumoftheenergyis(9)whereitisdefinedas(10)(11)Equations(10)and(11)canbeusedtocalculatetheQ0beamandR0crank,whicharethepartofthebeamselfweightasaportionofbeambalanceweight,andthebalanceradiusforpartofthecrankself-weightasaportionofcrankbalanceweight.So,thebeambalanceweightQbeamandthebalanceradiusofcrankRcrankofthecompoundbalancedesignaredefinedasfollows(12)(13)Thestoredpotentialenergyofalltheweightsraisedbythestaticenergyindicatordiagramis(14)whereP0rodandP0oilaredefinedrespectivelyastheselfweightofsuckerrodsinoil-wellliquid,andtheweightofoilliquidintheoil-wellpipelinesandaboveitsworkingfluidlevel.Accordingtothegeometricalrelationasfollows(15)Thebeambalanceweightandthecrankbalanceradiusarecalculatedonthebasisofthecompoundbalancedesignidea.whereAandCaredefinedseparatelyasthefrontpartlengthandthebackpartlengthofthebeam.Ristheturningradiusofthecrankexpressedinmeters.VirtualsimulationdesignThesoftwareADAMSisusedinthecompoundbalancedesignofthedoublehorse-headpumpingunit.Thebestoptimizeddesignisgotbythedynamicvirtualsimulation.DesignschemeAccordingtothemethodologyofcompoundbalancedesign,theQbeamandQcrankareachieved.Atthesametime,thebeamratioofAtoCisoptimizedtogiveasatisfiedenergyconsumptionreduction.Becausetheratioiswithinascope,whichisgreaterthan3,therearethreereasonabledesignschemes,showninTable1.ModelbuildingThemodelofthedoublehorse-headpumpingunitisbuiltandshowninFigure3,whichisdesignedbythecompoundbalancedesignmethodology.Itishelpfulforthevirtualsimulationtosimplifythemodelscientifically.Themodelisbuiltwiththepartsoffrontandbackhorseheads,beam,crankandsteelsupport,etc.Someattachmentsareomitted,suchastheboltsandtheladder.10–12ThesteelwireropeissimulatedbydefiningvariousothermicroelementswiththeBushingsetinADAMSsoftware.Table1.Schemesofthecompoundbalancedesignforthedoublehorse-headpumpingunit.CalculationandanalysisThecalculationiscarriedoutwiththeparametersoftheoilwell,whichincludethefollowing:thedepthofthehangedpumpis2000m,thedepthoftheoilliquidworkinglevelinpipesis1800m,thediameteroftheplungeris56mm,thedensityoftheoilliquidis980kg/m3,thedensityoftheoiltubeis7850kg/m3,thediametersofthesuckerrodandoiltubeare22and62mmrespectively,andthelengthofthestrokeis5m.ThedesignedschemesaresimulatedbythesoftwareUGandADAMS.Inthecourseofthenumericalsimulation,thesteelwireropeconnectingthehorsehead,isseparatedintomuchmoremicrolinesegmentsbytheelementtypeofBushing.13–15Whenthedynamicsimulationofthecompoundbalancepumpingunitiscompletedfortheworkingcycles,theMisesstressnephogramfromthecomputationalsimulationisobtainedandshowninFigure4.TheoutputtorquecurveofthereductiongearboxisshowninFigure5.Thefirstcycleperiodisfrom30to42.5s,andthenextperiodisfrom42.5to55s.Itisconcludedthatthechangeperiodofthegearboxtorqueis12.5s,andthispumpingunithas4.8timesworkcyclesperminute(60s).ThesimulationresultsareshowninTable2.TheoutputtorqueTofthereductiongearbox,thetensionFropeofthesteelwireropeatthebackhorsehead,andtheforceFpinoftheconnectionpinarelisted.Comparingtheresultsofthetraditionalcrankbalancedesignwiththecompoundbalancedesign,itcanconcludedthattheschemeofcompoundbalancedesignhasabettercapacityonenergyconsumptionreduction,especiallytheNo.2schemeisthebestdesignbecauseitspeak-to-peakvalueofTisleastamongtheseschemes.Figure3.Modelofthedoublehorse-headpumpingunitFigure4.Calculationnephogramofthedoublehorse-headpumpingunitwiththecompoundbalanceweights.Figure5.Simulationcurveoftheoutputtorquefromthereductiongearbox.Table2.Simulationresultsofthetwokindsofbalancedesignsforthedoublehorse-headpumpingunit.Figure6.Stresstestingsystemofpumpingunit.Figure7.Stresstestpointsonthehorseheadandbeam:(a)testpointsatpinA;(b)testpointsatpinB;(c)testpointsonbeamFigure8.Stresstestpointsonthesteelsupport:(a)testpointsatthebottomofsteelsupport;(b)testpointsontheuppersideofsteelsupport.StresstestStresstestisanefficientwaytofindwhetherthepumpingunitisareasonabledesign.16Thestresstestiscompletedforthedoublehorse-headpumpingunitbasedontheNo.2compoundbalancedesigninTable2.ThestresstestingsystemofthecompoundbalancepumpingunitisbuiltinFigure6.ThemainelectricapparatusesofthesystemincludetheTS3828typeoftheresistancestrainindicator,theBJ115-10AAtypeoftheresistancestraingage,andtheUT3232Stypeofthedataacquisitioninstrument.TestpointssettingTwelvetestpoints(1#–12#)areinstalledonthebackhorseheadwhichareclosetopinAandpinB,showninFigure7(a)and(b).Twotestpoints,13#and14#aresetonthebeamofthedoublehorse-headpumpingunit,asshowninFigure7(c).Thesteelsupportandbase,thekeypartstobearthelargeloads,aretestedbyseventestpoints15–21#,whicharesetontheanglesteelcolumnsandelements,asshowninFigure8.CurvesofstresstestAccordingtothestraintestprincipleoftheresistancestraingage,thedisplacementdeformationofthestructurecanbeconvertedintotheresistancechange,whichcanbecollectedasthevoltagesignals.ThetestcurvesofthevoltageandtimewaveformatpinA,B,thebeam,andthesteelsupportareshownseparatelyinFigures9,10,11,and12.StressresultsIntheplanestressstate,thevalueanddirectionoftheprincipalstressshouldbeknown.Thestrainvaluesinthreedirectionsof90,45,and0aredefinedas"90,"45,and"0,whichcanbetestedbythestrainrosettes,asshowninFigure13.AccordingtothestrainFresults,theprincipalstressofthetestpointscanbegot.Figure9.TestcurveoftimewaveformofthetestpointsatpinA.(a)upperleftpointsofpinA;(b)upperrightpointsofpinA.where_x0005_isdefinedastheincludedangleoftheprincipalstressdirectionandtheresistancestraingageof0setting(zeroline).TheresultsofstresstestandstraincalculationforthetestpointsareshowninTables3and4.TheequivalentstressesatpinAandpinBarecalculatedbythefourthstrengththeorybasedontheresultsof1and2.Figure10.TestcurveoftimewaveformofthetestpointsatpinB.(a)upperleftpointsofpinB;(b)upperrightpointsofpinB.where1,2,and3representtheprincipalstresses,theyconformto14243.Intheplanestressstatstate,soequation(21)canbesimplifiedasfollowing.Accordingtoequation(22),theequivalentstressesofthetestpointsatpinAandpinBarecalculated,whichareshowninTable3.Theequivalentstress,eq4,canbeusedinthestrengthcheckingforthestructureofthepumpingunit,especiallythepartsofthehorseheadnearpinAandpinB.ThecurvesoftheequivalentstressareshowninFigure14.Theirvariationrulesaresimilarwithtimeduringthe360degreeworkcirculation.Figure11.Testcurveoftimewaveformofthetestpointsonthebeam.Figure12.Testcurveoftimewaveformofthetestpointsatthesteelsupport.(a)testpointsatthebottomofsteelsupport;(b)testpointsontheuppersideofsteelsupport.FromthedatainTables3and4,itcanbeconcludedthatthestrainandstressareproducedbythealternatingloadsfromthehorseheadcircleworking.Whenthemaximumofthepolishedrodloadischangingbetween21.11kNand68.23kN,thestressesoftheconnectionpinsremainstableandthestressmaximumis28.08MPa,andthestressamplitudesofallthetestpointsarenothigh.Underthealternatingloads,thepumpingunitstructureissafewithenoughstrengththoughthestressesofthetestpointsaredifferent.Figure13.Strainrosettesetting.ConclusionAnewdesignmethodofcompoundbalanceisfoundforthedoublehorse-headpumpingunitinthisstudy.Thecompoundbalancemethodhasabsorbedthemeritsofthetwoways,thecrankbalanceandthebeambalance.Thekeystepistodeterminethevaluesofthebeambalanceweightandthebalanceradiusofthecrankbalanceweight.Table3.EquivalentstressresultsofhorseheadatthetestpointsofpinAandpinB.Table4.Strainandstressresultsofbeamandsteelsupport.Figure14.Curvesofequivalentstressesofhorseheadandbeaminoneworkcirculation.Thereisageneraldescriptiononthecompoundbalancedesign.Intheinitialstageofdesign,thebeambalanceweightandthebalanceradiusofthecrankbalanceweightarecalculatedaccordingtoequations(16)and(17),andbycombiningthedesignaimofbetterenergyconsumptionreductioncapacityandtheratioofAtoCinthescopeafewreasonableschemesaregot.UsingthesoftwareADAMS,thedynamicvirtualsimulationfortheseschemesaredone,andthebestoptimizeddesignschemeispickedupfromthebalanceddesigns.Inordertoverifythecorrectnessandreasonabilityofthisbestbalancedesign,thestresstestforthecompoundbalancepumpingunitisnecessary.Iftheresultissatisfied,thecompoundbalancedesigniscompleted.Inthepaper,thedesignforthedoublehorse-headpumpingunitiscompletedbythecompoundbalancemethodology.Thedesigncoursestrictlycomplieswiththegeneralrulesasmentionedabovebasedonthedesignaimofbetterenergyconsumptionreduction.Thestresstestonthekeyparts,horsehead,beam,andsteelsupportshowsthatthestressamplitudesofallthetestpointsaremuchlessthanthesafeallowablestressofthesteelmaterial,andthecompoundbalancepumpingunitstructurehasenoughstrengthunderthealternatingloadsduringitsworkingcycle.Forthecompoundbalancedesign,thenegativetorquefromthemotorofthepumpingunitcanbedecreasedinthecyclestrokes,andtheforcesofthesteelwireropeandtheconnectionpinscanbecutdown.Soitcanbeconcludedthatthecompoundbalancemethodisscientificandeffectiveinimprovingthecapacityofenergyconsumptionreductionforthebeampumpingunit.References1.WangSM,ChenWHandZhangWE.ComparisonandanalysisofbeampumpingunitmadeinChina.JElectromechEng2001;18:80–84.2.ZhengGR.Currentsituationanddevelopmentofenergy-savingpumpingunit.JApplEnergyTechnol2000;3:1–3.3.GuoD,ZhangZZ,BaiXM,etal.Comprehensiveeconomicanalysisofenergy-savingpumpingunit.JPetrolMach2007;35:60–63.4.WuYJ,LiuZJ,ZhaoGX,etal.Pumpingunit.Beijing:PetroleumIndustryPress,1994,pp.8–58.5.LiuHZandGuoD.Specialbeampumpingunit.Beijing:PetroleumIndustryPress,1997,pp.12–49.6.YangDP,GaoXSandDaiY.Dynamicsimulationsystemofvariableparameterflexiblelinkagemechanismofdualhorseheadpumpunit.JMechEng2010;46:59–65.7.FiruLS,CheluTandMilitaru-PeterC.Amodernapproachtotheoptimumdesignofsucker-rodpumpingsystem.In:Proceedings-SPEannualtechnologyconferenceandexhibition,Denver,Colorado,2003,pp.825–833.8.RowlanOL,MccoyJNandPodioAL.Bestmethodtobalancetorqueloadingsonpumpingunitgearbox.JPetrolTechnol2005;44:27–32.9.WanBL.Designandcalculationofoilextractionequipment.Beijing:PressofPetroleumIndustry,1986,pp.26–37.10.DongSMandFengNN.Computersimulationmodelofthesystemefficiencyofrodpumpingwells.JSystSimul2007;19:1853–1856.11.SongJ,ZhangHWandChengGJ.Researchonenergysavingofbeampumpingunitbyvirtualprototypetechnology.JInformManuf2007;36:17–18.YaoCD.Optimizeddesignanddynamicsimulationofanewpumpingunit.JMechDes2004;21:49–51.12.ZhangHZandShengXY.Finiteelementanalysisonstrengthofliftingropesofdoublehorseheadbeampumpingunit.PetrolEngConstruct2008;10:24–26.13.ChenDM,HuaiCF,ZhangKT,etal.MastADAMSvirtualprototypetechnology.Beijing:ChemicalIndustryPress,2010,pp.22–36.14.TjahjowidodoT,Al-BenderF,vanBrusselVH,etal.Frictioncharacterizationandcompensationinelectromechanicalsystems.JSoundVib2007;308:632–646.15.LengJC,ZouLQ,CuiXH,etal.Failureanalysisofwalkingbeamofdualhorseheadpumpingunitbasedonstressmeasurement.JOilFieldEquip2007;36:67–69.译文:在研究基础上,复合平衡结构双驴头抽油机的设计和仿真分析福海龙邹龙青王月冯志萍宋振华摘要双驴头抽油机,是最经典的抽油设备,由于其驴头结构由钢丝绳杆连接,使得抽油过程中的高效率和良好的平衡能力。但它的能量消耗减少时,因为电动机转矩波动和同时泵送单元在上冲程和下冲程工作出现负转矩的限制。化合物平衡设计由曲柄平衡和异步梁的平衡,这是由相等的能量原理在上下抽吸油的循环完成施加到双驴头抽油机。整个设备的有限元模型建立,并在完成模拟分析由软件ADAMS,化合物平衡的条件和曲柄平衡下。曲轴的输出转矩,从背面驴头的绳到连接销上力的计算。从设计的角度来看,与传统曲柄平衡抽油机相比,该平衡结构可以大大减少转矩波动,降低钢丝绳与后驴头连接力,并摆脱传统抽油机的结构问题。复合平衡方法设计的双驴头抽油机的压力测试在油田完,已被证明平衡结构的正确性和合理性。该平衡设计结构的方法是提高了工作效率和可靠性,其工作过程中的循环带来的能源消耗减少了抽油机的更好的能力很有帮助。关键词:双驴头抽油机;复合平衡;系统仿真;有限元;降低能耗介绍在近年来,越来越重要的抽油机在采油的过程中具有高效率,降低能耗,和良好的可靠性的特点。更多的研究人员专注于对电动机的性能提升,曲柄平衡有效的优化,以及新的抽油机的发展,尤其是在美国,俄罗斯,法国,加拿大和中国方面。通过API的规则,中国的研究人员设计了多种新型抽油机,如双驴头抽油机,横梁式抽油机,长冲程抽油机,这是适应中国油田的情况。双驴头抽油机是一种在陆上油田抽油石油机械。其结构包括一个四杆机构,它的参数是动态的,而它也是工作得,可避免死点和为运行过程中提供一个长冲程。它可以带来更好的平衡效率,具有较好的节能降耗能力相比其他类型的抽油机,所以它被广泛应用在中国的油田。如所周知,从泵单元的电机的负转矩不能完全上冲程和下冲程时消除。其曲柄的净扭矩有少许光杆负荷是复杂的,这是关键的问题,并提出在采油的更严重的影响。在双驴头抽油机的工作环流,光杆负荷的上冲程和下冲程。在上行程上的负载由所述,吸盘的只在冲程杆在杆自重而在杆油性液体的重量,即油性液体的重量。负载区别使得转矩-时间曲线在从曲轴正弦图不规则。因此,它是作为对如何减少扭矩波动,从而可以提高能量消耗降低为双驴头抽油机的技术水平的重要。平衡的结构设计是要解决这个问题的有效方法。能量法在双驴头抽油机设计中,有限元方法被应用到平衡抽油机的模型。在相同的工作条件,不同的结构设计仿真完成。比较所计算的转矩-时间曲线后,选择了最优化设计。那么对于复合平衡抽油机分析和压力测试的完成提供有关设计的科学性与合理性进行评估。平衡结构装置的设计双驴头抽油机有很多元素,如驴头,梁,曲轴,齿轮减速机等(如图1所示).图1.双驴头抽油机像各种的游梁式抽油机,因为上冲程和下冲程之间泵送负载差的存在,因此电机的工作和输出扭矩的整个工作循环过程中发生变化。然而,电动机总是以相同的速度,并在它被启动后相同的旋转方向工作,在这种状态下,电流冲击和波动会发生,因为在负载的差异,这会带来不好的影响,增加电能消耗,并缩短电机的工作寿命。该负面影响将反映在扭矩曲线的波动。转矩变动越大,马达冲击和能耗越大。如何降低波动?它取决于从泵送循环的配重,能量消耗的差异,并在上行程使电动机工作同等和下冲程尽可能。游梁平衡和曲柄平衡是两种基本类型抽油机。该值的平衡配重是恒定的并且它的位置可以调整为曲柄平衡的方式。一般地,抽油机具有与曲柄配重,从而可以减少从在某些方面电动机的转矩的峰值的波动的传统平衡方式。但它是有限的,因为曲柄配重调整是不准确的,重要的事实是,曲柄平衡重不能在设计之后被改变。梁平衡重量值是可以改变的,当它的位置是固定的光束平衡的方式轻松安装。所以,该平衡法已吸收上述两种方法的优点。该复合平衡抽油机有两个配重,光束重量和曲柄重量在上冲程向下移动释放的势能,包括电动马达的工作,这期间等于光杆负荷的工作。在下冲程,所有的重量向上移动,但光杆从上至下。电机的工作,包括光杆负载,等于势能抬起两个砝码。如果平衡结构设计是完美的,从光杆负载和平衡配重的扭矩叠加曲线将用更少的波动近似普通的正弦曲线。叠加曲线的峰值小于原动机的功率,这是最终目标的平衡法来设计抽油机。平衡的结构设计是抽油机的平衡计算,可以得到光束平衡重和所述曲柄平衡半径主要参数的过程。平衡重计算过程为了获得双驴头抽油机上的良好平衡的设计,平衡计算是一个关键步骤,根据设计目的即由减速齿轮箱输出转矩的两个峰值也相等期间尽可能冲程和冲程。泵送单元的结构和力简图中示出在图2中。图2.抽油机结构和受力草图。这表明,O点为梁支点,点是曲柄回转中心。光束,连杆,及曲柄与电动机构成的连杆机构。电机扭矩转化成光杆的上下往复运动。在工作周期,该结构必须承受从自重量,平衡配重,和光杆负荷的力。该化合物的平衡结构是由能量原理设计的。光束平衡重,光束自重,曲柄平衡重的提升的垂直距离,和曲柄自重如H1,H2,H3和H4,并且其储存的能量分别定义的W1,W2,W3以及W4,分别(1)(2)(3)(4)(5)(6)(7)(8)其中,KC表示距离OA,如图2所示。光束表示光束的摆动角。和0分别表示曲轴在起始旋转角和冲程的停止。Qbeam和Qcrank独立地表示光束平衡重和曲轴平衡重。Lbeam和Lcrank独立地表示的和O0克距离,如图2qbeam和qcrank是梁系统和曲柄的自重。能量的总和是(9)它被定义为(10)(11)方程(10)和(11)可以被用来计算Q0光束和R0曲柄,这是光束平衡配重的部分,和余量的半径为曲柄自重作为一部分曲轴平衡重的一部分。所以,光束平衡重和游梁平衡设计的曲柄的平衡半径定义如下(12)(13)通过静态能量指示图提出的所有储存的势能是(14)其中,P0杆和P0油分别定义为抽油杆在油井液体自重,和油性液体在油井管道和高于其工作流体水平的重量。根据几何关系如下(15)光束平衡重和曲柄平衡半径计算的平衡设计思想的基础上。其中,A和C作为前部的长度和梁的后部长度分别定义的。R是在米表示的曲柄的转动半径。虚拟仿真设计该软件ADAMS在双驴头抽油机的复合平衡设计中,最优化的设计是由动态虚拟仿真得到。设计方案根据平衡设计的方法,该Qbeam和Qcrank得以实现。同时,A至C中的光束的比例被优化以得到满意的能量消耗减少。因为比率是一个范围,该范围是大于3内,有三个合理设计方案中,如表1所示。建立模型双驴头抽油机的模型建立,在图3中,这是由复合平衡的设计方法设计的显示。这有利于为虚拟仿真,科学地简化模型。该模型是建立与某些附件省略正面和背面驴磁头,梁,曲柄和钢支撑等的零件,如螺栓和钢丝绳是通过定义各种其它微模拟与衬套元素ADAMS软件中设置。表1.复合平衡设计为双驴头抽油机的方案。计算与分析计算与所述油的所述参数以及,这包括以下进行:悬挂泵的深度为2000米,为管道油性液体工作水平的深度为1800米,柱塞的直径为56毫米中,油性液体的密度为980公斤/立方米,油管7850千克/立方米,抽油杆和油管的直径分别为22和62毫米的密度,和行程的长度为5米。该设计方案是由软件UG和ADAMS仿真。在数值模拟的过程中,钢丝绳连接马头,由Bushing.13-15的元素类型当复合平衡抽油机动态仿真完成了工作分成更微观的线段循环,获得从计算机模拟的应力云图和图4中所示的减速齿轮箱的输出扭矩曲线示于图5的第一个周期期间为30至42.5秒,在下一个周期为42.5至55秒。可以得出结论,变速箱转矩的变化周期为12.5秒,这泵送单元具有4.8倍的工作,每分钟的周期(60秒)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论