虚拟仪器电压波动中英文对照外文翻译文献_第1页
虚拟仪器电压波动中英文对照外文翻译文献_第2页
虚拟仪器电压波动中英文对照外文翻译文献_第3页
虚拟仪器电压波动中英文对照外文翻译文献_第4页
虚拟仪器电压波动中英文对照外文翻译文献_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中英文对照外文翻译(文档含英文原文和中文翻译)DesignandSimulationofVoltageFluctuationRateMonitorSystemBasedonVirtualInstrumentTechnology

AbstractElectronicpoweristhemostwidelyusedenergy,anditsapplicationdegreehasbeenamarkofcountrydevelopmentlevel.Thispaperintroducesamethodofvoltagefluctuationratemonitorbyusingvirtualinstrumenttechnology.Becausevirtualinstrumenttechnologyusescomputerownhardwareanddesigngraphicsprocedureframediagramsoftwaretocomplete,whichhasmanyadvantagesofthesimplealgorithmandfastspeed,etc.Throughsimulatingthree-phasevoltageofelectronicpowersystem,thispapercompletesvoltagefluctuationratemonitorofelectronicpowersystemandelectronicpowerqualityjudgment,aswellasverifiesaccuracyofalgorithmdiagramprocedure.Keyword:virtualinstrumentation,voltagevariation,flicker一.IntroductionWiththedevelopmentofmicroelectronicandelectronicpowertechnologyandwidelyapplication,userhashigherdemandofelectronicpowerqualitylittlebylittle.Butbecauseofexistingofdisturbanceload,suchasnonlinear,impactorimbalanceelectronicload.Aswellasotherdisturbancesource,suchassystemshortcircuit,etc.whichcausingamountofelectronicpowerqualityproblem,andaffectingelectronicpowernetworkaswellasusers’equipmentsafe.Correctly,flickeristheimpressionofunsteadinessofvisualsensationinducedbyalightstimuluswhoseluminanceorspectraldistributionfluctuateswithtime.Forthisreason,theexpression“voltageflicker,”althoughverycommon,isactuallyincorrect.TheinternationalstandardizationeffortsoftheUIE(UnionInternationaled’Electrothermie)[1]andtheIEC(InternationalElectrotechnicalCommittee)ledtoaflickermeter[1],[2]thatsimulatestheprocessofphysiologicalvisualperceptionandgivesareliableindicationofthereactionofanobservertoanytypeofflicker,whichisindependentofthesourceofdisturbanceandwithreferencetoaconventional60-Wincandescencelampat230V.Alltypesofvoltagefluctuationsmaybeassessed[3]usingaflickermeterwhichcomplieswiththespecificationsgiveninIEC-EN60868.Electronicpowerqualityproblem’sproduction,notonlyrelatedtopowerplant,butalsoelectronicpowerusers.Suchasvoltagefluctuation,whichcausingbyuserdisturbance.Idealthree-phaseACpowersystemshouldbeakindofsinewavevoltageprovidingtoelectronicpoweruserinconstantfrequencyandstandardvoltage.Eachphasevoltagemagnitudeandelectroniccurrencymagnitudeisequalanddifferentofphaseis120º.Butbecauseofelectronicpowersystemhasgenerator,transformer,etcequipmentandsemiconductorrectifier,thyristorandfrequencyadjustingequipment,aswellasincludingnonlinearorhouseholdappliances,asymmetricloadintroduced,andso,idealstatedoesnotexist,whichproducingelectronicpowerqualityproblem.Powerelectronicqualitydecreasedwillmakeelectronicequipmentrunninginabnormal,producingequipmentdamage,andproductionrejectrateincreased.So,electronicpoweraffectnormalindustryproducingandelectronicnetworkrunning,whichcausinghugeeconomicdamage.Now,electronicpowerqualityproblemhascausedeachcountryelectronicpowerworkers’hightreatment.Improvingelectronicpowerqualitytechnologyhasbecomeelectronicpowersystemresearchfieldnewhot-pot.So,collectingandanalyzingoriginalmeasurementdataisveryimportant,whichhasveryimportantsignificanttowholeelectronicpowersystemelectronicpowerqualitymanagementandimprovement.二.SystemCompositionandPrincipleSystemusescomputerhardwareandsoftwaretodesign.SoftwaresystemusedvirtualinstrumentLabVIEWtodesign,virtualinstrumentisameasurementinstrument,whichrealizingmanymorefunctionthatothernormalinstrumentcannottorealization.Infact,virtualinstrumentadoptscomputer’sindicatortodisplayastraditionalinstrumentLEDorLCDdisplayer.Weusedatacollectionmodulehardwareequipment,andadoptsomeprocesscircuittocompletecomputerstrongsoftwarefunction,suchasdataoperating,analyzing,andprocessing.Comparingwithtraditionalinstrumentandequipment,Softwareofvirtualinstrumenttechnologyusescomputer’sstrongsource,whichrealizinglowcostspendinmaximumdegree.So,virtualinstrumentisbymeansofcomputertechnology,ithasmoredifferentcomparingwithtraditionalinstrument,whichdifferentisshownasTableI.LabVIEWismostwidelyusevirtualinstrumentdevelopmentsoftware,whichispresentedbyAmericancompanyofNI.LabVIEW8.5includeslotsoffunctionmoduleandcompletelybusequipmentsdrivingprocedure.LabVIEW’scharacteraccordingtomethodofgraphics:LabVIEWadoptsframediagramratherthanthetraditionaltextprogrammode.Programmethodemphasizesactualprocessofthesignalprocess,programhassimplecharacter,andmodifyingisconvenient.VirtualinstrumentsoftwareofLabVIEWisamostspreadtoworldnowadays,whichcancompletesystemmonitorormeasurement.Indomesticandinternational,manydesignersindesigningmeasurementsystemorcontrolsystemareusingittocarryoutprogramdesigning,whichisthedevelopmenttendency.三.NewDigitalFlickermeterThisPC-baseddigitalflickermeterdesignisbasedontheforwardandinversefastFouriertransform(FFT),andonfilteringinthefrequencydomain,fortheimplementationoftheweightingfilterofblock3oftheIECfunctionaldiagram.Theotherfilteringandsquaringoperationsareperformedinthetimedomain.Thewholemeasurementprocedureisbasedonthefollowingsteps:1)samplingandconversiontodigitalvalueofinstantaneoussignalofthesupplysystemvoltage;2)squaringofconvertedsamplesanddigitalfilteringinthetimedomain;3)FFTexecutiontopasstothefrequencydomainandfilteringthroughmultiplicationbythecomplexcoefficientsofthesecondfilterofblock3;4)inverseFFTtoreturntothetimedomainandsquaringanddigitalfiltering.Inthisimplementationthefirstproblemisthedefinitionofthesamplingfrequencyandofthenumberoftheacquiredsamples.Lowsamplingfrequenciesand/ornumbersofsamplesdonotallowaccuratedeterminationofthemodulatingdisturbancesignal(envelopeoftheinstantaneousvoltage).Ontheotherhand,highsamplingfrequencywouldrequireahighnumberofacquiredsamplestodetectthechangesofvoltage,withincreaseoftheanalysistime.Anotherconditiontorealizeisthatthenumberofsamplesmustbe2toreachthemaximumanalysisspeedoftheFFTalgorithm.Theinstrument,infact,mustworkinreal-timeperformingallthereadingoperationsoftheacquireddataandthenecessaryanalysiswithinthedurationofacycleofacquisitionwithoutlosinganyintervalofthenetworkvoltage.OtherproblemstoconsiderconcernthetransientsarisinginToanalyzeandresolvetheaforesaidproblems,theproposedimplementationhasbeensimulatedwithLabViewsoftware.Numeroustestshavebeenperformedsimulatingsinusoidalsignalsatnetworkfrequencywithvariouswaveformsmodulatingdisturbancesassinusoidal,rectangular,pulsetrains,andintransient,varyingthesamplingfrequency,thenumberofthesamples,thefrequencyofthenetworkvoltagesignal,thefrequencyandthetimeofthedisturbance.Toavoidaliasingproblemsinthesimulations,ananti-aliasingfilterhasbeenintroducedtolimitthebandofthesignalstohalfofthesamplingfrequency.Resultsbasedonsimulationsindicatethattheproposedapproachalwaysyieldsaccuratemeasurementsofflickerforalmost4096pointsat512-Hzsamplingfrequency,usinga12-bitA/Dconversion.Thisismainlytrueinthesecondhalfoftheindicateddata.四.MonitorPrincipleVoltagefluctuationisakindoftimelychanginginaseriesofvoltagechangingorworkfrequencyvoltagewaveline,whichcausingbyimpactcharacterpowerload,suchasactivepowerandreactiveactivepower’sgreatlychangingoffurnace,rollingmill,electriclocomotive,arcwelding,etcrunning.Itsessenceisactvoltagefluctuationsub-componentasamplitudemodulationwave,andmodulatevoltage’ssquaremeanvalue(orpeakvalue).Voltagefluctuationisactenvelopeofvoltage’ssquaremeanvalueorpeakvalueastimefunctionwave.Whenanalyzing,weactworkfrequencyvoltageuascarrywave,andmakefluctuationvoltageasamplitudewave,whichisshownasFig.1.(a)voltageofelectronicnetworku(t)(b)voltageofamplitudewavev(t)Fig.1Fluctuationvoltagevmodulatetoworkfrequencyvoltage.InFigure1.(a),uiselectronicnetworkfrequency50Hzinstantaneousvoltage,actingascarrywave,issinefluctuationvoltage.vis10Hzsineamplitudewave,whenusingittomodulate50Hzworkfrequencycarrywavevoltageu’speakvalue.InFigure1.(b),vmissineamplitudewavemaximumvalueorpeakvalue,disvpeak-valleydifferentvalue(p-pvalue).VisvsquaremeanvalueinitsperiodT,andexpressinUN’spercentage.Normally,voltagefluctuationmeasurementadoptsasstyleasbelow:measuringeachperiodwaveeffectvalueinafixedperiod,thencompareits,usemaximumvaluedifferentU'(Umax-Umin)plusstandardvoltageUN,itspercentageexpressesrelativevalue,whichisvoltagefluctuationrate.五.SystemSoftwareDesignAccordingtoformula(1),wecarryouteachphasevoltagefluctuationmonitorandfluctuationratemonitor.Amongthem,Aphasevoltagesimulationsignaladdingpulsefluctuationsub-component,voltagefluctuationmonitorprocedureframediagramisshownasFig.2.Fig.2Voltagefluctuationmonitorprocesureframediagram.TocalculatevoltageeffectvaluepeakvalueUmaxandUmin,procedureusesforcirclestructure,procedureuses(arraysizefunction)toreturnarray’selementsnumber,andjudgescircletimesN.CircletimesNisinputvoltagesamplingperiodnumbersn.ncangetinworkfrequencyvoltage’speriod0.02s(50Hz)plussamplingperiod(samplingfrequencyis10000Hz,samplingperiodis0.0001s).So,weobtaineveryperiodhas0.02/0.0001=2000numbersamplingpots.Wecanuseinputarraysizeofsimulationsignalsamplingpointnumber30000plus2000,whichisn=150numbersperiod.Wemakeinputvoltageeverysamplingperiodusingarraysub-collectionfunctioncalculate150numberperiodelementsbyusingmeansquarefunction.Andusearrayinsertfunctiontogetnewarray,whichadoptingarraymaximumandarrayminimumfunctiontocalculatemaximumvalueandminimumvalue,andthenusingmathematicsfunctiontocomparereferencevoltageeffectvalue220V,whichcompletingvoltagefluctuationratecalculation.六.ExperimentandConclusionInordertomakeeachphasevoltagesimulationdataapproximatetofactelectronicnetworkdata,so,leteachphasebasicwavevaluedifferent,andallhavewhitenoisedisturbancesignal,anditsstandarddeviationvalueis10.Inaddition,Aphasevoltageaddsareversepulsefluctuationsignalp.AndbyusingofLabVIEWtoproducingAphasevoltagesimulationdataproducingprocedureframediagramisshownasFig.3.Fig.3Aphasevoltagesimulationdataproducingfrontpanel.Otherphasevoltageproducingmethodissameasuponmethod.RunningfrontpanelofvoltageflucationratemonitorisshownasFig.4.Noalarmingconditionofvoltagefluctuation(b)AlarmingconditionofvoltagefluctuationFig.4Voltagefluctuationmonitorfrontpanel.Voltagefluctuationmonitorresultisshownasfrontpaneldisplaycontrolfile,Aphasevoltagefluctuationrateis1.03%,accordingtostandard<Voltagefluctuationandflicker>(GB-12326-2000),below10kV,itisnotmorethan2.5%,soAphasefluctuationdoesnotbeyondalarminglimitvalue,Aphasealarminggreenlampislight.WhenwedefineAphasesimulationfluctuationdelaywidth10,whichfluctuationratemonitorvalueis3.27%,alarminglampbecomered.BandCphasesimulationwavedoesnotaddfluctuationsignal.So,fluctuationrateis0,whichisconsisttosuggestion,andprovingprocedureframediagram’saccuracy.References[1]UIEWGDisturbances,“Flickermeasurementandevaluation,”Tech.Rep.,2002.[2]Flickermeter—FunctionalandDesignSpecifications,IEC-EN60868,2007[3]ElectromagneticCompatibility(EMC)—Part3:Limits—Section3:LimitationofVoltageFluctuationsandFlickerinLow-VoltageSupplySystems,IEC-EN61000-3-3,2005[4]G.Neri,G.D.Cain,T.Salmon,andA.Yardim,“Amicroprocessorbaseddigitalflickermeter,”IEEETrans.Intrum.Meas,vol.40,pp.1008–1013,Dec.2006.[5]K.Srinivasan,“Digitalmeasurementofvoltageflicker,”IEEETrans.PowerDelivery,vol.6,pp.1593–1598,Oct.2010[6]I.KamwaandK.Srinivasan,“AKalmanfilter-basedtechniqueforcombineddigitalestimationofvoltageflickerandphasorinpowerdistributionsystems,”ETEP,vol.3,no.2,pp.131–142,Mar./Apr.2009[7]M.T.Chen,“Digitalalgorithmsformeasurementofvoltageflicker,”Proc.Inst.Elec.Eng.Gen.Transm.Distrib.,vol.144,no.2,pp.175–180,Mar.2008[8]S.Nuccio,“Adigitalinstrumentformeasurementofvoltageflicker,”inProc.IEEEIMTC,Ottawa,May2007,pp.281–284.[9]S.Caldara,S.Nuccio,andC.Spataro,“Avirtualinstrumentforthemeasurementofvoltageflickerinpowerdistributionsystems,”inProc.IMEKOInt.Symp.ElectricalInstrumentsinIndustry,Glasgow,Sept.2009,pp.153–156.[10]Flickermeter,Part0:EvaluationofFlickerSeverity,IEC-EN60868-0,2010[11]ElectromagneticCompatibility(EMC)—Part4:TestingandMeasurementTechniques—Section15:Flickermeter—FunctionalandDesignSpecification,IEC61000-4-15,2010电压波动率监控的设计和模拟基于虚拟仪器技术的系统摘要电能是最广泛使用的能源,其应用程度是一个国家发展水平的标志。本文介绍了电压波动率的方法监测及如何利用虚拟仪器技术,虚拟仪器技术使用计算机的硬件和软件设计的图形程序需用框架图完成,有许多优点的简单算法速度快,可以模拟电子电力系统三相电压,本文完成了电压波动率监控电子电力系统和电子电能质量的判断,以及验证算法图过程的准确性。关键字:虚拟仪器,电压变化,闪变一.介绍随着微电子和电子电力技术的发展和广泛应用,用户对电能质量的有更高需求。但由于现有的负载扰动,如非线性、或不平衡电子负载的影响,以及其他干扰来源,如系统短路等,造成大量的电能质量问题,影响电子电力网络以及用户的设备安全。生产电能其质量问题,不仅与电厂,电力用户有关,还受电压波动等引起的用户干扰。理想的三相交流电力系统应该是一种正弦波电压,向电力用户提供恒定频率和标准电压。每个阶段电压级和电能质量级相同和不同的阶段是120º。但由于电能电力系统发电机,变压器等设备和半导体整流器,晶闸管和频率调整设备,以及包括非线性或家用电器,不对称负载。因此,理想状态不存在,生产电能存在质量问题。电力电能质量下降将使电子设备运行异常,生产设备损坏,和生产废品率增加。因此,电力行业影响正常生产和电子网络运行,造成巨大的经济损失。显而易见的,闪变是由于人的视觉感觉因为亮度或者光谱随时间变化而造成的轻微刺激,所产生的印象。基于原因,尽管“电压闪变”使用的非常普遍,事实上这么表达是不正确的。国际电子联盟(UIE)和国际电工委员会(IEC)共同致力于标准化的发展方向,模仿人的视觉功能并给出了观察者对任何一个由独立的光源、扰动的60W-230V白炽灯泡的闪变的反应,得到了令人信服的结果。所有类型的可能会用闪变器监测的电压变化,详细的说明书在IEC-EN60868.现在,电力电能质量问题引起了各国电力工人的高待遇。提高电力电能质量技术已成为电力系统研究领域新的焦点。因此,收集和分析原始测量数据是非常重要的,具有非常重要的意义,有利于整体电力系统和电能质量管理和改进。二.系统的组成及原理系统利用计算机硬件和软件设计。虚拟仪器软件系统使用虚拟仪器设计、虚拟仪器测量仪,实现更多的功能,其他正常的仪器不能实现。事实上,虚拟仪器和传统仪器采用计算机的指示器显示领导或液晶显示。我们使用数据采集模块的硬件设备,并采取一些特殊过程电路完成计算机软件功能,如数据操作、分析和处理。与传统仪器和设备,软件的虚拟仪器技术相比利用计算机强大的功能,在最大程度上实现低成本的花费。所以,虚拟仪器是通过计算机技术,它有更多的不同优点与传统的仪器相比,虚拟仪器是使用最广泛的虚拟仪器开发软件,由美国公司提出。LabVIEW完全包括很多功能模块和总线设备驱动程序。虚拟仪器的角色根据图形的方法:虚拟仪器采用框架图,而不是传统的文本程序模式。程序方法强调信号处理的实际过程,程序有简单的特性,且修改方便。虚拟仪器软件的虚拟仪器是世界最发展到如今,从而完成系统监控或测量。在国内外,许多设计师在设计测量系统或控制系统用它来进行程序设计,这是发展趋势。三.新型数字闪变器这种基于PC机的数字式闪变器的设计是以逆快速傅立叶变换(FFT)和频率域上的滤波为基础的,以完成国际电工委员会设计中功能模块3所执行的权重滤光片的功能。整个测量的程序是基于以下步骤进行的:采样并且把供电系统的瞬时电压值转换为数字信号;在时间域内进行已转换样本的计算以及数字滤波FFT执行以转换为频率域并且通过第二个滤波器模块3中的复杂系数用乘法运算进行滤波;逆FFT的执行使得信号返回时域并进行数字滤波在具体之星上的第一个问题是对采样频率和所需样本数的定义。低频率采样和/或样本数不允许进行精确的扰动信号调制(包括瞬时电压)。另外一个方面,高采样频率将需要大量的采样样本以监测电压的变化,同时也增加了分析的时间。 另一个条件实现的是样本数目必须有2个以到达到的FFT算法最快速度分析。该仪器,事实上在实时可以读取所需数据以及持续周期内对不丢失任何时间间隔网络电压的数据分析下运行。其它问题是要考虑在时间域内的数字滤波变换瞬变问题。 为了分析和解决上述问题,建议进行基于LabView软件的仿真模拟。无数实验都在模拟正弦信号最为输入的网络频率中进行,还有各种波形的扰动信号,比如正弦,矩形,脉冲阵列和瞬时变换,不同的采样频率、采样样本数,网络电压信号的频率,干扰的频率和时间。为了避免仿真中的这些问题,引进了一个反-干扰滤波器,以限制信号的波段是采样频率的一半。四.监控原理电压波动是一种能及时改变的一系列电压或改变工作频率电压波,及电力负荷造成的影响,如有功功率和无功功率大大改变炉、轧机、电力机车、电弧焊等运行。它的本质是电压波动作为子组件调节调幅波,和调制电压的平方平均值(或峰值)。电压波动作为电压的平方平均值和峰值随着时间的波函数。分析时,我们的行为工作频率电压u波,使波动电压振幅波,如图1所示。电子网络电压u(t)(b)振幅波电压u(t)图1波动电压v调节工作频率电压。如图1所示,电子网络频率50hz电压为220v,作为携带波,是正弦波动电压。U是10hz正弦振幅波,当用它来调节50hz正弦振幅波电压u的峰值工作。如图1所示,Um是正弦振幅波最大值或峰值,dU热电不同的值。V的平方平均值在其周期T。通常情况下,电压波动测量采用如下样式:测量每个周期波效应值在一个固定的时期,然后削减它,使用最大值不同你的(Umax-Umin)加上联合国标准电压,其百分比表达相对值,这是电压波动率。五.系统软件设计根据公式(1),我们每个阶段进行电压波动监测和波动率监控。其中,相电压模拟信号添加子组件脉冲波动,电压波动监测程序框架图和图2所示。图2电压波动检测框架图计算电压值峰值影响你,程序使用循环结构,程序使用返回数组的元素数量,和圈次N.圈次是输入电压采样周期数字N.N可以在工作频率电压的0.02秒(50hz)以及采样周期(采样频率为10000hz,采样周期是0.0001s)。所以,我们获得每一个时期都有0.02/0.0001=2000采样数率。我们可以使用输入数组大小模拟信号的采样点数目。我们输入电压使用数组函数计算每个采样周期150个元素通过均方函数。使用新数组,数组插入功能,采用阵列最大和最小函数来计算数组最大值和最小值,然后使用数学函数比较参考价值220v电压影响,完成电压波动率计算。六.实验与结论为了使每个阶段电压仿真数据近似事实电子网络

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论