化工设备机械基础课件_第1页
化工设备机械基础课件_第2页
化工设备机械基础课件_第3页
化工设备机械基础课件_第4页
化工设备机械基础课件_第5页
已阅读5页,还剩404页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

化工设备机械基础2024/1/82现代化企业的雄姿2024/1/83现代化企业的雄姿2024/1/84现代化企业的雄姿2024/1/85教材:高等学校理工科规划教材“化工设备机械基础”,刁玉玮主编大连理工大学出版社2024/1/86绪言一、目的和意义合理设备可以简化流程,降低成本设备的结构和材质具备基本工程力学知识,了解化工设备常用材料特性,掌握典型化工设备的设计计算。2024/1/87二、主要内容及学时安排第一篇化工设备材料6学时第二篇化工容器设计24学时第三篇典型化工设备机械设计

14学时2024/1/88参考书目1、〈理论力学〉上册,哈尔滨工业大学理论力学教研室,高等教育出版社2、〈材料力学〉上册,刘鸿文主编,高等教育出版社3、〈工程力学〉,朱熙然主编,上海交通大学出版社4、〈金属材料及热处理〉,史美堂主编,上海科学技术出版社5、〈金属工业学〉上册,范全福主编,高等教育出版社6、〈化工机械制造〉,第八章、第九章,姚慧珠、郑海泉编,化学工业出版社2024/1/89第一篇材料与焊接第一章化工设备材料第一节概述根据物料与适宜工作条件选材物料腐蚀性压力与温度蠕变、氢腐蚀、低温脆性等2024/1/810第二节材料的性能力学性能、物理性能、化学性能和加工性能等一、力学性能决定许用应力强度、硬度、弹性、塑性、韧性等2024/1/8111、强度是指材料抵抗外加载荷而不致失效破坏的能力

抵抗外力的静强度按所抵抗外作用形式可分为抵抗冲击外力的冲击强度抵抗交变外力的疲劳强度常温下抵抗外力的常温强度按环境温度可分为高温下抵抗外力的高温强度低温下抵抗外力的低温强度2024/1/812常温强度指标:屈服强度σs和抗拉(压)强度σb(σy)屈强比σs/σb适当蠕变强度σn:在高温时,材料抵抗发生缓慢塑性变形的能力持久强度σD

:在给定温度下,促使试样经过一定时间发生断裂的应力疲劳强度σ-1:σ-1,以106-107次不被破坏的应力2024/1/8132、硬度局部抵抗能力弹性、强度与塑性的综合性能指标压入硬度:布氏硬度(HB)、洛氏硬度(HRC、HRB)和维氏硬度(HV)

低碳钢σb=0.36

HB

高碳钢σb=0.34

HB

灰铸铁σb=0.1

HB2024/1/8143、塑性延伸率δ断面收缩率ψ化工设备材料一般要求δ5=10%-20%2024/1/8154、冲击韧性

冲击韧度αk,使其破坏所消耗的功或吸收的能除以试件的截面面积低温容器所用钢板αk值不得低于30J/cm22024/1/816二、物理性能

密度、熔点、比热容、热导率、线膨胀系数、导电性、磁性、弹性模量与泊松比等。2024/1/817三、化学性能1、耐腐蚀性金属和合金对周围介质侵蚀的抵抗能力2、抗氧化性高温氧化,降低表面硬度和抗疲劳强度选耐热材料2024/1/818四、加工工艺性能1、可铸性:收缩与偏析2、可锻性3、焊接性4、可切削加工性2024/1/819第三节碳钢与铸铁“铁碳合金”:由95%以上铁和0.05%~4%碳及1%左右杂质元素所组成合金;一般含碳量0.02%~2%称为钢;大于2%称为铸铁;当含碳量小于0.02%时称纯铁(工业纯铁);含碳量大于4.3%的铸铁极脆2024/1/820一、铁碳合金的组织结构1、金属的组织与结构

在金相显微镜下看到的金属的晶粒,简称组织2024/1/821

电子显微镜观察到金属原子各种规则排列,称为金属的晶体结构,简称结构;不同温度下纯铁体心立方与面心立方晶格

体心立方晶格塑性比面心立方晶格的好,而后者的强度高于前者。2024/1/822铸铁一般碳以石墨形式存在,有不同的组织形貌。球墨铸铁强度最高;细片状石墨次之;粗片状石墨最差。2024/1/8232、纯铁的同素异构转变

体心立方晶格的纯铁称a-Fe,面心立方晶格的铁称为g-Fe。a-Fe加热可变为g-Fe,反之高温下的g-Fe冷却可变为a-Fe。在固态下晶体构造随温度发生变化的现象,称“同素异构转变”。纯铁的同素异构转变是在910℃恒温下完成的。在固态下重新排列、结晶过程。是钢进行热处理的依据。2024/1/8243、碳钢的基本组织

碳在铁中的存在形式有固溶体、化合物和混合物三种。固溶体:两种或两种以上的元素在固态下互相溶解,而仍然保持溶剂晶格原来形式的物体这三种不同的存在形式,形成了不同的碳钢组织。2024/1/825(1)铁素体

碳溶解在a-Fe中形成固溶体称铁素体。

a-Fe原子间隙小,溶碳能力低(室温下0.006%),强度和硬度低,但塑性和韧性很好。低碳钢是含铁素体的钢,具有软而韧的性能。2024/1/826(2)奥氏体

碳溶解在g-Fe铁中形成固溶体称奥氏体。g-Fe原子间隙较大,碳的溶解度比a-Fe中大得多,如在723℃时可溶解0.8%,在1147℃时可达最大值2.06%。奥氏体组织是在a-Fe发生同素异构转变时产生的。由于奥氏体有较大的溶解度,故塑性、韧性较好,且无磁性。2024/1/827(3)渗碳体

碳和铁形成一种化合物(Fe3C)称渗碳体。熔点约1600℃,硬度高,塑性几乎等于零。铁碳合金含碳量小于2%时,其组织是在铁素体中散布着渗碳体,是碳素钢。含碳量大于2%时,部分碳以石墨形式存在,称铸铁。抗拉强度和塑性都比碳钢低。但铸铁具有一定消震能力。2024/1/828(4)珠光体

铁素体与渗碳体的机械混合物。力学性能介于铁素体和渗碳体之间,即其强度、硬度比铁素体显著提高;塑性、韧性比铁素体差,但比渗碳体要好得多。2024/1/829(5)莱氏体

珠光体和初次渗碳体的共晶混合物。具有较高的硬度,是一种较粗而硬的金相组织,存在于白口铸铁、高碳钢中。2024/1/830(6)马氏体

钢和铁从高温急冷下来的组织,是碳原子在a-Fe中过饱和的固溶体。具有很高的硬度,但很脆,延伸性低,几乎不能承受冲击载荷。2024/1/831二、铁碳合金状态图2024/1/832钢在加热时形成单一的奥氏体组织。2024/1/833

所有生铁组织中都有莱氏体,多数碳以石墨状存在,用作铸件的生铁称为铸铁。2024/1/834三、钢的热处理

钢、铁固态下加热、保温和不同的冷却方式,改变金相组织以满足所要求的物理、化学与力学性能,称为热处理。2024/1/8351、退火和正火

退火:缓慢加热到临界点以上的某一温度,保温一段时间,随炉缓慢冷却。目的:细化晶粒,提高力学性能;降低硬度、提高塑性、便于冷加工;消除部分内应力,防止工件变形。正火是置于空气中冷却。晶粒变细,韧性可显著提高。铸、锻件切削加工前一般进行退火或正火。2024/1/8362、淬火和回火

加热至淬火温度(临界点以上30℃~50℃),并保温一段时间,后投入淬火剂中冷却。淬火后得到的组织是马氏体。增加硬度、强度和耐磨性。淬火剂有空气、油、水、盐水,冷却能力递增。碳钢在水和盐水中淬火,合金钢在油中淬火。2024/1/837

回火是淬火后进行的一种较低温度的加热与冷却热处理工艺。回火可以降低或消除零件淬火后的内应力,提高韧性。在150℃~250℃范围内的回火称“低温回火”。回火马氏体有较高的硬度和耐磨性,内应力和脆性有所降低。刃具、量具,要进行低温回火处理。2024/1/838

中温回火温度是300℃~450℃。有一定的弹性和韧性,并有较高硬度。轴类、刀杆、轴套等进行中温回火。高温回火温度为500℃~680℃。综合性能:强度、韧性、塑性等都较好淬火加高温回火习惯上称为“调质处理”。用于各种轴类零件、连杆、齿轮、受力螺栓等。2024/1/839

时效热处理:材料经固溶处理或冷塑变形后,在室温或高于室温条件下,其组织和性能随时间而变化的过程。时效可进一步消除内应力,稳定零件尺寸,它与回火作用相类似。2024/1/8403、表面淬火

使零件表面层比心部具有更高的强度、硬度、耐磨性和疲劳强度,而心部则具有一定的韧性。2024/1/8414、化学热处理

有渗碳、渗氮(氮化)、渗铬、渗硅、渗铝、氰化(碳与氮共渗)等。渗碳、氰化可提高零件的硬度和耐磨性;渗铝可提高耐热、抗氧化性;氮化与渗铬的零件,表面比较硬,可显著提高耐磨和耐腐蚀性;渗硅可提高耐酸性等。2024/1/842四、碳钢1、常存杂质元素对钢材性能的影响硫、磷、锰、硅、氧、氮、氢等(1)硫有害元素。FeS和Fe形成低熔点(985℃)化合物。钢材热加工1150~1200℃,过早熔化而导致工件开裂,称“热脆”。高级优质钢:S<0.02%~0.03%;优质钢:S<0.03%~0.045%;普通钢:S<0.055%~0.7%以下。2024/1/843(2)磷

有害元素。虽能使强度、硬度增高,但塑性、冲击韧性显著降低。特别是在低温时,使钢材显著变脆,称“冷脆”。使冷加工及焊接性变坏。高级优质钢:P<0.025%;优质钢:P<0.04%;普通钢:P<0.085%。2024/1/844(3)锰

脱氧剂。有益元素。

MnS(1600℃),部分消除硫的有害作用。锰具有很好的脱氧能力,与FeO成为MnO进入炉渣,从而改善钢的品质,特别是降低脆性,提高强度和硬度。在0.5%~0.8%以下时,看成是常存杂质。优质碳素结构钢中,正常含锰量是0.5%~0.8%;高锰结构钢可达0.7%~1.2%。2024/1/845(4)硅

脱氧剂。有益的元素。硅与FeO能结成密度较小的硅酸盐炉渣而被除去。硅在钢中溶于铁素体内使强度、硬度增加,塑性、韧性降低。镇静钢中的含硅量常在0.1%~0.37%,沸腾钢中只含有0.03%~0.07%。由于钢中硅含量一般不超过0.5%,对钢性能影响不大。2024/1/846(5)氧

有害元素。在炼钢末期要加入锰、硅、铁和铝进行脱氧,但不可能除尽。

FeO、MnO、SiO2、Al2O3,使强度、塑性降低。尤其是对疲劳强度、冲击韧性等有严重影响。2024/1/847(6)氮

长时间放置或在200~300℃加热氮以氮化物形式的析出,硬度、强度提高,塑性下降,发生时效。钢液中加入Al、Ti或V进行固氮处理,使氮固定在AlN、TiN或VN中,可消除时效倾向。2024/1/848(7)氢氢脆、白点等缺陷。变脆:氢化物变形小白点:组织缺陷处扩散氢,时间长2024/1/8492、分类与编号

按用途:建筑及工程用钢、结构钢、弹簧钢、轴承钢、工具钢和特殊性能钢(不锈钢、耐热钢)按含碳量:低碳钢、中碳钢和高碳钢按脱氧方式:镇静钢和沸腾钢按品质:普通钢、优质钢和高级优质钢2024/1/850(1)普通碳素钢Q235-A,屈服强度数值(MPa)质量等级A,B,C,D。脱氧方法为F,b,Z,TZ。化工压力容器用钢一般选用镇静钢。普通碳素钢有Q195、Q215、Q235、Q255及Q275五个钢种。2024/1/851(2)优质碳素钢S<0.03%~0.045%;P<0.04%08、10、15、20、25、30、35、40、45、50、…80等。平均含碳量的万分之几。45号钢中含碳量平均为0.45%(0.42%~0.50%)。

45Mn,锰含量较高的优质非合金钢。2024/1/852

优质低碳钢(含C<0.25%),如08、10、

15、20、25;塑性好,焊接性能好,壳体、接管。优质中碳钢(含C量0.3%~0.60%),如30、35、40、45、50与55;45号钢搅拌轴优质高碳钢(含C>0.6%),如60、65、70、80。60、65钢主要用来制造弹簧,70、80钢用来制造钢丝绳等。2024/1/853(3)高级优质钢S<0.02%~0.03%;P<0.025%,均<0.03%。它的表示方法是在优质钢号后面加一个A字,如20A。2024/1/8543、碳钢的品种及规格

品种:钢板、钢管、型钢、铸钢和锻钢(1)钢板(压力容器用热扎厚钢板)

4mm~6mm厚度间隔为0.5mm6mm~30mm厚度间隔为lmm30mm~60mm厚度间隔为2mm

一般碳素钢板材有Q235-A、Q235-A·F、08、10、15、20等。2024/1/855(2)钢管

无缝钢管和有缝钢管。无缝钢管有冷轧和热轧。普通无缝钢管常用材料有10、15、20等。专门用途的无缝钢管,如热交换器用钢管、石油裂化用无缝管、锅炉用无缝管。有缝管、水煤气管,分镀锌(白铁管)和不镀锌(黑铁管)两种。2024/1/856(3)型钢

有圆钢、方钢、扁钢、角钢(等边与不等边)、工字钢和槽钢。圆钢与方钢主要用来制造各类轴件;扁钢常用作各种桨叶;角钢、工字钢及槽钢可做各种设备的支架、塔盘支承及各种加强结构。2024/1/857(4)铸钢和锻钢

铸钢用ZG表示,ZG25、ZG35等,用于制造各种承受重载荷的复杂零件,如泵壳、阀门、泵叶轮等。锻钢有08、10、15、…、50等牌号。石油化工容器用20、25等制作管板、法兰、顶盖等。2024/1/858五、铸铁

含碳量2%以上,含有S、P、Si、Mn等杂质。脆性材料,抗拉强度较低,但有良好铸造性、耐磨性、减振性及切削加工性。在一些介质(浓硫酸、醋酸、盐溶液、有机溶剂等)中有相当好的耐腐蚀性能。铸铁可分为灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁和特殊性能铸铁等。2024/1/8591、灰铸铁2.7%~4.0%,片状石墨形式,断面暗灰色。有优良的铸造性、减振性能,支架、阀体、泵体(机座、管路附件等)。在化工生产中可做烧碱生产中的熬碱锅、联碱生产中的碳化塔及淡盐水泵等。

HT和抗拉强度sb值表示,如HT100,其中100表示sb=100MPa。常用灰铸铁牌号有HT100、HT150、HT200、HT250、HT300、HT350。2024/1/8602、球墨铸铁

简称球铁。在强度、塑性和韧性方面大大超过灰铸铁,甚至接近钢材。用QT、抗拉强度值、延伸率表示,如QT400-18,其中400表示sb=400MPa,18表示d=18%。2024/1/8613、高硅铸铁

有高的耐蚀性能,含硅量增加耐蚀性增加。强度低、脆性大及内应力大,易于脆裂热导率小,线膨胀系数大,不适于制造温差较大的设备,否则容易产生裂纹。常用于各种耐酸泵、冷却排管和热交换器牌号有:STSi11Cu2CrR、STSi15R、TSi15Mo3R等。2024/1/862第四节合金钢

在碳钢中添加适量的一种或多种合金元素,得到或改善某些性能。

一、分类与编号按合金元素总含量分:合金含量<5%,低合金钢合金含量5%-10%,中合金钢合金含量>10%,高合金钢2024/1/863按用途分:合金结构钢调质结构钢、表面硬化钢低碳马氏体钢、非调质结构钢合金工具钢特殊性能钢不锈钢和耐热钢等

2024/1/864一种是汉字牌号,如35铬钼;另一种是用国际化学符号,如35CrMo。表示含碳量平均为万分之三十五(或0.35%),含Cr、Mo在1%左右。当平均质量分数≥1.5%、≥2.5%,≥3.5%时,在元素符号后面应标明含量,可相应表示为2、3、4。如36Mn2Si。2024/1/865二、合金元素对钢的影响目前常用的合金元素有:铬(Cr),锰(Mn),镍(Ni),硅(Si),硼(B),钨(W),钼(Mo),钒(V),钛(Ti)和稀土元素(Re)等。2024/1/8661、铬提高耐腐蚀性能和抗氧化性能。含量达到13%时,能使钢的耐腐蚀能力显著提高,并增加钢的热强性。提高钢的淬透性,显著提高钢的强度、硬度和耐磨性,但使塑性和韧性降低。2024/1/8672、锰提高强度和提高低温冲击韧性。3、镍提高淬透性,有很高的强度,而又保持良好的塑性和韧性。提高耐腐蚀性和低温冲击韧性。镍基合金具有更高的热强性能。镍被广泛应用于不锈耐酸钢和耐热钢中。2024/1/8684、硅

提高强度、高温疲劳强度、耐热性及耐H2S等介质的腐蚀性。硅含量增高会降低钢的塑性和冲击韧性。5、铝强脱氧剂,显著细化晶粒,提高冲击韧性,降低冷脆性。提高抗氧化性和耐热性,对抵抗H2S介质腐蚀有良好作用。价格便宜,在耐热钢中常以它来代替铬。2024/1/8696、钼

提高高温强度、硬度、细化晶粒、防止回火脆性。钼能抗氢腐蚀。7、钒于固溶体中提高高温强度,细化晶粒,提高淬透性。铬钢中加少量钒,在保持钢的强度情况,能改善钢的塑性。2024/1/8708、钛强脱氧剂,可提高强度、细化晶粒,提高韧性,减小铸锭缩孔和焊缝裂纹等倾向。在不锈钢中稳定碳,防止晶间腐蚀提高耐热性。

9、稀土元素提高强度,改善塑性、低温脆性、耐腐蚀性及焊接性能。2024/1/871三、可焊接的低合金高强度钢碳含量通常小于0.25%。有较高的屈服强度(300~1000MPa)和屈强比(ss/sb=0.65~0.95),较好的冷热加工性能、良好的焊接性能,较低的冷脆倾向以及较好的抗大气、海水等腐蚀能力。2024/1/872低合金高强度钢按性能和用途分高强度钢、低温钢和耐蚀钢1、高强度钢350MPa强度级,典型牌号为16Mn;400MPa强度级,典型钢号为14MnMoV500MPa强度级,典型12MnNiCrMoVCu用于船舶、车轴、压力容器、锅炉、输送管线等的焊接结构件。2024/1/8732、低温钢主要有09Mn2V(-70℃)、06MnNb(-90℃)3、耐蚀钢10MnPNbRE钢耐海洋大气及海水腐蚀,12MnAlV钢制造炼油厂耐高温硫化氢设备。2024/1/874

大型化工容器16MnR,质量比碳钢轻l/3;与碳钢相比,用15MnV制造球形贮罐可节省钢材约45%。根据容器的具体操作条件(温度、压力)和制造加工(卷板、焊接)要求,选用2024/1/875四、专业用钢

锅炉用钢,压力容器用钢、焊接气瓶用钢。在钢号后面分别加注g、R或HP等,如20g、16MnR和15MnVHP等。质地均匀、杂质含量低,能满足某些力学性能的特殊检验项目要求。2024/1/876五、特殊性能钢

不锈钢、耐热钢和高温合金及低温用钢1、不锈钢不锈钢和耐酸钢的统称,也称不锈耐酸钢一般称耐空气、蒸汽和水等弱腐蚀介质的钢为不锈钢,称耐酸、碱、盐等强烈腐蚀性介质的钢为耐酸钢。2024/1/877通常按钢的金相组织分为铁素体不锈钢、奥氏体不锈钢、奥氏体-铁素体双相不锈钢和马氏体不锈钢等2024/1/878(1)铁素体不锈钢

含碳≤0.15%,铬量在12~30%。有些钢种还含有钼、钛等元素。不锈纲中的含碳量都较低,Cr23C6而消耗了铬。都在13%以上。对晶间腐蚀比较敏感;铬含量高时,脆性转变温度高,可焊性较差。

lCr13、2Cr13、受冲击载荷较大的零件

0Cr13、0Cr17Ti耐氧化性酸和硫化氢气体的腐蚀,部分代替高铬镍型不锈钢2024/1/879(2)奥氏体不锈钢

优异的综合性能,包括优良的力学性能,冷、热加工和成型性,可焊性和在许多介质中的良好耐蚀性。含氯离子,发生晶间腐蚀的倾向。锰和氮代替不锈钢中的镍,发展出了铬锰镍氮系和铬锰氮系不锈钢。例如Cr18Mn8Ni5、Cr18Mn10Ni5Mo3N。2024/1/880

在400℃~800℃的温度范围内,碳从奥氏体中以碳化铬(Cr23C6)形式沿晶界析出,使晶界附近的合金元素(铬与镍)含铬量降低到耐腐蚀所需的最低含量12%)以下,腐蚀就在此贫铬区产生。这种沿晶界的腐蚀称为晶间腐蚀。2024/1/881防止晶间腐蚀的方法:1)降低含碳量<0.06%时不易产生,<0.03%时可靠地克服,超低碳不锈钢,如00Cr19Nil02)稳定碳原子,加入Ti,Nb,V,Mo稳定剂,广泛用,0Cr18Nil0Ti、0Cr18NillNb3)形成双相组织,加入铁素体促成元素Ti,Al,Si,Mo,铁素体含铬高、补充快,5%以内,阻断腐蚀通路。2024/1/882防止晶间腐蚀的方法:4)控制热规范,快速加热和冷却,或非常缓慢。5)补充热处理稳定化退火(免疫处理):850度保温2小时,充分扩散高温淬火水冷(固熔):1100度左右加热后淬火,单相奥氏体2024/1/883加入Mo提高对氯离子Cl-的耐蚀能力,lCr18Nil2Mo3Ti。0Cr18Nil8Mo2Cu2Ti。同时加入Mo、Cu,则在室温、浓度为50%以下的硫酸中也具有较高的耐蚀性,也可提高在低浓度盐酸中的抗腐蚀性2024/1/8842、耐热钢和高温合金

例如石油化工的乙烯裂解、氨的合成等,温度往往达到1000℃以上。

300℃~350℃即需选用耐热钢,一般耐热钢工作温度都在700℃以下,700℃~1000℃用高温合金。2024/1/885耐热钢Cr、Al、Si铁素体形成元素,被高温气体氧化后生成一种致密的氧化膜。

Ni、Mn奥氏体形成元素,

提高高温强度和改善抗渗碳性。

V、Nb、Ti形成强碳化物提高高温强度。

C和N扩大和稳定奥氏体提高高温强度

B和Re均为耐热钢中添加的微量元素,可以显著提高钢材的抗氧化性,并改善其热塑性。2024/1/886耐热钢按特性和用途可分为抗氧化钢(又称高温不起皮钢)和热强钢。抗氧化钢是指高温下具有较好的抗氧化性,并有适当强度的钢种。热强钢高温下有较好的抗氧化性和耐腐蚀能力,且有较高的强度。常用来高温工作下的汽缸、螺栓及锅炉的过热器等。2024/1/887高温合金铁基合金、镍基合金、钴基合金。铁基耐热合金工作温度在700℃以下,含有相当高的铬、镍成分和其他强化元素。镍基耐热合金是目前在700℃~900℃范围内使用得最广泛的一种高温合金。这类合金的镍含量通常在50%以上。钴基耐热合金的高温强度主要靠固溶强化获得。钴价格昂贵,应用受到很大的限制,一般在1000℃以上才用。2024/1/8883、低温用钢深冷分离、空气分离等。(温度≤-20℃)目前国外低温设备用的钢材主要是以高铬镍钢为主,也有使用镍钢、铜和铝等。我国无铬镍的低温钢材系列。16MnDR、07MnNiCrMoVDR、15MnNiDR、09Mn2VDR、09MnNiDR2024/1/889第五节有色金属铜T黄铜H青铜Q铝L铅Pb

铸造合金Z轴承合金Ch2024/1/890一、铝及其合金浓硝酸以及干氯化氢、氨气中耐腐蚀卤素离子的盐类、氢氟酸以及碱溶液都会破坏铝表面的氧化膜。铝不会产生火花,常用于制作含易挥发性介质的容器;铝不会使食物中毒,不沾污物品,不改变物品颜色,在食品工业中代替不锈钢。铝的导热性能好,适合于作换热设备2024/1/891变形铝合金(工业纯铝和防锈铝)和铸造铝合金1、变形铝合金(1)工业纯铝工业高纯铝1A85、1A90,抗硫腐蚀,浓硝酸设备,高压釜、槽车、贮槽、阀门、泵。工业纯铝8A06,耐硫腐蚀、防污染而不要求强度的设备,例如:反应器、热交换器、深冷设备、塔器等。2024/1/892(2)防锈铝由铝锰系或铝镁组成的铝合金,5A02、5A03、5A05、5A06等。强度比纯铝高5A02、5A03用于中等强度的零件或设备;5A05制造油箱、管道、低压容器、铆钉5A06用于受力零件及焊制容器。由于熔焊的铝材在低温(0~-196℃)下冲击韧性不下降,很适合做低温设备。2024/1/8932、铸造铝合金是铝、硅合金。Al-Si系,俗称"硅铝明",典型牌号ZAlSi7Mg,合金号为ZL101;Al-Cu系,应用最早,热强性高,300℃,耐腐蚀性较差。典型牌号ZAlCu5Mn,合金号为ZL201;Al-Mg系,室温力学性能高,耐腐蚀性能好,但热强性低。铸造性能差,典型牌号ZAlMg10,合金号为ZL301;2024/1/894Al-Zn系,Zn在Al中溶解度大,再加入硅及少量镁、铬等元素,具有良好的综合性能,典型牌号ZAlZn11Si17,合金号为ZL401。铝的铸造性、流动性好,铸造时收缩率和生成裂纹的倾向性都很小。耐蚀性好,且密度小,广泛用来铸造形状复杂的耐蚀零件,如管件、泵、阀门、汽缸、活塞等。2024/1/895二、铜及其合金半贵重金属1、纯铜(紫铜)低温时可保持较高的塑性和冲击韧性,用于制作深冷设备和高压设备垫片。耐稀硫酸、亚硫酸、稀的和中等浓度的盐酸、醋酸、氢氟酸及其它非氧化性酸等介质的腐蚀,对淡水、大气、碱类溶液的耐蚀能力很好。不耐各种浓度的硝酸、氨和铵盐溶液。2024/1/896变形纯铜的牌号Tl、T2、T3、TU1、TU2、TP1、TP2等。T1、T2是高纯度铜,用于制造电线,配制高纯度合金。T3杂质含量和含氧量比T1、T2高,主要用于一般材料,如垫片、铆钉等。TU1、TU2为无氧铜,纯度高,主要用作真空器件。TP1、TP2为磷脱氧铜,多以管材供应,主要用于冷凝器、蒸发器、换热器、热交换器的零件等。2024/1/8972、铜合金黄铜:铜与锌的合金称黄铜白铜:镍的质量分数含量低于50%的铜镍合金称为简单(普通)白铜,再加入锰、铁、锌或铝等元素的白铜称为复杂(特殊)白铜。

青铜:其它合金。铜与锡的合金称为锡青铜;铜与铝、硅、铅、铍、锰等组成的合金称无锡青铜。2024/1/898(1)黄铜铜与锌的合金称黄铜。铸造性能好,力学性能比纯铜高,耐蚀性能与纯铜相似,在大气中耐腐蚀性比纯铜好,价格便宜,应用较广。在黄铜中加入锡、铝、硅、锰等元素,特种黄铜。锰、铝能提高强度;铝、锰和硅提高抗蚀性和减磨性;铝能改善切削加工性。2024/1/899常用的黄铜牌号有H80、H68、H62等H80大气、淡水及海水中有较高耐腐蚀性、加工性能优良,可作薄壁管和波纹管。H68塑性好,可在常温下冲压H62在室温下塑性较差,但机械强度较高,易焊接,价格低廉,可做深冷设备的筒体、管板、法兰及螺母等。锡黄铜HSn70-l含有1%的锡,能提高在海水中的耐蚀性。称海军黄铜。2024/1/8100(2)白铜镍含量低于50%的铜镍合金称为简单(普通)白铜,再加入锰、铁、锌或铝等元素的白铜称为复杂(特殊)白铜。白铜是工业铜合金中耐腐蚀性能最优者,抗冲击腐蚀、应力腐蚀性能亦良好,是海水冷凝管的理想材料。2024/1/8101(3)青铜铜与锡的合金称为锡青铜;铜与铝、硅、铅、被、锰等组成的合金称无锡青铜。锡青铜分铸造锡青铜和压力加工锡青铜。锡青铜典型牌号ZQSn10-1,有高强度和硬度,能承受冲击载荷,耐磨性很好,具有优良的铸造性,比纯铜耐腐蚀。锡青铜用来铸造耐腐蚀和耐磨零件,如泵壳、阀门、轴承、蜗轮、齿轮、旋塞等。无锡青铜力学性能好2024/1/8102三、钛及其合金钛的密度小(4.507g/cm3)、强度高、耐腐蚀性好、熔点高。工业纯钛牌号有TA0、TA2、TA3(编号愈大、杂质含量愈多)。纯钛加工性能良好;有良好的耐蚀性。钛也是很好的耐热材料。在钛中添加锰、铝或铬钼等元素,可获得性能优良的钛合金。2024/1/8103四、镍及其合金高强度和塑性,好的延伸性和可锻性。好的耐腐蚀性,用于制造处理碱介质的化工设备。牌号为NCu28-2.5-1.5的蒙乃尔耐蚀合金应用最广。蒙乃尔合金能在500℃时保持高的力学性能,能在750℃以下抗氧化,在非氧化性酸、盐和有机溶液中比纯镍、纯铜更具耐蚀性。2024/1/8104五、铅及其合金硬度低、强度小,不宜单独作为设备材料,只适于做设备的衬里。热导率小;纯铅不耐磨,非常软。但在许多介质中,特别是在硫酸(80%的热硫酸及92%的冷硫酸)中铅具有很高的耐蚀性。铅与锑合金称为硬铅,硬度、强度都比纯铅高,在硫酸中的稳定性也比纯铅好。硬铅的主要牌号为PbSb4、PbSb6、PbSb8和PbSb10。2024/1/8105铅和硬铅在硫酸、化肥、化纤、农药、电器设备中可用来做加料管、鼓泡器、耐酸泵和阀门等零件。由于铅具有耐辐射的特点,在工业上用作X射线和g射线的防护材料。铅合金的自润性、磨合性和减振性好,噪音小,是良好的轴承合金。铅合金还用于铅蓄电池极板、铸铁管口、电缆封头的铅封等。2024/1/8106第六节非金属材料既可用作结构材料,又能作设备的保护衬里、涂层,还可做设备的密封材料、保温材料和耐火材料。非金属材料分为无机非金属材料(陶瓷、搪瓷、岩石、玻璃等)及有机非金属材料(塑料、涂料、橡胶等)及近20~30年来发展的复合材料(玻璃钢、不透性石墨等)。

2024/1/8107一、无机非金属材料1、化工陶瓷好的耐腐蚀性、耐热性和一定机械强度。导热性差,热膨胀系数较大,受碰击或温差急变而易破裂。2024/1/81082、化工搪瓷由含硅量高的瓷釉通过900℃左右的高温煅烧,使瓷釉密着在金属表面。具有优良的耐腐蚀性能、力学性能和电绝缘性能,但易碎裂。热导率不到钢的1/4,热膨胀系数大。不能直接用火焰加热,以免损坏搪瓷表面,可以用蒸汽或油浴缓慢加热。使用温度为-30℃~270℃。2024/1/81093、辉绿岩铸石用辉绿岩熔融后制成,可制成板、砖等材料作设备衬里,也可做管材。铸石除对氢氟酸和熔融碱不耐腐蚀外,对各种酸、碱、盐都具有良好的耐腐蚀性能。2024/1/81104、玻璃化工用的玻璃不是一般的钠钙玻璃,而是硼玻璃(耐热玻璃)或高铝玻璃,它们有好的热稳定性和耐腐蚀性。有耐腐蚀性、清洁、透明、阻力小、价格低等特点,但质脆、耐温度急变性差,不耐冲击和振动。目前已成功采用在金属管内衬玻璃或用玻璃钢加强玻璃管道,来弥补其不足。2024/1/8111二、有机非金属材料1、工程塑料是用高分子合成树脂为主要原料,加入添加剂以改善产品性能。热塑性材料遇热软化或熔融,冷却后又变硬,可反复多次。聚氯乙烯、聚乙烯等。热固性塑料固化后不能用加热的方法使之再软化,酚醛树脂、氨基树脂等。有良好的耐腐蚀性能、一定机械强度、良好的加工性能和电绝缘性能,价格较低2024/1/8112(1)硬聚氯乙烯(PVC)塑料使用温度为-10~+55℃。当温度在60~90℃时,强度显著下降。(2)聚乙烯(PE)塑料在室温下,除硝酸外,对各种酸、碱盐溶液均稳定,对氢氟酸特别稳定。(3)耐酸酚醛塑料(PF)使用温度为-30℃~+130℃。这种塑料性质较脆、冲击韧性较低。2024/1/8113(4)聚四氟乙烯(PTFE)塑料耐强腐蚀性介质腐蚀。甚至超过贵重金属金和银,有塑料王之称。常用作耐腐蚀、耐高温密封元件及高温管道。有良好的自润滑性,还可以用作无油润滑压缩机的活塞环。有突出的耐热和耐寒性,使用温度范围为-200℃~250℃。2024/1/8114(5)玻璃钢又称玻璃纤维增强塑料。用合成树脂为粘结剂,以玻璃纤维为增强材料,按一定成型方法制成。具有优良的耐腐蚀性能,强度高和良好的工艺性能,是一种新型非金属材料。树脂不同而差异很大。环氧玻璃钢(常用)、酚醛玻璃钢(耐酸性好)、呋喃玻璃钢(耐腐蚀性好)、聚酯玻璃钢(施工方便)等。2024/1/81152、涂料品种多,选择范围广、适应性强、使用方便、价格低、适于现场施工等。涂层较薄容易脱落,应用受到了限制。防锈漆、底漆、大漆、酚醛树脂漆、环氧树脂漆以及某些塑料涂料,如聚乙烯涂料、聚氯乙烯涂料等。用静电喷涂。涂料利用率高,容易进行机械化、自动化的大型生产,减少溶剂和涂料的挥发和飞溅,涂膜质量稳定。2024/1/81163、不透性石墨由各种树脂浸渍石墨消除孔隙后得到有较高的化学稳定性和良好的导热性,热膨胀系数小,耐温度急变性好;不污染介质,能保证产品纯度;加工性能良好。机械强度较低、性脆。常被用来作腐蚀性强介质的换热器,如氯碱生产中应用的换热器和盐酸合成炉,2024/1/8117第七节化工设备的腐蚀及防腐措施2024/1/8118常见的金属腐蚀破坏的形态有均匀腐蚀和局部腐蚀(区域腐蚀、点腐蚀、晶间腐蚀、表面下腐蚀等)2024/1/8119第八节化工设备材料选择从设备结构、制造工艺、使用条件和寿命等方面考虑,而且还要从设备工作条件下材料的物理性能、力学性能、耐腐蚀性能及材料价格与来源、供应等方面综合考虑。2024/1/8120一、材料的物理、力学性能方面一般中、低压设备屈服限235到345MPa级。直径较大、压力较高,最好采用普低钢,强度级别宜用400MPa级或以上。操作温度超过400℃,还需考虑材料的蠕变强度和持久强度。压力容器用钢材,d5不得低于14%。当钢材延伸率d5<18%时,加工应特别注意。钢管不宜强度级别过高,弯管率很关键,要求塑性好。2024/1/8121二、材料的耐腐蚀性某磷肥厂需设计一个40m3浓硫酸贮罐,可选灰铸铁、高硅铸铁、碳钢、铬镍不锈钢和碳钢用瓷砖衬里等。灰铸铁、高硅铸铁抗拉强度低、质脆,不能铸造大型设备,故不宜采用。碳钢的机械强度高、质韧,焊接性能好,但稀硫酸腐蚀严重,故也不能采用。不锈钢价格比较贵,焊接加工要求较高。碳钢做罐壳内衬非金属较合适2024/1/8122三、材料的经济性碳钢与普低钢的价格比较低廉,应优先选用。考虑国家生产与供应情况,因地制宜选取,品种应尽量少而集中,以便于采购与管理。2024/1/8123四、其他方面压力容器的材料选择应根据容器的操作条件、腐蚀情况及制造加工要求,依照国家标准GB150-1998的规定,并按GB6654-1996压力容器用钢板与JB4726-94压力容器用碳素钢和低合金钢锻件的规定选用。为了节省材料,中、高压容器应优先选用普通低合金钢(16MnR、15MnVR)。第二节容器支座概述:容器支座,支承容器重量、固定容器位置并使容器在操作中保持稳定。结构型式由容器自身的型式决定,分卧式容器支座立式容器支座球形容器支座一、卧式容器的支座卧式容器的支座有三种:鞍座圈座支腿㈠鞍式

支座

应用最广泛的卧式容器支座。已有标准JB/T4712-92《鞍式支座》,根据容器公称直径和重量选用。由横向筋板、若干轴向筋板和底板焊接而成。在与设备连接处,有带加强垫板和不带加强垫板两种结构。鞍座包角120°或150°,安放稳定。高度200、300、400和500mm。宽度b根据容器公称直径查出。鞍座的种类与安装:鞍座分为A型(轻型)和B型(重型),重型又分为BⅠ~BⅤ五种型号。A型和B型的筋板和底板、垫板等尺寸不同或数量不同。每种型式鞍座又分为固定式支座(代号F):底板上开圆形螺栓孔和滑动式支座(S):底座开长圆形螺栓孔(安装)鞍座与筒体端部距离A确定:当L/D较大,且无加强圈,应尽量利用封头对支座处筒体的加强作用,取A≤0.25D;当筒体的L/D较小,d/D较大,或有加强圈时,取A≤0.2L。㈡圈座

采用圈座的情况:对于大直径薄壁容器和真空容器,因其自身重量可能造成严重挠曲;多于两个支承的长容器。除常温常压下操作的容器外,至少应有一个圈座是滑动支承的。㈢腿式支座

简称支腿连接处造成严重的局部应力,只适用于小型设备(DN≤1600、L≤5m)。腿式支座的结构型式、系列参数等参见标准JB/T4714-92《腿式支座》。

二、立式容器的支座立式容器的支座主要有耳式支座支承式支座裙式支座中、小型直立容器常采用前二种,高大的塔设备则广泛采用裙式支座。㈠耳式支座

简称耳座,筋板和支脚板。广泛用在反应釜及立式换热器等直立设备上。简单、轻便,但局部应力较大。当设备较大或器壁较薄应加垫板。不锈钢制设备,用碳钢作支座,防止合金元素流失,也需加一个不锈钢垫板。已标准化JB/T4725-92《耳式支座》。该标准分A型(短臂)和B型(长臂)(有保温层或直接放在楼板上)每类又分带垫板与不带垫板两种结构耳式支座选用的方法:(1)估算设备总重,算每个支座(按2个计算)的负荷Q值;(2)确定支座型式,从表4-19或表4-20按允许负荷Q允大于实际负荷Q,选支座。小型设备耳式支座,可支承在管子或型钢制的立柱上。大型设备的支座往往搁在钢梁或混凝土制的基础上。㈡支承式支座用钢管、角钢、槽钢制作,或用数块钢板焊成,型式、结构、尺寸及材料JB/T4724-92《支承式支座》。

适用范围和结构:支承式支座分A型和B型。形式支座号适用的公称直径(mm)结构特征A1~6DN800~3000

钢板焊制,带垫板B1~8

DN800~4000钢管焊制,带垫板支承式支座的选用:选用见标准规定,尺寸按表4-22查。简单轻便局部应力较大,当壳体刚度较小、壳体和支座材料差异或温度差异较大时,或壳体需焊后热处理,应设置加强板。加强板的材料应和壳体材料相同或相似。㈢裙式支座塔设备最常用裙式支座。目前还没有标准。各部分尺寸均需通过计算或实践经验确定。有关裙式支座的结构及其设计方法详见第十七章。

思考题:1、卧式容器和立式容器的支座有哪几种?2、双鞍座卧式容器支座位置按哪些原则确定?第三节容器的开孔与附件一、容器的开孔与补强容器为什么要开孔?工艺、安装、检修的要求。开孔后,为什么要补强?削弱器壁的强度,出现不连续,形成高应力集中区。峰值应力通常较高,达到甚至超过材料屈服极限。局部应力较大,加之材质和制造缺陷等,为降低峰值应力,需要对结构开孔部位进行补强,以保证容器安全运行。开孔的形状:应力集中和开孔形状有关,圆孔的应力集中程度最低。㈠开孔补强的设计与补强结构在开孔附近区域增加补强金属,提高器壁强度,满足强度设计要求。容器开孔补强的形式分为整体补强补强圈补强1.整体补强

增加整个壳体的厚度,或用全焊透将厚壁接管或整体补强锻件与壳体相焊,降低开孔附近的应力。应力集中的局部性,除非制造或结构需要,一般不把整个容器壁加厚。2.补强圈补强

开孔周围贴焊一圈钢板,即补强圈。补强圈与器壁搭接,材料相同,补强圈尺寸参照标准确定,或等面积补强。为方便焊接,外面单面补强。检验紧密性,M10螺孔通入压缩空气。

补强圈搭焊结构的使用范围:GB150用补强圈结构补强时,规定:①钢材的标准抗拉强度下限值sb≤540MPa;

②补强圈厚度小于或等于1.5dn;

③壳体名义厚度dn≤38mm。㈡允许开孔的范围

筒体及封头开孔最大直径不允许超过:(1)圆筒Di≤1500mm,开孔最大直径d≤1/2Di,且d≤520mm;圆筒Di>1500mm时,开孔最大直径d≤1/3Di,且d≤1000mm;

(2)凸形封头或球壳的开孔最大直径d<1/2Di。

(3)锥壳开孔最大直径d≤1/3Di,Di为开孔中心处的锥壳内直径。㈢不需补强的最大开孔直径计算壁厚考虑了焊缝系数,钢板规格,壳体壁厚超过实际强度,最大应力值降低,相当于容器已被整体加强。且容器开孔总有接管相连,其接管多于实际需要的壁厚也起补强作用。容器材料有一定塑性储备,允许承受不是十分过大的局部应力,所以当孔径不超过一定数值时,可不进行补强。壳体开孔满足全部条件,可不另行补强:(1)设计压力小于或等于2.5MPa;(2)两相邻开孔中心的间距(对曲面间距以弧长计算)应不小于两孔直径之和的两倍;(3)壳体名义壁厚大于12mm,接管公称外径小于或等于80mm;壳体名义壁厚小于或等于12mm,接管公称外径小于或等于50mm(4)接管最小壁厚满足表4-23的要求。(4)接管最小壁厚满足表4-23的要求。

接管公称外径253238454857657689最小壁厚3.54.05.06.0>540MPa,全焊透,接管腐蚀裕量1mm。

二、容器的接口管与凸缘用于装置测量、控制仪表,或连接其他设备和介质的输送管道。㈠接口管焊接设备的接口管长度铸造设备接管可与筒体一并铸出。螺纹管主要用来接温度计、压力表或液面计等,阴螺纹或阳螺纹

㈡凸缘接管长度必须很短时可用凸缘代替(又叫突出接口)凸缘本身有加强作用,不需另外补强。当螺柱折断在螺栓孔中,取出较困难。凸缘与管道法兰配用,联接尺寸应根据所选用的管法兰来确定。三、手孔与人孔检查设备内部空间以及安装和拆卸内部构件。手孔直径150mm~250mm,标准手孔公称直径有DN150和DN250两种。手孔结构:容器上接一短管,其上盖一盲板。人孔:设备直径超过900mm,有手孔也设人孔。人孔的形状有圆形和椭圆形。椭圆形人孔短轴与筒身轴线平行。圆形人孔直径400mm~600mm,容器压力不高或有特殊需要时,直径可以大一些。椭圆形人孔(或称长圆形人孔)的最小尺寸为400mm×300mm。人孔:筒节、法兰、盖板和手柄。使用中常打开,可用快开式结构人孔。手孔(HG21515~21527-95)和人孔(HG21528~21535-95)已有标准,设计时根据设备的公称压力,工作温度以及所用材料等按标准直接选用。

四、视镜与液面计㈠视镜观察内部,也可用作物料液面指示镜。分为不带颈视镜和带颈视镜。不带颈视镜——凸缘构成,结构简单,不易结料,有比较宽阔的视察范围。当视镜需要斜装或设备直径较小时,则需采用带颈视镜。视镜已经标准化,化工生产中常用的还有压力容器视镜、带灯视镜、带灯有冲洗孔的视镜、组合视镜等。㈡液面计

公称压力不超过0.7MPa,开长条孔,矩形凸缘或法兰把玻璃固定在设备上。承压容器,一般都是将液面计通过法兰、活接头或螺纹接头与设备联接在一起设备直径大,可同时用几组液面计接管。现有标准中有反射式玻璃板液面计、反射式防霜液面计、透光式板式液面计和磁性液面计。思考题:1、为什么压力容器壳体上开孔尺寸较小时可不另行补强?2、GB150-1998对压力容器开孔的最大直径是如何规定的?第三章内压薄壁容器设计一、薄壁容器设计的理论基础

㈠薄壁容器根据容器外径DO与内径Di的比值K来判断,当K≤1.2为薄壁容器K>1.2则为厚壁容器㈡圆筒形薄壁容器承受内压时的应力只有拉应力无弯曲“环向纤维”和“纵向纤维”受到拉力。s1(或s轴)圆筒母线方向(即轴向)拉应力,s2(或s环)圆周方向的拉应力。㈢圆筒的应力计算

1.轴向应力

D-筒体平均直径,亦称中径,mm;

2.环向应力分析:(1)薄壁圆筒受内压环向应力是轴向应力两倍。问题a:筒体上开椭圆孔,如何开应使其短轴与筒体的轴线平行,以尽量减少开孔对纵截面的削弱程度,使环向应力不致增加很多。分析:问题b:钢板卷制圆筒形容器,纵焊缝与环焊缝哪个易裂?筒体纵向焊缝受力大于环向焊缝,故纵焊缝易裂,施焊时应予以注意。(2)分析式(4-1)和(4-2)也可知,内压筒壁的应力和d/D成反比,d/D

值的大小体现着圆筒承压能力的高低。因此,分析一个设备能耐多大压力,不能只看厚度的绝对值。二、无力矩理论基本方程式

㈠基本概念与基本假设1.基本概念(1)旋转壳体:壳体中面(等分壳体厚度)是任意直线或平面曲线作母线,绕其同平面内的轴线旋转一周而成的旋转曲面。(2)轴对称壳体的几何形状、约束条件和所受外力都是对称于某一轴。化工用的压力容器通常是轴对称问题。

(3)旋转壳体的几何概念

母线与经线法线、平行圆第一曲率半径:经线曲率半径第二曲率半径:垂直于经线的平面与中面相割形成的曲线BE的曲率半径2.基本假设

假定壳体材料有连续性、均匀性和各向同性,即壳体是完全弹性的。

(1)小位移假设

各点位移都远小于厚度。可用变形前尺寸代替变形后尺寸。变形分析中高阶微量可忽略。2.基本假设

(2)直线法假设

变形前垂直于中面直线段,变形后仍是直线并垂直于变形后的中面。变形前后法向线段长度不变。沿厚度各点法向位移相同,厚度不变。

(3)不挤压假设

各层纤维变形前后互不挤压。㈡无力矩理论基本方程式

无力矩理论是在旋转薄壳的受力分析中忽略了弯矩的作用。此时应力状态和承受内压的薄膜相似。又称薄膜理论(4-3)——平衡方程(4-4)——区域平衡方程

无力矩理论基本方程式:三、基本方程式的应用1.圆筒形壳体第一曲率半径R1=∞,第二曲率半径R2=D/2

代入方程(4-3)和(4-4)得:与式(4-1)、(4-2)同。2.球形壳体

球壳R1=R2=D/2,得:

直径与内压相同,球壳内应力仅是圆筒形壳体环向应力的一半,即球形壳体的厚度仅需圆筒容器厚度的一半。当容器容积相同时,球表面积最小,故大型贮罐制成球形较为经济。

制造3.圆锥形壳体圆锥形壳半锥角为a,A点处半径为r,厚度为d,则在A点处:代入(4-3)、(4-4)可得A点处的应力:

(4-6)

锥形壳体环向应力是经向应力两倍,随半锥角a的增大而增大;

a角要选择合适,不宜太大。在锥形壳体大端r=R时,应力最大,在锥顶处,应力为零。因此,一般在锥顶开孔。

4.椭圆形壳体

椭圆壳经线为一椭圆,a、b分别为椭圆的长短轴半径。由此方程可得第一曲率半径为:

(4-7)

化工常用标准椭圆形封头,a/b=2,故顶点处:

边缘处:

顶点应力最大,经向应力与环向应力是相等的拉应力。顶点的经向应力比边缘处的经向应力大一倍;顶点处的环向应力和边缘处相等但符号相反。应力值连续变化。㈡受液体静压的圆筒形壳体的受力分析

筒壁上任一点的压力值(不考虑气体压力)为:

根据式(4-3)(4-4)可得:

底部支承的圆筒(a),液体重量由支承传递给基础,筒壁不受液体轴向力作用,则s1=0。上部支承圆筒(b),液体重量使得圆筒壁受轴向力作用,在圆筒壁上产生经向应力:例题4-1:有一外径为219mm的氧气瓶,最小厚度为6.5mm,材料为40Mn2A,工作压力为15MPa,试求氧气瓶壁应力解析:平均直径mm经向应力MPa环向应力MPa四、筒体强度计算实际设计中须考虑三个因素:(1)焊接接头系数(2)容器内径(3)

壁厚

筒体内较大的环向应力不应高于在设计温度下材料的许用应力,即[s]t-设计温度t℃下材料许用应力,MPa。㈠焊接接头系数

钢板卷焊。夹渣、气孔、未焊透等缺陷,导致焊缝及其附近区域强度可能低于钢材本体的强度。钢板[s]t乘以焊接接头系数f,f≤1

㈡容器内径

工艺设计确定内径Di,制造测量也是内径,而受力分析中的D却是中面直径。解出d,得到内压圆筒的厚度计算式㈢壁厚

考虑介质腐蚀,计算厚度d的基础上,增加腐蚀裕度C2。筒体的设计厚度为式中d-圆筒计算厚度,mm;

dd-圆筒设计厚度,mm;

Di-圆筒内径,mm;

p-容器设计压力,MPa;

f-焊接接头系数。另一种情况:筒体设计厚度加上厚度负偏差后向上圆整,即为筒体名义厚度。对于已有的圆筒,测量厚度为dn,则其最大许可承压的计算公式为:式中:dn-圆筒名义厚度

圆整成钢材标准值;de-圆筒有效厚度C-厚度附加量。

设计温度下圆筒的计算应力五、球壳强度计算

设计温度下球壳的计算厚度:设计温度下球壳的计算应力六、设计参数厚度设计参数按GBl50-1998中规定取值。设计压力、设计温度、许用应力、焊接接头系数厚度附加量等参数的选取。㈠设计压力(计算压力)设计压力:相应设计温度下确定壳壁厚度的压力,亦即标注在铭牌上的容器设计压力。其值稍高于最大工作压力。最大工作压力:是指容器顶部在工作过程中可能产生的最高压力(表压)。㈠设计压力(计算压力)使用安全阀时设计压力不小于安全阀开启压力或取最大工作压力1.05~1.10倍;使用爆破膜根据其型式,一般取最大工作压力的1.15~1.4倍作为设计压力。容器内盛有液体,若其静压力不超过最大工作压力的5%,则设计压力可不计入静压力,否则,须在设计压力中计入液体静压力。此外,某些容器有时还必须考虑重力、风力、地震力等载荷及温度的影响,这些载荷不直接折算为设计压力,必须分别计算。

㈡设计温度选择材料和许用应力的确定直接有关。设计温度指容器正常工作中,在相应的设计条件下,金属器壁可能达到的最高或最低温度。㈡设计温度器壁温度通过换热计算。不被加热或冷却,筒内介质最高或最低温度。用蒸汽、热水或其它载热体加热或冷却,载体最高温度或最低温度。不同部位出现不同温度分别计算㈢许用应力许用应力是以材料的各项强度数据为依据,合理选择安全系数n得出的。抗拉强度、屈服强度,蠕变强度、疲劳强度。取其中最低值。当设计温度低于0℃时,取20℃时的许用应力。㈣焊接接头系数焊接削弱而降低设计许用应力的系数。根据接头型式及无损检测长度比例确定。焊接接头形式无损检测的长度比例100%局部双面焊对接接头或相当于双面焊的对接接头1.00.85单面焊对接接头或相当于单面焊的对接接头0.90.8符合《压力容器安全技术检察规程》才允许作局部无损探伤。抽验长度不应小于每条焊缝长度的20%。㈤厚度附加量满足强度要求的计算厚度之外,额外增加的厚度量,包括由钢板负偏差(或钢管负偏差)Cl、腐蚀裕量

C2,即C=

Cl十

C2厚度22.22.52.8~3.03.2~3.53.8~44.5~5.5负偏差0.130.140.150.160.180.20.2

厚度6~78~2526~3032~3436~4042~5052~60负偏差0.60.80.911.11.21.3腐蚀裕量C2应根据各种钢材在不同介质中的腐蚀速度和容器设计寿命确定。塔类、反应器类容器设计寿命一般按20年考虑,换热器壳体、管箱及一般容器按10年考虑。腐蚀速度<0.05mm/a(包括大气腐蚀)时:碳素钢和低合金钢单面腐蚀C2=1mm,双面腐蚀取C2=2mm,当腐蚀速度>0.05mm/a时,单面腐蚀取C2=2mm,双面腐蚀取C2=4mm。不锈钢取C2=0。氢脆、碱脆、应力腐蚀及晶间腐蚀等,增加腐蚀裕量不是有效办法,而应根据情况采用有效防腐措施。工艺减薄量,可由制造单位依据各自的加工工艺和加工能力自行选取,设计者在图纸上注明的厚度不包括加工减薄量。七、最小壁厚设计压力较低的容器计算厚度很薄。大型容器刚度不足,不满足运输、安装。限定最小厚度以满足刚度和稳定性要求。壳体加工成形后不包括腐蚀裕量最小厚度dmin:

a.碳素钢和低合金钢制容器不小于3mm

b.对高合金钢制容器,不小于2mm

八、压力试验为什麽要进行压力试验呢?制造加工过程不完善,导致不安全,发生过大变形或渗漏。最常用的压力试验方法是液压试验。常温水。也可用不会发生危险的其它液体试验时液体的温度应低于其闪点或沸点。八、压力试验不适合作液压试验,如装入贵重催化剂要求内部烘干,或容器内衬耐热混凝土不易烘干,或由于结构原因不易充满液体的容器以及容积很大的容器等,可用气压试验代替液压试验。对压力试验的规定情况如下表所示:试验类型试验压力强度条件说明备注液压试验

(4-17)

(4-19)立式容器卧置进行水压试验时,试验压力应取立置试验压力加液柱静压力。压力试验时,由于容器承受的压力pT

高于设计压力p,故必要时需进行强度效核。

气压试验

(4-18)

(4-20)pT-试验压力,MPa;p-设计压力,MPa;

[s]一试验温度下的材料许用应力,MPa;

[s]T

一设计温度下的材料许用应力,MPa液压试验时水温不能过低(碳素钢、16MnR不低于5℃,其它低合金钢不低于15℃),外壳应保持干燥。设备充满水后,待壁温大致相等时,缓慢升压到规定试验压力,稳压30min,然后将压力降低到设计压力,保持30min以检查有无损坏,有无宏观变形,有无泄漏及微量渗透。水压试验后及时排水,用压缩空气及其它惰性气体,将容器内表面吹干例题4-2:某化工厂欲设计一台石油气分离工程中的乙烯精馏塔。工艺要求为塔体内径Di=600mm;设计压力p=2.2MPa;工作温度t=-3~-20℃。试选择塔体材料并确定塔体厚度。解析:由于石油气对钢材腐蚀不大,温度在-20℃以上,承受一定的压力,故选用16MnR。根据式(4-12)式中p=2.2MPa;Di=600mm;[s]=170MPaj=0.8(表4-9);C2=1.0mm

得:考虑钢板厚度负偏差C1=0.6mm圆正取dn=7mm水压试验时的应力

16MnR的屈服限ss=345MPa(附录表6)水压试验时满足强度要求。九、边缘应力无力矩理论忽略了剪力与弯矩的影响,可以满足工程设计精度的要求。但对图中所示的一些情况,就须考虑弯矩的影响。(a)、(b)、(c)是壳体与封头联接处经线突然折断;(d)是两段厚度不等的筒体相连接;(e)、(f)、(g)有法兰、加强圈、管板等刚度大的构件。相邻两段性能不同,或所受温度或压力不同,导致两部分变形量不同,但又相互约束,从而产生较大的剪力与弯矩。筒体与封头联接为例,边缘应力数值很大,有时导致容器失效,应重视。边缘应力具有局限性和自限性两个基本特性:1.局限性——

大多数都有明显的衰减波特性,随离开边缘的距离增大,边缘应力迅速衰减。2.自限性——

弹性变形相互制约,一旦材料产生塑性变形,弹性变形约束就会缓解,边缘应力自动受到限制,即边缘应力的自限性。塑性好的材料可减少容器发生破坏。局部性与自限性,设计中一般不按局部应力来确定厚度,而是在结构上作局部处理。但对于脆性材料,必须考虑边缘应力的影响。思考题1.承受气体压力的圆筒和圆锥形壳体的应力有什么特点?标准椭圆壳的应力又是怎样的?2.无力矩理论的适用条件是什么?3.边缘应力的特点是什么?4.在什么情况下需要考虑边缘应力?作业:习题:P3074,8第四节封头的设计封头又称端盖,其分类一、椭圆形封头半椭球和高度为h的短圆筒(通称直边)两部分构成,直边保证封头制造质量和避免边缘应力作用。

㈠受内压的椭圆形封头计算厚度K-椭圆形封头形状系数,标准椭圆形封头(长短轴之比值为2),K=1。壁厚计算公式:当封头是由整块钢板冲压时,j值取为1。筒体设计壁厚计算公式:忽略分母

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论