小学数学系列讲座之二_第1页
小学数学系列讲座之二_第2页
小学数学系列讲座之二_第3页
小学数学系列讲座之二_第4页
小学数学系列讲座之二_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

小学数学系列讲座之二数学方法全县小学数学教师同仁朋友,新年好!假设有兴趣看看我的数学讲座,并提出珍贵意见,共商榷。MyE-mailis全县小学数学教师同仁朋友,新年好!假设有兴趣看看我的数学讲座,并提出珍贵意见,共商榷。MyE-mailis良好的方法能使我们更好地发挥运用天赋的才能,而拙劣的方法那么可能阻碍才能的发挥。[英]贝尔纳数学方法是一个知识工具,比任何其他由人的作用而得到的知识工具更有力,是所有其他知识工具的源泉。[法]迪卡尔“数学为其他科学提供了语言、思想和方法〞,“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题〞。〔小学数学课程标准〕数学方法其实是数学的思维方法,因为数学是思维的体操。数学思维方法分为两种,形象思维方法和抽象思维方法。小学生的思维特点是形象思维占优势,抽象思维从萌发到逐渐开展。小学数学要培养学生的形象思维能力,并在此根底上,为开展抽象思维能力打下坚实的根底。形象思维方法形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维根底是具体形象,并从具体形象展开来的思维过程。形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保存着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。实物演示法利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此根底上进行分析思考、寻求解决问题的方法。这种方法可以使数学内容形象化,数量关系具体化。比方:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇〞等术语,而且为学生指明了思维方向。再如,在一个圆形〔方形〕水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手〞与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数〞。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难到达预期的教学目标的。特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的根底。所以,小学数学教师应尽可能多地制作一些数学教〔学〕具,而且这些教〔学〕具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。图示法借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此根底上的联想、想象出现谬误或走入误区,最后导致错误的结果。比方有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图那么可以帮助分析题意、启迪思路,作为其他解法的辅助手段。把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?〔见图1〕思维方法是:图示法。思维方向是:锯几次,每次用几分钟。思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟。判断等腰三角形中,点D是底边BC的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长。〔见图2〕思维方法:图示法。思维方向:先比拟面积,再比拟周长。思路:作条辅助线。图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大〞是正确的。线段AD比曲线AD短,所以“图甲的周长比图乙的周长长〞是错误的。列表法运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比拟、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比方,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法〞。用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。探索法按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国著名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。〞苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究为核心〞,是新课程的根本理念之一。人们在难以把问题转化为简单的、根本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究。例如,教学“比例尺〞时,教师创设“学生出题考老师〞的教学情境,师:“现在我们考试好不好?〞学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?〞学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?〞于是学生纷纷上台度量、报数,教师都一个接一个地答复对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?〞教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?〞于是引出所要学习的内容“比例尺〞。定向猜测,反复实践,在不断分析、调整中寻找规律。找规律填数。〔1〕1、4、、10、13、、19;〔2〕2、8、18、32、、72、。第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。小学数学教学活动中,教师应尽量创设让学生去探究的情景,创造让学生去探究的时机,鼓励有探究精神和习惯的学生。观察法。通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:"应领先学会观察,不学会观察永远当不了科学家.〞小学数学“观察〞的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变。“观察〞的要求:观察要细致、准确。找出以下各题错在哪里,并改正。〔1〕25×16=25×〔4×4〕=〔25×4〕×〔25×4〕;〔2〕18×36+18×64=〔18+18〕×〔36+64〕例5直接写出以下各题的得数:〔1〕3.6+6.4(2)3.6+6.04(3)125×57×0.04(4)(351-37-13)÷5科学观察。科学观察渗透了更多的理性因素,它是有目的,有方案地观察研究对象。比方,在教学长方体的认识时,要做到“有序〞观察:〔1〕面——形状、个数、面与面之间的关系;〔2〕棱——棱的形成、条数、棱与棱之间的关系〔相对的棱相等;相对的棱有四条;长方体的棱可以分为三组〕;〔3〕顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。观察必定与思考结合。7106例618这是一年级下期的一道思考题,如果只观察不思考,这道题目让干什么就不知道。典型法针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法。典型是相对于普遍而言的。解决数学问题,有些需要用一般方法,有些那么需要用特殊〔典型〕方法。比方,归一、倍比和归总算法、行程、工程、消同求异、平均数等。运用典型法必须注意:要掌握典型材料的关键及规律。例7爸爸比儿子大30岁,爸爸今年的年龄正好是儿子的7倍。爸爸、儿子今年分别是多少岁?关键点在:爸爸比儿子大30岁,爸爸的年龄比儿子多几倍。典型题都有典型解法,要想真正学好数学,即要理解和掌握一般思路和解法,还要学会典型解法。熟悉典型材料,并能敏捷地联想到所适用的典型,从而确定所需要的解题方法。例8见到“某城市有一条公共汽车线路,长16500米,平均每隔500米设一个车站。这条线路需要设多少个车站?〞这样题目,就应该联想到上面所讲到的“锯木头用多少分钟〞的典型问题。典型和技巧相联系。例9甲乙两个工程队共有82人,如果从乙队调8人到甲队,两队人数正好相等。甲乙两队原来各有多少人?这题目的技巧:调前、调后两队总人数没变。先算调后各队人数,再算原来各队人数。例10苹果和梨共有83筐,苹果的筐数比梨的3倍还多3筐。苹果和梨各有多少筐?此题用方程解就容易了:设梨有X筐。X+3X+3=83例11〔1.25+1.25×2+1.25〕×2.5×8联想到1.25×8=10,2.5×4=10,于是:(1.25+1.25×2+1.25)×2.5×8=1.25×4×2.5×8=1.25×8×2.5×4=100一次最多烙2个馍,烙一面需要1分钟,烙好5个馍最少需要几分钟?〔07年息县小学数学教师专业知识测试题〕6分钟是错误的。其技巧在于:烙最后3个馍最少用几分钟?为了节约时间,一定要保持同时烙两个馍。它的规律是:烙一个至少需要2分钟,烙2个至少需要2分钟,烙3个至少需要3分钟,烙4个至少需要4分钟,……列举法通过列举出被研究对象所有可能情况来解决问题的方法叫做列举法,也叫枚举法或穷举法。列举和描述数学知识在小学低年级数学教学活动中使用得比拟多。列举法具体、形象,有利于分析、思考。6个人初次见面,必须每2人握1次手,6人一共握过几次手?用列举法,画图把握手次数一一列举出来,就容易分析解决了。求最大公因数或最小公倍数的根本方法,也是用列举的方法,如以下图。〔2〕必须完整,不重复也不可遗漏。例1420以内的自然数中,既是合数又是奇数的数有。例15用3个5,2个0组成的五位数中,只读1个0的数是〔〕;2个0都读的数是〔〕;不读0的数是〔〕。〔3〕教师设计数学题时,列举的数不宜过多,也不可有歧义。放缩法通过对被研究对象的放缩估计来解决问题的方法叫做放缩法。放缩法灵活、巧妙,但有赖于知识的拓展能力及其想象能力。求12和9的最小公倍数。求两个数的最小公倍数一般的方法是“短除式〞方法,它是根据这两个数的质因数情况来求出它们的最小公倍数的。但也有两个典型方法:一是“如果两个数是互质数,那么这两个数的最小公倍数就是它们的乘积〞;二是“如果大数是小数的倍数,那么这两个数的最小公倍数就是大数〞。现在我们根据典型方法二,进行扩展运用,放大“大数〞来求12和9的最小公倍数。12不是9的倍数,就把它放大2倍,得24,仍然不是9的倍数,放大3倍,得36,36是9的倍数,那么,12和9的最小公倍数就是36。这种方法的关键点在于,如果大数不是小数的倍数,就把大数翻倍,但一定从2倍开始,如果一下子扩大6倍,得数是它们的公倍数,而不是最小的了。期末考试,小刚的语文成绩和英语成绩的和是197分;语文和数学成绩加起来是199分;数学和英语成绩加起来是196分。想一想,小刚的哪科成绩最高?你能算出小刚的各科成绩吗?思路一:“放大〞。通过观察发现,语、数、外三科成绩在题目中各出现两次,我们求197+199+196的和,这个和是“语数外成绩的2倍〞,除以2得三科成绩之和,再减去任意两科的成绩,就得到第三科的成绩。思路二:“缩小〞。我们用语数成绩的和减去语外的成绩,199-197=2〔分〕,这是数学减英语成绩的差。数学和英语的和是196分,再求数学的分数就不难了。放缩法有时运用在估算和验算上。检验以下计算结果是否正确?〔1〕18.7×6.9=137.3;(2)17485÷6.6=3609.对于〔1〕用总体估计,放大至19×7=133,估计得数要小于133,所以此题结果错误。对于〔2〕用最高位估计,把17看作18,把6.6看作6,18÷6=3,显然答数的最高位不会是3,故此题结果也不正确。把鸡和兔放在一起,共有48个头,114只足,问鸡、兔各有几只。这是一道鸡兔同笼的典型问题,我们也用放缩法,不妨把鸡和兔的足数缩小2倍,那么,鸡的足数和它的头数一样,而兔的足数是它的只数的2倍。所以,总的足数缩小2倍后,鸡和兔的总足数与它们的总只数相差数就是兔的只数。验证法你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。验证法应用范围比拟广泛,是需要熟练掌握的一项根本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。是否符合实际。“千教万教教人求真,千学万学学做真人〞陶行知先生的话要落实在教学中。比方,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8〔套〕按照“四舍五入法〞保存近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法〞。〔4〕验证的动力在猜测和质疑。牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。〞“猜〞也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学〞的愿望。为了防止瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜测,直到解决问题。二、抽象思维方法运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断开展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的根底。形式思维能力:分析、综合、比拟、抽象、概括、判断、推理。辩证思维能力:联系、开展变化、对立统一律、质量互变律、否认之否认律。小学数学要培养学生初步的抽象思维能力,重点突出在:〔1〕思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。〔2〕思维方法上,应该学会有条有理,有根有据地思考。〔3〕思维要求上,思路清晰,因果清楚,言必有据,推理严密。〔4〕思维训练上,应该要求:正确地运用概念,恰当地下判断,符合逻辑地推理。对照法如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法那么、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。例20、三个连续自然数的和是18,那么这三个自然数从小到大分别是:、、。对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。例21、判断:能被2除尽的数一定是偶数。这里要对照“除尽〞和“偶数〞这两个数学概念。只有这两个概念全理解了,才能做出正确判断。公式法。运用定律、公式、规那么、法那么来解决问题的方法。它表达的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规那么、法那么有一个正确而深刻的理解,并能准确运用。计算59×37+12×59+5959×37+12×59+59=59×〔37+12+1〕…………运用乘法分配律=59×50…………运用加法计算法那么=〔60-1〕×50…………运用数的组成规那么=60×50-1×50…………运用乘法分配律=3000-50…………运用乘法计算法那么=2950…………运用减法计算法那么12、比拟法通过比照数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比拟法。比拟法要注意:找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比拟要完整。找联系与区别,这是比拟的实质。必须在同一种关系下〔同一种标准〕进行比拟,这是“比拟〞的根本条件。要抓住主要内容进行比拟,尽量少用“穷举法〞进行比拟,那样会使重点不突出。因为数学的严密性,决定了比拟必须要精细,往往一个字,一个符号就决定了比拟结论的对或错。例23、填空:0.75的最高位是〔〕,这个数小数局部的最高位是〔〕;十分位的数4与十位上的数4相比,它们的〔〕相同,〔〕不同,前者比后者小了〔〕。这道题的意图就是要对“一个数的最高位和小数局部的最高位的区别〞,还有“数位和数值〞的区别等。六年级同学种一批树,如果每人种5棵,那么剩下75棵树没有种;如果每人种7棵,那么缺少15棵树苗。六年级有多少学生?这是两种方案的比拟。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。找联系:每人种树棵数变化了,种树的总棵数也发生了变化。找解决思路〔方法〕:每人多种7-5=2〔棵〕,那么,全班就多种了75+15=90〔棵〕,全班人数为90÷2=45〔人〕。13、分类法俗语:物以类聚,人以群分。根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比拟为根底的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。自然数按约数的个数来分,可分成几类?答:可分为三类。〔1〕只有一个约数的数,它是一个单位数,只有一个数1;〔2〕有两个约数的,也叫质数,有无数个;〔3〕有三个约数的,也叫合数,也有无数个。14、分析法。把整体分解为局部,把复杂的事物分解为各个局部或要素,并对这些局部或要素进行研究、推导的一种思维方法叫做分析法。依据:总体都是由局部构成的。思路:为了更好地研究和解决总体,先把整体的各局部或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因〞。分析法也叫逆推法。常用“枝形图〞进行图解思路。玩具厂方案每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过方案多少件?思路:要求平均每天超过方案多少件,必须知道:方案每天生产多少件和实际每天生产多少件。方案每天生产多少件,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都。枝形图:〔略〕15、综合法把对象的各个局部或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。用综合法解数学题时,通常把各个题知看作是局部〔或要素〕,经过对各局部〔或要素〕相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于条件较少,数量关系比拟简单的数学题。两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。思路:11的倍数同时小于50的偶数有22和44。两个数都是质数,而和是偶数,显然这两个质数中没有2。和是22的两个质数有:3和19,5和17。它们的差都是小于30的合数吗?和是44的两个质数有:3和41,7和37,13和31。它们的差是小于30的合数吗?这就是综合法的思路。16、方程法用字母表示未知数,并根据等量关系列出含有字母的表达式〔等式〕。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知数等同于数看待,参与列式、运算,克服了算术法必须避开求知数来列式的缺乏。有利于由向未知的转化,从而提高了解题的效率和正确率。一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克?这两题用方程解就比拟容易。17参数法用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。汽车爬山,上山时平均每小时行15千米,下山时平均每小时行驶10千米,问汽车的平均速度是每小时多少千米?上下山的平均速度不能用上下山的速度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论