版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WhenWillAIExceedHumanPerformance?EvidencefromAIExpertsKatjaGrace1,2,JohnSalvatier2,AllanDafoe1,3,BaobaoZhang3,andOwainEvans11FutureofHumanityInstitute,OxfordUniversity2AIImpacts3DepartmentofPoliticalScience,YaleUniversityAbstractAdvancesinartificialintelligence(AI)willtransformmodernlifebyreshapingtransportation,health,science,finance,andthemilitary[1,2,3].Toadaptpublicpolicy,weneedtobetteranticipatetheseadvances[4,5].HerewereporttheresultsfromalargesurveyofmachinelearningresearchersontheirbeliefsaboutprogressinAI.ResearcherspredictAIwilloutper-formhumansinmanyactivitiesinthenexttenyears,suchastranslatinglanguages(by2024),writinghigh-schoolessays(by2026),drivingatruck(by2027),workinginretail(by2031),writingabestsellingbook(by2049),andworkingasasurgeon(by2053).Researchersbelievethereisa50%chanceofAIoutperforminghumansinalltasksin45yearsandofautomatingallhumanjobsin120years,withAsianrespondentsexpectingthesedatesmuchsoonerthanNorthAmericans.TheseresultswillinformdiscussionamongstresearchersandpolicymakersaboutanticipatingandmanagingtrendsinAI.IntroductionAdvancesinartificialintelligence(AI)willhavemassivesocialconsequences.Self-drivingtech-nologymightreplacemillionsofdrivingjobsoverthecomingdecade.Inadditiontopossibleunemployment,thetransitionwillbringnewchallenges,suchasrebuildinginfrastructure,pro-tectingvehiclecyber-security,andadaptinglawsandregulations[5].Newchallenges,bothforAIdevelopersandpolicy-makers,willalsoarisefromapplicationsinlawenforcement,militarytech-nology,andmarketing[6].Toprepareforthesechallenges,accurateforecastingoftransformativeAIwouldbeinvaluable.SeveralsourcesprovideobjectiveevidenceaboutfutureAIadvances:trendsincomputinghardware[7],taskperformance[8],andtheautomationoflabor[9].ThepredictionsofAIexpertsprovidecrucialadditionalinformation.WesurveyalargerandmorerepresentativesampleofAIexpertsthananystudytodate[10,11].OurquestionscoverthetimingofAIadvances(includingbothpracticalapplicationsofAIandtheautomationofvarioushumanjobs),aswellasthesocialandethicalimpactsofAI.SurveyMethodOursurveypopulationwasallresearcherswhopublishedatthe2021NIPSandICMLconfer-ences(twoofthepremiervenuesforpeer-reviewedresearchinmachinelearning).Atotalof352researchersrespondedtooursurveyinvitation(21%ofthe1634authorswecontacted).Ourques-tionsconcernedthetimingofspecificAIcapabilities(e.g.foldinglaundry,languagetranslation),superiorityatspecificoccupations(e.g.truckdriver,surgeon),superiorityoverhumansatalltasks,andthesocialimpactsofadvancedAI.SeeSurveyContentfordetails.TimeUntilMachinesOutperformHumansAIwouldhaveprofoundsocialconsequencesifalltasksweremorecosteffectivelyaccomplishedbymachines.Oursurveyusedthefollowingdefinition:“High-levelmachineintelligence〞(HLMI)isachievedwhenunaidedmachinescanac-complisheverytaskbetterandmorecheaplythanhumanworkers.1Each
individual
respondent
estimated
the
probability
of
HLMI
arriving
in
future
years.
Taking
themean
over
each
individual,
the
aggregate
forecast
gave
a
50%
chance
of
HLMI
occurring
within
45
years
and
a
10%
chance
of
it
occurring
within
9
years.
Figure
1
displays
the
probabilistic
predictions
for
a
random
subset
of
individuals,
as
well
as
the
mean
predictions.
There
is
largeinter-subject
variation:
Figure
3
shows
that
Asian
respondents
expect
HLMI
in
30
years,
whereas
North
Americans
expect
it
in
74
years.0.000.250.500.751.0002550Yearsfrom202175100Probability
of
HLMIAggregateForecast(with95%ConfidenceInterval)RandomSubsetofIndividualForecastsLOESSFigure1:Aggregatesubjectiveprobabilityof‘high-levelmachineintelligence’arrivalbyfutureyears.EachrespondentprovidedthreedatapointsfortheirforecastandthesewerefittotheGammaCDFbyleastsquarestoproducethegreyCDFs.The“AggregateForecast〞isthemeandistributionoverallindividualCDFs(alsocalledthe“mixture〞distribution).Theconfidenceintervalwasgeneratedbybootstrapping(clusteringonrespondents)andplottingthe95%intervalforestimatedprobabilitiesateachyear.TheLOESScurveisanon-parametricregressiononalldatapoints.WhilemostparticipantswereaskedaboutHLMI,asubsetwereaskedalogicallysimilarquestionthatemphasizedconsequencesforemployment.Thequestiondefinedfullautomationoflaboras:whenalloccupationsarefullyautomatable.Thatis,whenforanyoccupation,machinescouldbebuilttocarryoutthetaskbetterandmorecheaplythanhumanworkers.ForecastsforfullautomationoflaborweremuchlaterthanforHLMI:themeanoftheindividualbeliefsassigneda50%probabilityin122yearsfromnowanda10%probabilityin20years.2Figure2:TimelineofMedianEstimates(with50%intervals)forAIAchievingHumanPer-formance.Timelinesshowing50%probabilityintervalsforachievingselectedAImilestones.Specifically,intervalsrepresentthedaterangefromthe25%to75%probabilityoftheeventoccurring,calculatedfromthemeanofindividualCDFsasinFig.1.Circlesdenotethe50%-probabilityyear.EachmilestoneisforAItoachieveorsurpasshumanexpert/professionalperformance(fulldescriptionsinTableS5).Notethattheseintervalsrepresenttheuncertaintyofsurveyrespondents,notestimationuncertainty.Respondentswerealsoaskedwhen32“milestones〞forAIwouldbecomefeasible.Thefullde-scriptionsofthemilestoneareinTableS5.Eachmilestonewasconsideredbyarandomsubsetofrespondents(n≥24).Respondentsexpected(meanprobabilityof50%)20ofthe32AImilestonestobereachedwithintenyears.Fig.2displaystimelinesforasubsetofmilestones.IntelligenceExplosion,Outcomes,AISafetyTheprospectofadvancesinAIraisesimportantquestions.WillprogressinAIbecomeexplosivelyfastonceAIresearchanddevelopmentitselfcanbeautomated?Howwillhigh-levelmachineintel-ligence(HLMI)affecteconomicgrowth?Whatarethechancesthiswillleadtoextremeoutcomes(eitherpositiveornegative)?WhatshouldbedonetohelpensureAIprogressisbeneficial?Table3rioritized
by
society
more
than
the
status
quo
(with
only
12%
wishing
for
lessEurope(n=58)NorthAmerica(n=64)0.000.250.500.75S4displaysresultsforquestionsweaskedonthesetopics.Herearesomekeyfindings:Researchersbelievethefieldofmachinelearninghasacceleratedinrecentyears.Weaskedresearcherswhethertherateofprogressinmachinelearningwasfasterinthefirstorsecondhalfoftheircareer.Sixty-sevenpercent(67%)saidprogresswasfasterinthesecondhalfoftheircareerandonly10%saidprogresswasfasterinthefirsthalf.Themediancareerlengthamongrespondentswas6years.ExplosiveprogressinAIafterHLMIisseenaspossiblebutimprobable.SomeauthorshavearguedthatonceHLMIisachieved,AIsystemswillquicklybecomevastlysuperiortohumansinalltasks[3,12].Thisaccelerationhasbeencalledthe“intelligenceexplosion.〞WeaskedrespondentsfortheprobabilitythatAIwouldperformvastlybetterthanhumansinalltaskstwoyearsafterHLMIisachieved.Themedianprobabilitywas10%(interquartilerange:1-25%).WealsoaskedrespondentsfortheprobabilityofexplosiveglobaltechnologicalimprovementtwoyearsafterHLMI.Herethemedianprobabilitywas20%(interquartilerange5-50%).HLMIisseenaslikelytohavepositiveoutcomesbutcatastrophicrisksarepossible.RespondentswereaskedwhetherHLMIwouldhaveapositiveornegativeimpactonhumanityoverthelongrun.Theyassignedprobabilitiestooutcomesonafive-pointscale.Themedianprobabilitywas25%fora“good〞outcomeand20%foran“extremelygood〞outcome.Bycontrast,theprobabilitywas10%forabadoutcomeand5%foranoutcomedescribedas“ExtremelyBad(e.g.,humanextinction).〞SocietyshouldprioritizeresearchaimedatminimizingthepotentialrisksofAI.Forty-eightpercentofrespondentsthinkthatresearchonminimizingtherisksofAIshouldbep ).UndergradRegionHLMICDFs1.004Asia(n=68)OtherRegions(n=21)02550Yearsfrom202175100Probability
ofHLMIFigure3:AggregateForecast(computedasinFigure1)forHLMI,groupedbyregioninwhichrespondentwasanundergraduate.Additionalregions(MiddleEast,S.America,Africa,Oceania)hadmuchsmallernumbersandaregroupedas“OtherRegions.〞5AsiansexpectHLMI44yearsbeforeNorthAmericansFigure3showsbigdifferencesbetweenindividualrespondentsinwhentheypredictHLMIwillarrive.BothcitationcountandsenioritywerenotpredictiveofHLMItimelines(seeFig.S1andtheresultsofaregressioninTableS2).However,respondentsfromdifferentregionshadstrikingdifferencesinHLMIpredictions.Fig.3showsanaggregatepredictionforHLMIof30yearsforAsianrespondentsand74yearsforNorthAmericans.Fig.S1displaysasimilargapbetweenthetwocountrieswiththemostrespondentsinthesurvey:China(median28years)andUSA(median76years).Similarly,theaggregateyearfora50%probabilityforautomationofeachjobweaskedabout(includingtruckdriverandsurgeon)waspredictedtobeearlierbyAsiansthanbyNorthAmericans(TableS2).Notethatweusedrespondents’undergraduateinstitutionasaproxyforcountryoforiginandthatmanyAsianrespondentsnowstudyorworkoutsideAsia.Wasoursamplerepresentative?Oneconcernwithanykindofsurveyisnon-responsebias;inparticular,researcherswithstrongviewsmaybemorelikelytofilloutasurvey.Wetriedtomitigatethiseffectbymakingthesurveyshort(12minutes)andconfidential,andbynotmentioningthesurvey’scontentorgoalsinourinvitationemail.Ourresponseratewas21%.Toinvestigatepossiblenon-responsebias,wecollecteddemographicdataforbothourrespondents(n=406)andarandomsample(n=399)ofNIPS/ICMLresearcherswhodidnotrespond.ResultsareshowninTableS3.Differencesbetweenthegroupsincitationcount,seniority,gender,andcountryoforiginaresmall.Whilewecannotruleoutnon-responsebiasesduetounmeasuredvariables,wecanruleoutlargebiasduetothedemographicvariableswemeasured.Ourdemographicdataalsoshowsthatourrespondentsincludedmanyhighly-citedresearchers(mostlyinmachinelearningbutalsoinstatistics,computersciencetheory,andneuroscience)andcamefrom43countries(vs.atotalof52foreveryonewesampled).Amajorityworkinacademia(82%),while21%workinindustry.DiscussionWhythinkAIexpertshaveanyabilitytoforeseeAIprogress?Inthedomainofpoliticalscience,along-termstudyfoundthatexpertswereworsethancrudestatisticalextrapolationsatpredictingpoliticaloutcomes[13].AIprogress,whichreliesonscientificbreakthroughs,mayappearintrin-sicallyhardertopredict.Yettherearereasonsforoptimism.Whileindividualbreakthroughsareunpredictable,longertermprogressinR&Dformanydomains(includingcomputerhardware,ge-nomics,solarenergy)hasbeenimpressivelyregular[14].Suchregularityisalsodisplayedbytrends[8]inAIperformanceinSATproblemsolving,games-playing,andcomputervisionandcouldbeexploitedbyAIexpertsintheirpredictions.Finally,itiswellestablishedthataggregatingindi-vidualpredictionscanleadtobigimprovementsoverthepredictionsofarandomindividual[15].Furtherworkcoulduseourdatatomakeoptimizedforecasts.Moreover,manyoftheAImilestones(Fig.2)wereforecasttobeachievedinthenextdecade,providingground-truthevidenceaboutthereliabilityofindividualexperts.References[1]PeterStone,RodneyBrooks,ErikBrynjolfsson,RyanCalo,OrenEtzioni,GregHager,JuliaHirschberg,ShivaramKalyanakrishnan,EceKamar,SaritKraus,etal.Onehundredyearstudyonartificialintelligence:Reportofthe2021-2021studypanel.Technicalreport,StanfordUniversity,2021.[2]PedroDomingos.TheMasterAlgorithm:HowtheQuestfortheUltimateLearningMachineWillRemakeOurWorld.BasicBooks,NewYork,NY,2021.[3]NickBostrom.Superintelligence:Paths,Dangers,Strategies.OxfordUniversityPress,Oxford,UK,2021.[4]ErikBrynjolfssonandAndrewMcAfee.TheSecondMachineAge:Work,Progress,andProsperityinaTimeofBrilliantTechnologies.WWNorton&Company,NewYork,2021.[5]RyanCalo.Roboticsandthelessonsofcyberlaw.CaliforniaLawReview,103:513,2021.6[6]TaoJiang,SrdjanPetrovic,UmaAyyer,AnandTolani,andSajidHusain.Self-drivingcars:Disruptiveorincremental.AppliedInnovationReview,1:3–22,2021.[7]WilliamD.Nordhaus.Twocenturiesofproductivitygrowthincomputing.TheJournalofEconomicHistory,67(01):128–159,2007.[8]KatjaGrace.Algorithmicprogressinsixdomains.Technicalreport,MachineIntelligenceResearchInstitute,2021.[9]ErikBrynjolfssonandAndrewMcAfee.RaceAgainsttheMachine:HowtheDigitalRevolutionIsAcceleratingInnovation,DrivingProductivity,andIrreversiblyTransformingEmploymentandtheEconomy.DigitalFrontierPress,Lexington,MA,2021.[10]SethD.Baum,BenGoertzel,andTedG.Goertzel.Howlonguntilhuman-levelai?resultsfromanexpertassessment.TechnologicalForecastingandSocialChange,78(1):185–195,2021.[11]VincentC.MüllerandNickBostrom.Futureprogressinartificialintelligence:Asurveyofexpertopinion.InVincentCMüller,editor,Fundamentalissuesofartificialintelligence,chapterpart.5,chap.4,pages553–570.Springer,2021.[12]IrvingJohnGood.Speculationsconcerningthefirstultraintelligentmachine.Advancesincomputers,6:31–88,1966.[13]PhilipTetlock.Expertpoliticaljudgment:Howgoodisit?Howcanweknow?PrincetonUniversityPress,Princeton,NJ,2005.[14]JDoyneFarmerandFrançoisLafond.Howpredictableistechnologicalprogress?ResearchPolicy,45(3):647–665,2021.[15]LyleUngar,BarbMellors,VilleSatopää,JonBaron,PhilTetlock,JaimeRamos,andSamSwift.Thegoodjudgmentproject:Alargescaletest.Technicalreport,AssociationfortheAdvancementofArtificialIntelligenceTechnicalReport,2021.[16]JoeW.Tidwell,ThomasS.Wallsten,andDonA.Moore.Elicitingandmodelingprobabilityforecastsofcontinuousquantities.Paperpresentedatthe27thAnnualConferenceofSocietyforJudgementandDecisionMaking,Boston,MA,19November2021.,2021.[17]ThomasS.Wallsten,YaronShlomi,ColetteNataf,andTracyTomlinson.Efficientlyencod-ingandmodelingsubjectiveprobabilitydistributionsforquantitativevariables.Decision,3(3):169,2021.7SupplementaryInformationSurveyContentWedevelopedquestionsthroughaseriesofinterviewswithMachineLearningresearchers.Oursurveyquestionswereasfollows:ThreesetsofquestionselicitingHLMIpredictionsbydifferentframings:askingdirectlyaboutHLMI,askingabouttheautomatabilityofallhumanoccupations,andaskingaboutrecentprogressinAIfromwhichwemightextrapolate.Threequestionsabouttheprobabilityofan“intelligenceexplosion〞.OnequestionaboutthewelfareimplicationsofHLMI.AsetofquestionsabouttheeffectofdifferentinputsontherateofAIresearch(e.g.,hardwareprogress).TwoquestionsaboutsourcesofdisagreementaboutAItimelinesand“AISafety.〞Thirty-twoquestionsaboutwhenAIwillachievenarrow“milestones〞.TwosetsofquestionsonAISafetyresearch:oneaboutAIsystemswithnon-alignedgoals,andoneontheprioritizationofSafetyresearchingeneral.Asetofdemographicquestions,includingonesabouthowmuchthoughtrespondentshavegiventothesetopicsinthepast.ThequestionswereaskedviaanonlineQualtricssurvey.(TheQualtricsfilewillbesharedtoenablereplication.)Participantswereinvitedbyemailandwereofferedafinancialrewardforcompletingthesurvey.Questionswereaskedinroughlytheorderaboveandrespondentsreceivedarandomizedsubsetofquestions.SurveyswerecompletedbetweenMay3rd2021andJune28th2021.Ourgoalindefining“high-levelmachineintelligence〞(HLMI)wastocapturethewidely-discussednotionsof“human-levelAI〞or“generalAI〞(whichcontrastswith“narrowAI〞)[3].WeconsultedallprevioussurveysofAIexpertsandbasedourdefinitiononthatofanearliersurvey[11].TheirdefinitionofHLMIwasamachinethat“cancarryoutmosthumanprofessionsatleastaswellasatypicalhuman.〞Ourdefinitionismoredemandingandrequiresmachinestobebetteratalltasksthanhumans(whilealsobeingmorecost-effective).SinceearliersurveysoftenuselessdemandingnotionsofHLMI,theyshould(allotherthingsbeingequal)predictearlierarrivalforHLMI.DemographicInformationThedemographicinformationonrespondentsandnon-respondents(TableS3)wascollectedfrompublicsources,suchasacademicwebsites,LinkedInprofiles,andGoogleScholarprofiles.Citationcountandseniority(i.e.numbersofyearssincethestartofPhD)werecollectedinFebruary2021.ElicitationofBeliefsManyofourquestionsaskwhenaneventwillhappen.Forpredictiontasks,idealBayesianagentsprovideacumulativedistributionfunction(CDF)fromtimetothecumulativeprobabilityoftheevent.Whenelicitingpointsonrespondents’CDFs,weframedquestionsintwodifferentways,whichwecall“fixed-probability〞and“fixed-years〞.Fixed-probabilityquestionsaskbywhichyearaneventhasanp%cumulativeprobability(forp=10%,50%,90%).Fixed-yearquestionsaskforthecumulativeprobabilityoftheeventbyyeary(fory=10,25,50).TheformerframingwasusedinrecentsurveysofHLMItimelines;thelatterframingisusedinthepsychologicalliteratureonforecasting[16,17].Withalimitedquestionbudget,thetwoframingswillsampledifferentpointsontheCDF;otherwise,theyarelogicallyequivalent.Yetoursurveyrespondentsdonottreatthemaslogicallyequivalent.Weobservedeffectsofquestionframinginallourpredictionquestions,aswellasinpilotstudies.Differencesinthesetwoframingshavepreviouslybeendocumentedintheforecastingliterature[16,17]butthereisnoclearguidanceonwhichframingleadstomoreaccuratepredictions.ThuswesimplyaverageoverthetwoframingswhencomputingCDFestimatesforHLMIandfortasks.HLMIpredictionsforeachframingareshowninFig.S2.8StatisticsFor
each
timeline
probability
question
(see
Figures1and
2),
we
computed
an
aggregate
distribution
by
fitting
a
gamma
CDF
to
each
individual’s
responses
using
least
squares
and
then
taking
themixture
distribution
of
all
individuals.
Reported
medians
and
quantiles
were
computed
on
thissummary
distribution.
The
confidence
intervals
were
generated
by
bootstrapping
(clustering
onrespondents
with
10,000
draws)
and
plotting
the
95%
interval
for
estimated
probabilities
at
each
year.
The
time-in-field
andcitationscomparisons
between
respondents
and
non-respondents
(Table
S3)
were
done
using
two-tailed
t-tests.
The
region
and
gender
proportions
were
done
using
two-
sided
proportion
tests.
The
significance
test
for
the
effect
of
region
on
HLMI
date
(Table
S2)
was
done
using
robust
linear
regression
using
the
R
function
rlm
from
the
MASS
package
to
do
the
regression
and
then
the
f.robtest
function
from
the
sfsmisc
package
to
do
a
robust
F-test
significance.Supplementary
Figures(a)
Top
4
Undergraduate
Country
HLMI
CDFsIndia(n=20)China(n=36)France(n=16)UnitedStates(n=53)0.000.250.500.751.0002550Yearsfrom202175100Probability
of
HLMITop4UndergradCountryHLMICDFs(b)
Time
in
Field
Quantile
HLMI
CDFsQ[1](n=57)Q[2](n=40)Q[4](n=48)Q[3](n=55)0.000.250.500.751.0002550Yearsfrom202175100Probability
of
HLMITimeinFieldQuartileHLMICDFs(c)
Citation
Count
Quartile
HLMI
CDFs0.50Q[2](n=57)Q[1](n=53)Q[3](n=65)Q[4](n=49)0.000.250.751.00092550Yearsfrom202175100Probability
of
HLMIHLMICDFByCitation
CountQuartileFigureS1:AggregatesubjectiveprobabilityofHLMIarrivalbydemographicgroup.EachgraphcurveisanAggregateForecastsCDF,computedusingtheproceduredescribedinFigure1andin“ElicitationofBeliefs.〞FigureS1ashowsaggregateHLMIpredictionsforthefourcountrieswiththemostrespondentsinoursurvey.FigureS1bshowspredictionsgroupedbyquartilesforseniority(measuredbytimesincetheystartedaPhD).FigureS1cshowspredictionsgroupedbyquartilesforcitationcount.“Q4〞indicatesthetopquartile(i.e.themostseniorresearchersortheresearcherswithmostcitations).0.000.25FramingFixed
ProbabilitiesFixed
YearsCombined100.500.751.0002550Yearsfrom202175100Probability
of
HLMIFraming
CDFsFigureS2:AggregatesubjectiveprobabilityofHLMIarrivalfortwoframingsofthequestion.The“fixedprobabilities〞and“fixedyears〞curvesareeachanaggregateforecastforHLMIpredictions,computedusingthesameprocedureasinFig.1.ThesetwoframingsofquestionsaboutHLMIareexplainedin“ElicitationofBeliefs〞above.The“combined〞curveisanaverageoverthesetwoframingsandisthecurveusedinFig.1.SupplementaryTablesS1:AutomationPredictionsbyResearcherRegionThisquestionaskedwhenautomationofthejobwouldbecomefeasible,andcumulativeproba-bilitieswereelicitedasintheHLMIandmilestonepredictionquestions.Thedefinitionof“fullautomation〞isgivenabove(p.1).Forthe“NA/Asiagap〞,wesubtracttheAsianfromtheN.Americanmedianestimates.TableS1:Medianestimate(inyearsfrom2021)forautomationofhumanjobsbyregionofundergraduateinstitutionS2:RegressionofHLMIPredictiononDemographicFeaturesWestandardizedinputsandregressedthelogofthemedianyearsuntilHLMIforrespondentsongender,logofcitations,seniority(i.e.numbersofyearssincestartofPhD),questionframing(“fixed-probability〞vs.“fixed-years〞)andregionwheretheindividualwasanundergraduate.Weusedarobustlinearregression.TableS2:RobustlinearregressionforindividualHLMIpredictionsS3:
Demographics
of
Respondents
vs.
Non-respondentsThere
were
(n=406)
respondents
and
(n=399)
non-respondents.
Non-respondents
were
randomly
sampled
from
all
NIPS/ICML
authors
who
did
not
respond
to
our
survey
invitation.
Subjects
with11QuestionEuropeN.
AmericaAsiaNA/Asia
gapFull
Automation130.8168.6104.2+64.4Retail
salesperson13.210.610.2+0.4Truck
driver46.441.031.4+9.6Surgeon18.820.210.0+10.2AI
researcher80.0123.6109.0+14.6termEstimateSEt
-statisticp-valueWald
F
-statistic(Intercept)3.650380.1732021.076350.00000458.0979Gender
=
“female”-0.254730.39445-0.645780.553200.3529552log(citation_count)-0.103030.13286-0.775460.447220.5802456Seniority
(years)0.096510.130900.737280.466890.5316029Framing
=
“fixed_probabilities”-0.340760.16811-2.027040.044144.109484Region
=
“Europe”0.518480.215232.408980.015825.93565Region
=
“M.East”-0.227630.37091-0.613690.544300.3690532Region
=
“N.America”1.049740.208495.034960.0000025.32004Region
=
“Other”-0.267000.58311-0.457880.632780.2291022missingdataforregionofundergraduateinstitutionorforgenderaregroupedin“NA〞.Missingdataforcitationsandseniorityisignoredincomputingaverages.Statisticaltestsareexplainedinsection“Statistics〞above.TableS3:Demographicdifferencesbetweenrespondentsandnon-respondents12UndergraduateregionRespondent
pro-portionNon-respondentproportionp-test
p-valueAsia0.3050.3430.283Europe0.2710.2360.284Middle
East0.0710.0630.721North
America0.2540.2210.307Other0.0150.0131.000NA0.0840.1250.070GenderRespondent
proportionNon-respondent
proportionp-test
p-valuefemale0.0540.1000.020male0.9190.8420.001NA0.0270.0580.048VariableRespondent
estimateNon-respondent
estimatestatisticp-valueCitations2740.54528.02.550.010856log(Citations)5.96.43.190.001490Years
in
field8.611.14.040.000060S4: SurveyresponsesonAIprogress,intelligenceexplosions,andAISafetyTheargumentbyStuartRussell,referredtoinoneofthequestionsbelow,canbefoundat/conversation/the-myth-of-ai#26015.T
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公楼层日常保洁服务合同协议2025
- 古诗词的特点及其美学特征
- 2025年招录政府专职消防员笔试真题题库多选题100道题及答案
- 2025年乌鲁木齐一模试卷及答案
- 2025年部队管理案例题库及答案
- 英语考试题目解读及答案
- 2025年编程理论知识题库及答案
- 刘桥小学一模试卷及答案
- 文化遗产写作真题及答案
- 高校教师合同范本
- 大陆火灾基本形势
- 非物质文化遗产申请表
- 基层销售人员入职培训课程完整版课件
- 2023年郴州职业技术学院单招职业适应性测试题库及答案解析word版
- 西南大学PPT 04 实用版答辩模板
- D500-D505 2016年合订本防雷与接地图集
- 颅脑损伤的重症监护
- 《史记》上册注音版
- JJF 1985-2022直流电焊机焊接电源校准规范
- GB/T 19867.2-2008气焊焊接工艺规程
- 商户类型POS机代码
评论
0/150
提交评论