VW-80149-EN原版完整文件_第1页
VW-80149-EN原版完整文件_第2页
VW-80149-EN原版完整文件_第3页
VW-80149-EN原版完整文件_第4页
VW-80149-EN原版完整文件_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Groupstandard VW80149

Issue2021-08

Class.No.: 8MA

Descriptors: 12volts,alternator,converter,energysupply,highcurrent,high-currentloads,load

High-CurrentLoads

AdditionalRequirementsandTests

Preface

Thelimitedcapacity(staticanddynamic)ofthevehicleelectricalsystemisconfrontedwiththein-creasingdemandforelectricalenergy.Anelectricalsystemoverloadcanresultinvoltagefluctua-tionsthatarenoticeableinthecomfortarea(e.g.,fluctuatinginteriorblowerspeed,lightflickering)aswellasinvoltagefluctuationsthatleadtofunctionallimitations/failuresinthevehicle(e.g.,lossofelectricalsteeringassistance).

Thispartofthestandarddescribesthetestreportthatthecontractormustprepareincollaborationwiththepurchaser.Thepurposeofthetestreportistogivethepurchaseranoverviewofthedy-namicbehavioroftherespectiveload.

Previousissues

VW80149:2009-11,2013-09,2018-02

Changes

ThefollowingchangeshavebeenmadetoVW80149:2018-02:

Nomenclatureedited

Section4restructured

Section4.3.1expanded

Section4.3.2expanded

Section5restructured

Section5.2.1added

Section5.4expandedandrestructured

Section6restructured

Section7.8restructured

Section7.8.3expanded

AppendixAupdated

Alwaysusethelatestversionofthisstandard.

Thiselectronicallygeneratedstandardisauthenticandvalidwithoutsignature.Acommaisusedasthedecimalsign.TheEnglishtranslationisbelievedtobeaccurate.Incaseofdiscrepancies,theGermanversioncontrols.

Page1of21

Allrightsreserved.NopartofthisdocumentmaybeprovidedtothirdpartiesorreproducedwithoutthepriorconsentofoneoftheVolkswagenGroup’sStandardsdepartments.|internal

©VolkswagenAktiengesellschaft VWNORM-2019-10

Page

PAGE

10

VW80149:2021-08

Page

PAGE

13

VW80149:2021-08

Contents

1

2

3

4

4.1

4.2

4.3

4.3.1

4.3.2

4.3.3

5

5.1

5.2

5.2.1

5.2.2

5.2.3

5.2.4

5.3

5.3.1

5.3.2

5.4

6

6.1

6.2

6.3

6.4

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.8.1

7.8.2

7.8.3

7.8.4

7.9

8

8.1

8.2

9

AppendixAA.1

Page

Scope 3

Definitions 3

Abbreviations 3

General 3

Generalsupplyrequirements 3

Identificationofhigh-currentloads 3

Energysupply 4

12Venergysupplythroughaclassicalalternator(conventionalvehicle) 4

12-VenergysupplybyDC-DCconverter(MHEV,HEV,PHEV,BEV) 4

Systemuseinthetwoarchitectures 4

Limitsandtestspecifications 4

General 4

Generallimitsandtestspecifications 4

Currentthresholdforclassificationasahigh-currentload 4

Testvoltagespecifications 5

Voltagelevels 5

Maximumpowerconsumptionandenergybackfeed 5

Limitsandtestspecifications(vehicleswithaconventionalpowertrain) 6

Maximumpermittedhigh-currentloadgradients 6

Controlfrequencyrange 6

Limitsandtestspecifications(MHEV,HEV,PHEV,BEV) 7

Testingandevaluationforclassification 7

Test 7

Measurementsetup 7

Evaluationofloadstep 8

Evaluationofloaddump 10

Requirementsforthedesignofhigh-currentloads 12

Obligationtoreport 12

Maximumtotalpowerofthehigh-currentload 12

Designspecificationsformultiple-actuatorsystems 12

Voltagesensing 12

Reportingofpowerconsumption 13

Currentinput 13

Efficiency 14

Stabilizationmeasures 15

General 15

Overvoltage/undervoltagecontrolstrategies 15

Degradationstrategy 15

Informationon12Vstartduringdriving 18

SWmodelforsimulation 18

Testsforverificationofimplementedmeasures 19

Efficiencyverification 19

Measurementforverificationofthedegradationconcept 20

Applicabledocuments 20

21

High-currentloadtestreport 21

Scope

Thisstandarddescribesrequirementsandlimits,aswellastestconditionsandtests,thatmustbeadheredto/performedwhendevelopinghigh-currentloads.Itdefinesspecificationsforthedesignofelectricalcomponentstoensurevoltagestabilityinthevehicle.

ThisstandarddoesnotsupersedetherequirementsofVolkswagenstandardVW80000,norVDA320publishedbytheGermanAssociationoftheAutomotiveIndustry(VDA).

Definitions

SmartActuator Intelligentbrakeactuator

Terminal15on-to-offcycle Timefrom"ignitionsystemon"to"ignitionsystemoff"

Abbreviations

48-VMHEVBEV

ECUEPSESCEVHALHEVHWKFLVPEPEPPF

PHEVPPSCUSWVESeBKV

48-Vmildhybrid(electricvehicle)Batteryelectricvehicle

ElectroniccontrolunitElectromechanicalpowersteeringElectronicStabilityControlElectricvehicle

Four-wheelsteeringHybridelectricvehicleHardware

ConceptFreezeLow-voltagePowerelectronics

ProductEmergenceProcessProjectFeasibility

Plug-inhybridelectricvehicleProjectPremises

SteeringcontrolunitSoftware

VehicleelectricalsystemElectromechanicalbrakebooster

General

Generalsupplyrequirements

ApprovaloffirstsupplyandchangesasperVW01155ThegeneralrequirementsasperVW80000apply.

AvoidanceofharmfulsubstancesasperVW91101

Identificationofhigh-currentloads

Ahigh-currentloadisidentifiedbythelimitsandparametersdescribedinthefollowingsectionsbe-ingexceeded.Whentheseareexceeded,thecomponentisidentifiedasahigh-currentloadand,therefore,thereisanobligationtoreportittothepurchaser.

Energysupply

12Venergysupplythroughaclassicalalternator(conventionalvehicle)

Inconventionalvehiclesystems,energyisconvertedbyclawpolealternators.Fromaphysicalstandpoint,onlylowcurrentgradients(<300A/s)canberealizedusingthistypeofenergyconver-sion.

Inordertoensureastableenergysupplyandlowvoltagefluctuation,theremustbeanobligationtoreporthigh-currentloadswhentheramp-up,control,orramp-downgradientsare>300A/sandwhenthecurrentthresholdisexceeded(seealsosection5).

12-VenergysupplybyDC-DCconverter(MHEV,HEV,PHEV,BEV)

Invehiclesystemswithanintegratedmedium-voltageorhigh-voltagebatterypack(MHEV,HEV,PHEV,BEV),the12-VenergygenerationisrealizedbyadynamicallyregulatingDC-DCconverter.Thequantityofenergydemandedissuppliedfromthemedium-voltageorhigh-voltagebatterypackthroughtheDC-DCconverteronthelow-voltageside.Fromaphysicalstandpoint,forthistypeofenergysupply,theconverter'speakflowis,inmostcases,thedesign-relevantparameter.

Inordertoensureastablevoltagesupply,theremustbeanobligationtoreporthigh-currentloadswhentheramp-up,control,orramp-downgradientsare>15kA/sandwhenthecurrentthresholdisexceeded(seealsosection5).

Systemuseinthetwoarchitectures

Ifahigh-currentloadisusedinthetwovehicleelectricalsystemarchitectures(describedinsection4.3.1andsection4.3.2),thereisanobligationtoreportanyexceedingofthespecificationsdetailedinsection4.3.1.

Forconfigurablesystems,adesignforthecorrespondingscopeofapplicationcanbecreated.Theobligationtoreportparametersdescribedinsection4.3.1andsection4.3.2remainunchanged.

Configurablesystemsmustbeprotectedinthecorrespondingvehiclearchitectures.

Limitsandtestspecifications

General

Thissectionsummarizesallthelimitsandtestspecificationsthatmustbecompliedwith.Iftheyareexceeded,thepurchasermustbeinformeddirectly.High-currentloadsmustpreferablybede-signedwithohmicbehavior.Inthecaseofdeviatingbehavior(current/powercontrol),aseparateagreementmustbereachedwiththepurchaser.

Generallimitsandtestspecifications

Currentthresholdforclassificationasahigh-currentload

Anelectricalloadmustbeclassifiedasahigh-currentloadifitexceedsthecurrentthresholdIX,max(seetable1)andthemaximumpermittedcurrentgradients(seetable5andtable7).

Table1–Currentthresholdofthehigh-currentload

Parameter

Value

Tolerance

Description

IX,max

30A

Currentthresholdforclassificationasahigh-currentload(regardlessofelectrical-systemtopology)

Testvoltagespecifications

Thetestsdescribedinsection6mustbeperformedatthreevoltages(seetable2)withanidealcurrentsource(Ri=0Ω).

Table2–Testvoltagespecifications

Parameter

Value

Tolerance

Description

VA,min

11,8V

±100mV

Testvoltageminimumsetting

VA,max

15,6V

±100mV

Testvoltagemaximumsetting

VA,crit

9,8V

±100mV

Minimumcriticaltestvoltage

Ri,source

Idealvoltage/currentsource

Voltagelevels

Aloadidentifiedasadynamichigh-currentloadmustswitchtothespecifiedfunctionmodesfortheself-protectionofthevehicleelectricalsystemintheeventthatthedefinedvoltagelevels(seetable3)areexceeded/notreached(seealsosection7.8).

Table3–Voltagelevels

Parameter

Value

Tolerance

Description

VA,min_conventional

12,2V

±100mV

MinimumvoltagespecificationinLVvehicleelectricalsystem

VA,min_derate_100%

10,8V

±100mV

VoltageatECUatthestartofderating

VA,min_derate_0%

9,0V

±100mV

VoltageatECUduringmaximumderating

VA,low_active

6,0V

±100mV

VoltageatwhichtheECU

canconsumeamaximum10W(1,67Aat6,0V)andcontinuestobeactive

TheindividualvoltagevaluesVA,min_derate_100%andVA,min_derate_0%(seetable3)aretransmittedtothehigh-currentloadonthevehiclebusoragreeduponwiththepurchaser.

Maximumpowerconsumptionandenergybackfeed

Theloadmustnotexceedaspecifiedmaximumpowerconsumption(seetable4)inthe12-Velec-tricalsystem.Ifthehigh-currentloadcanactivelybackfeedenergyintothevehicleelectricalsys-tem,functionalconditions(seetable4)mustbetakenintoaccount.Thefunctionalbehaviormustbeagreeduponwiththepurchaser.

Table4–Powerconsumptionandenergybackfeed

Parameter

Value

Tolerance

Description

Powerconsumption

Pmax,A00-A

1200W

PmaxatVA,minforvehiclesuptoA-class(modulartransversematrix(MQB)A,Golf,Po-lo,etc.)

Pmax,B-D

1500W

PmaxatVA,minforvehiclesfromB-class(modularlongitudinalmatrix(MLB),Passat,etc.)

Pmax,individualactuator

400W

Insystemswithseveralactivesinks

Voltagesensing

tsense

≤2ms

CalculationtasksfortheanalysisofVsense

Sinkenergybackfeed

Imax,backfeed

15A

±5%

Maximumpermissiblebackfeedcurrentofthecomponent(doesnotapplytocomponentswithanactivebackfeedinordertorealizeCO2re-ductionpotentials)

Ifexceeded,anagreementwiththepurchaserisalwaysrequired.

Limitsandtestspecifications(vehicleswithaconventionalpowertrain)

Maximumpermittedhigh-currentloadgradients

Thegradientsspecifiedmustbedeterminedaspersection6.Deviationsfromthesespecifications(table5)mustbeagreeduponwiththepurchaser.

Table5–High-currentloadgradients

Parameter

Value

Tolerance

Description

Loadimposition

f´(lX)

300A/s

Maximumpermittedpositivegradientatthecomponents

tt

5ms

Deadtimeuntilalternatorprovidesenergy

Loaddump

|f´(lX)|

300A/s

Maximumpermittednegativegradientatthecomponents

Controlfrequencyrange

Topreventalternatorcontrolleroscillationswithactivelycontrolledhigh-currentloads,thefrequen-cyrangeaspertable6isnotpermitted.

Table6–Non-permittedfrequencyrangefordynamicclosed-loopcontrol

Parameter

Value

Tolerance

Description

fcontrol

10Hzto

100Hz

Preventionofalternatorcontrolleroscillations

Limitsandtestspecifications(MHEV,HEV,PHEV,BEV)

Thegradientsspecifiedmustbedeterminedaspersection6.Deviationsfromthesespecifications(seetable7)mustbeagreeduponwiththepurchaser.

Table7–High-currentloadgradients

Parameter

Value

Tolerance

Description

Loadimposition

f´(IX)

15kA/s

Maximumpermittedpositivegradientatthecomponents

tt

1ms

DeadtimeuntilDC-DCconvertersuppliesener-gy

Loaddump

|f´(IX)|

15kA/s

Maximumpermittednegativegradientatthecomponents

Ifanundervoltageisdetectedintheelectricalsystem(Vcomponent<9,8V),agradientof300A/smustbemaintainedinordertoprotecttheelectricalsystemagainstanotherundervoltage.Thisstatemustbemaintainedforthisterminal15on-to-offcycle.

Testingandevaluationforclassification

Test

Atleastthefunctionofthecomponentintermsofthecurrentandvoltagecurvesatwhichthehigh-estpowersareconsumedorfedintotheelectricalsystem(recordingofvehiclestate,voltages,cur-rents,temperature)mustbemeasured.Multiplemeasurementsmayneedtobeperformed/ana-lyzed,ofwhichthemostcriticalmatters.

Themeasurementsareperformedinearlyprojectphasesasacomponenttestbythecontractor.Ifthecomponentisinstalledinthevehicle,theoverallvalidationandelectrical-systemstabilityre-leaseareperformedbythepurchaser.

Measurementsetup

Torecordthecharacteristicelectricalvaluesfortheclassificationoftheload,themeasurementset-upasperfigure1mustbeusedforthemeasurementstobeperformed.

Themeasurementsetupconsistsofanidealdirect-currentvoltagesource,theloadtobemeas-ured(consistingofaswitchS1andaloadresistorRX),aswellameasuringdevicewithpotentiallyseparatedinputs(e.g.,oscilloscope)torecordthevoltageandcurrent.

Thevoltagesourcemustbedesignedsothattheload'smaximumrequiredpoweraswellasitsmaximumdynamicscanbesupplied.Themeasurementisperformedonthecomponentatthreedifferentsupplyvoltages(seesection5).

Theloaddiagram,consistingofaswitchandaloadresistor,isofsymboliccharacter.Theinternalsetupandtypeoftheconnectionarecomponent-specificandcandeviatefromtheequivalentcir-cuit.

Themeasuringdeviceforrecordingtheloadcurrentandthevoltageatthecomponentmustbeatleastoftheaccuracyclass0,5andhaveaminimumsamplingrateof10kHz.

Legend

Idealvoltagesource

load

RX Symbolicloadresistor

S1 Symbolicswitch,closingattimeT0(activationoftheload)

M1 Measuringdevice(preferablyoscilloscope)

VX Voltageattheloadinput

T0 Timeatwhichtheswitchisclosed

Figure1–Measurementsetupfordeterminingthecharacteristicelectricalvalues

Evaluationofloadstep

Fortheclassificationoftheload,diagramswithvaluesasperfigure2mustbegeneratedforthemeasuredcurrentprofiles.Bothstart-upandclosed-loopcontrolmustbeconsideredinthesedia-grams.

Legend

IinA

tins

Peakcurrentabovethealternatorcharacteristiccurve

X

QB- ChargetakenfromtheSLIbattery

f´(IX) Positivegradientofthecurrentcurve(gradientfortheloadstep)IX(t) Measuredcurrentcurveoftheloadovertime

IDC/DC+(t) CurrentcurveoftheDC-DCconverterovertime(currentoutput)IG+(t) Currentcurveofthealternatorovertime(currentoutput)

t0 Switch-ontimeoftheload

t1 DC-DCconverterenergyoutputtimepointt2 Alternatorenergyoutputtimepoint

t3 TimeatwhichtheloadstepiscompensatedbytheDC-DCconvertert4 Timeatwhichtheloadstepiscompensatedbythealternator

ta Timeatwhichthecurrentisat10%ofthepeaktb Timeatwhichthecurrentisat90%ofthepeak

Figure2–Determinationofthecharacteristicsduringloadstep

CalculatingtheSLIbatterypowerdrawandsinkcurrentgradient

formula(1)describesthebatterypowerdrawcalculationinsystemswithalternatorenergygenera-tion.formula(2)describesthepowerdrawwithsupplyfromaDC-DCconverter.

Batterypowerdrawinvehicleswitha12-Valternator

BatterypowerdrawinvehicleswithaDC-DCconverter

(1)

(2)

ThechargequantityQB-istheareabelowthemeasuredcurrentcurveIX(t),lessthearearesultingfromthecurrentcurveofthepositivealternatorgradientIG+(t)(informula(1))andlesstheareare-sultingfromthecurrentcurveoftheDC-DCconverterIDC/DC(t)(informula(2)).Thelowerlimitforcalculatingtheintegralistheswitch-ontimeoftheloadt0,theupperlimitisthetimet4(alternator)andt3(DC-DCconverter),atwhichthecurrentcurveoftheloadandthecurrentcurveofthealter-nator/DC-DCconverterintersect.

Thegradientfortheloadstepiscalculatedusingformula(3).

Gradientforloadstep

(3)

Thepositivegradientofthecurrentcurvef´(lX)resultsfromthedifferencebetweenthe0,1-foldpeakcurrentandthe0,9-foldvalue.Thisvaluemustbedividedbythetimethatisrequiredforthecurrentcurvetoincreasefromthe0,1-foldvaluetothe0,9-foldvalue.

Evaluationofloaddump

Fortheclassificationoftheload,diagramswithvaluesasperfigure3mustbegeneratedforthemeasuredcurrentprofiles.Bothclosed-loopcontrolandpowerdownmustbeconsideredinthesediagrams.

Legend

IinA

tins

X,switch-off

PeakcurrenttobeswitchedoffIX,switch-off(t)Currentcurveoftheloadovertime

IG-(t) Currentcurveofthealternatorovertime(withdrawalofthecurrentoutput)

f´(lX,switch-off)Negativegradientofthecurrentcurve(gradientfortheloaddump)

IDC/DC-(t) CurrentcurveoftheDC-DCconverterovertime(withdrawalofthecurrentoutput)tc Timeatwhichthecurrentisat90%ofthepeak

td Timeatwhichthecurrentisat10%ofthepeak

Figure3–Determinationofthecharacteristicsduringloaddump

Calculatingthesinkcurrentgradient

Whenevaluatingtheloaddump,thegradientofthepeakcurrenttobeswitchedoffintherange0,9×X,switch-offto0,1×X,switch-offissignificantassoonasitexceedsthevalueofthenegativegradi-entofthealternatorcurrent/DC-DCconverter.

Thevalueofthegradientfortheloaddumpiscalculatedusingformula(4).

Gradientforloaddump

(4)

Thenegativegradientofthecurrentcurvef´(lX,switch-off)resultsfromthedifferencebetweenthe0,9-foldpeakcurrentandthe0,1-foldvalue.Thisvaluemustbedividedbythetimethatisrequiredforthecurrentcurvetodecreasefromthe0,9-foldvaluetothe0,1-foldvalue.

Requirementsforthedesignofhigh-currentloads

Obligationtoreport

Ifaloadisdefinedasadynamichigh-currentload,thepurchasermustbeinformedimmediately.

Theidentificationisapparentattheparameterlimitsdescribedinsection5.AsperthePEP,andbythe"KFmilestone"atthelatest,thesystemparametersofeachhigh-currentloadmustbere-portedtothepurchasersothattheenergysupplysystemdesigncanbeadaptedtothevehiclere-quirements.

Ifacomponentidentifiedasahigh-currentloadplacesanAutomotiveSafetyIntegrityLevel(ASIL)requirementontheenergysupplyintheelectricalsystem,thismustalsobereportedindetailtothepurchaserbythe"PPmilestone"atthelatest.

Maximumtotalpowerofthehigh-currentload

FromapeakpowerofPmaxatVA,min(seesection5),asystemevaluationthatteststheconversionofthecomponentstoahighervoltagelevelmustbesubmittedduringtheconceptphase(e.g.,nominalvoltagelevelVnominal=24V/48V/.../400V).Thisvoltagelevelmustbeagreedwiththepur-chaserintherun-uptothequotation.

NOTE: Aseparationofpowerunit(V>>12V)andlogicunit(Vnominal=12V)canbeusedwhenlookingatthesystem.

Designspecificationsformultiple-actuatorsystems

Ifanoverallsystemcontainsmorethanonehigh-currentactuatorwithPmax,individualactuator(seesection5),theremustbeafunctionalallowanceforequalizingasimultaneouspeak-currentre-quirement.

Voltagesensing

Aninternalvoltagesensingmustbeeffectedbothforthepowerunitandthelogicunit.Apotentiallyredundantdesignofthevoltagesensingmustbedefinedbythesystemengineer.

Calculationtasksfortheevaluationandfurtherprocessingofthesensedvoltage(Vsense)mustruninatimeloopof≤2ms.

Adegradationstrategybasedonthevoltagesensingmustbeactivatedatintegrationlevel2atthelatestandmustbeagreedwiththepurchaser.

Activationofthehigh-currentload'spowerunit

TheactivationoftheelectricmachineormotororactuatorviathePEmustbecontrolledsothat,forexample,asoftstart-up/softrundown/softclosed-loopcontrol(seefigure4,A)canbeimple-mented.

Anactivationthathasacurrentcurvewithsteepcontrolramps,shortcircuitstart-up,andhardshutdown(seefigure4,B)isnotpermitted.Functionssuchassoftstart-up,softrundown,orsoft

closed-loopcontrolmustbeagreeduponwiththepurchaserinthecourseoftheprojectandduringtheB-sampledefinitionphaseatthelatest.

A"quasi"shortcircuit,ascanoccuronenginestart-up,isnotpermittedinnormaloperation.Theenginestart-upcurrentsmustbelimitablethroughcalibration.Inthecaseofuseinconventionalvehicles,thefrequencyrangeof10Hzto100Hzisnotpermittedforpermanentactivationinthepowerunit.Thisfrequencybandcaninteractwiththealternatorcontrollerandcauseoscillations.

Legend

Start-up

Closed-loopcontrol

Rundown

Softstart-up,softrundownandsoftclosed-loopcontrol

Shortcircuitstart-up,steepcontrolrampsandhardshutoff

Figure4–Schematicrepresentationofthehigh-currentloadactivation

Reportingofpowerconsumption

Ateveryoperatingpoint,thecomponentmustdetermineandreportitscurrentpowerinput.Aspartofapossiblepredictionofthepowerthatwillshortlyberequiredbythehigh-currentcomponent,apowerrequirementsignalmustbegenerated(e.g.,airspring:"compressorwillrunshortly",EPSpowerrequirementbitwhenparking,earlydangerdetectiontominimizetheeffectsof/topreventacrashbythepre-collisionsystem).

Currentinput

Ifaloadisabletoactivelyfeedcurrentviaitssupplyconnectionsintothevehicleelectricalsystem,thiscurrentmustbelimitedtoamaximumofImax,backfeed.

Forthis,thefollowingapproachcanbefollowed:

– Storageofthebackfeedenergyinthehigh-currentcomponent(e.g.,inanintermediatecircuitcapacitor).

Ifacomponentfeedsenergybackintotheelectricalsystem,thiscomponentmustnotexceedtheECUoperatingvoltagelimitsasperVW80000.

Thebackfeedmustbeagreeduponwiththepurchaser.

Efficiency

Theefficiencyofthecomponentmustaverage80%overtheentireoperatingrange.Thepurchaserwilldisclosetheexactvaluetothecontractor.

Theefficiencyiscalculatedfromthesumofindividualoperatingpointsinthecomponent'scharac-teristicmapandcorrespondingweighting.Itiscalculatedusingformula(5).

Efficiency

(5)

Legend

j Index

n Numberofoperatingpointsonthecharacteristicmaptobeusedfortheefficiencycalculation

Meanefficiency

ηj EfficiencyattheoperatingpointusedPoutj PoweroutputattheoperatingpointusedPinj Powerinputattheoperatingpointused

Pmechj Mechanicalpoweroutputofthecomponentatthetransitionpointinthevehicleattheoperatingpointused

Pelj Electricalpowerinputofthecomponentacrossallelectricalconnec-tionsforpowerandlogicattheoperatingpointused

wj Weightingoftheoperatingpoint(consideringfrequencyincustomeroperation)

Themeanefficiencyiscalculatedfromthesumofindividualefficiencies,whereeachindividualeffi-ciencymustbeallocatedaweighting.Theindividualefficiencyiscalculatedfromtheratioofthepoweroutputtothepowerinput,inthiscaseofthemechanicalpowertotheelectricalpower.

Thepurchaserwilldefinetheoperatingpointsandtheirweightinginsimilarform(seetable8).

Table8–Operatingpointsandtheirweighting

Operatingpoint

Mechanicalvariable1

Mechanicalvariable2

Electricalvariable1

Electricalvariable2

Weighting

1

2

3

Stabilizationmeasures

General

High-currentloadsmustnotifytheirdesiretoswitchontotheenergymanagementsystem(withtheexceptionofloadsthataffectsafety:ESC,EPS,eBKV,SmartActuator,SCU,HAL).

Iftheelectricalsystemhassufficientpowerreserves,theloadisgivenapprovaltoswitchon(pow-ercontrolbussignalLR_Komponente_xy_Freigabe(PC_component_xy_approval)).

Thissectiondescribeswhichfunctionalcharacteristicsthecomponentmustadoptintheeventthatanovervoltage/undervoltageisdetected.

Overvoltage/undervoltagecontrolstrategies

Iftheenergymanagementsystemdetectsanovervoltage/undervoltageandsendsacorrespond-ingsignaltothevehiclebus(bussignalLR_Komponente_xy_Freigabe),thecomponentmustre-duceitsownpowerrequirementtoanagreedmaximumvalue.Thecomponentmustenterasafestatethroughastill-to-be-developeddegradationprocessuptohardshutdownwhenpowercon-sumptionhasdecreasedto"low".Forpulsedactivation,themeanvalueofthecurrentisdecisive.Inthiscase,thecontrolfrequencymustnotbeinthealternator'sfrequencyband(10Hzto100Hz)(seesection7.4).Thedegradationprocessmustbeagreeduponwiththepurchaser.

Thedegradationprocesswillbeseparatelydefinedineachvehicleproject,astheramp(seefigure5)dependsontheenergysource(DC-DCconverteroralternator)usedinthevehicle.

Whenanundervoltagedirectlylinkedtothecomponent'sownpowerconsumptionwithinatermi-nal15on-to-offcycleisfrequentlydetected,thismustbereportedonavehiclebus.Thetypeofmessageandthefrequencymustbeagreedwiththepurchaser.

Legend

IinA

tinms

Degradationofnon-pulsedload

Degradationofpulsedload

Figure5–Exampleswitch-offbehavioracrosscurrentramp

Degradationstrategy

Deepervoltagesagsshouldbecounteractedbyapowerdegradationinthelowervoltagerange,startingatVA,min_derate_100%,inwhichthecomponentmuststillfulfillitsfunction(seefigure6).

Legend

Power(P)

Voltage(V)

A Specifieddesignvalue

PD Designpowerrating

Pdeg Reducedpowerrating

Vmin MinimaldesignvoltagewithreducedpowerratingVA,min Lowestdesignvoltageforpowerrating

Figure6–Schematicrepresentationofadegradationstrategy

ThedesignvoltageVA,ministhevoltageuptowhichthecomponentshouldperformitsrequiredop-eratingcharacteristicscorrectlyandthusalsoconsumeitsdesignpowerPA.Itisheavilydependentonthefunctionofthecomponentandmustbeselectedsystem-specifically.

FromthevoltageVA,mindowntoalowerdesignvoltageVA,min_derate_0%,apowerdegradationtoPdegmustoccur.ThepowerPdegmustbeselectedsothatperformancecharacteristicsthatarestilltoler-ableforcustomersaredelivered(e.g.,forheaters,averylowpowercanbeselectedastheeffectsareonlynoticeableforthecustomeroveraverylargetimeconstant).Incontrast,incomponentssuchaslightingdevices,theeffectsofachangeinpowerareimmediatelynoticeableforthecus-tomer.Inthiscase,theremustbenopowerdegradation(Pdeg=PA)requested.

Ifthecomponentdetectsthatitsown,alreadyreducedpowerconsumptiondecreasesthevoltagelevelinthevehicleelectricalsystemfurther,itmustcheckwhetherthepowerc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论