第一讲方阵问题(一)-小学数学四年级上册-同步练习-人教课标版-_第1页
第一讲方阵问题(一)-小学数学四年级上册-同步练习-人教课标版-_第2页
第一讲方阵问题(一)-小学数学四年级上册-同步练习-人教课标版-_第3页
第一讲方阵问题(一)-小学数学四年级上册-同步练习-人教课标版-_第4页
第一讲方阵问题(一)-小学数学四年级上册-同步练习-人教课标版-_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一讲方阵问题(一)小学数学四年级上册同步练习人教课标版

学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

方阵的基本特点是:

①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。

②每边人(或物)数和四周人(或物)数的关系:

四周人(或物)数=[每边人(或物)数-1]×4;

每边人(或物)数=四周人(或物)数÷4+1。

③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数。

例1:有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?

分析:要以两棵电线杆之间的距离作为分段标准.公路全长可分成若干段.由于公路的两端都要求栽杆,所以电线杆的根数比分成的段数多1。

解:以10米为一段,公路全长可以分成

900÷10=90(段)共需电线杆根数:90+1=91(根)

练习与作业

1. 四年级同学参加广播体操比赛,要排列成每行11人,共11行的方阵。这个方阵里有多少同学?

2. 用棋子排成一个6×6的正方形,共需用棋子多少枚?

3. 有1764棵树苗,准备在一块正方形的苗圃(实心方阵)里栽培。这个正方形苗圃的每边要栽多少棵树苗?

4. 576人排成一个实心方阵,这个方阵每边多少人?

5. 棋子若干只,恰好可以排成每边6只的正方形,棋子的总数是多少?棋子最外层有多少?

6. 在大楼的正方形平顶四周装彩灯,四个角都装一盏,每边装25盏,四周共装彩灯多少盏?

第二讲方阵问题(二)

例3:某校五年级学生排成一个方阵,最外一层的人数为60人。问方阵外层每边有多少人?这个方阵共有五年级学生多少人?

分析:根据四周人数和每边人数的关系可以知:

每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。

解:方阵最外层每边人数:60÷4+1=16(人)

整个方阵共有学生人数:16×16=256(人)

答:方阵最外层每边有16人,此方阵中共有256人。

例4:晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?

分析:方阵每向里面一层,每边的个数就减少2个。知道最外面一层每边放14个,就可以求第二层及第三层每边个数。知道各层每边的个数,就可以求出各层总数。

解:最外边一层棋子个数:(14-1)×4=52(个)

第二层棋子个数:(14-2-1)×4=44(个)

第三层棋子个数:(14-2×2-1)×4=36(个)

摆这个方阵共用棋子:52+44+36=132(个)

练习与作业

1. 有16个学生站在正方形场地的四周,四个角上都站1人,如果每边站的人数相等,那么每边站几个学生?

2. 有一个正方形池塘,四个角上都栽1棵树,如果每边栽6棵,四边一共栽多少棵树?

3. 有100个少先队员参加广播操比赛,十人一行,排成了一个正方形队。这个正方形四周站了多少个少先队员?

4. 在一块正方形场地的四周竖电线杆,四个角上都竖1根,一共竖28根,正方形场地每边竖多少根电线杆?

5. 某会议室的天棚是正方形,准备在天棚四周每边安装8灯(包括四个角上都安装1盏),四周一共安装多少盏灯?

第三讲巧求周长(一)

我们已经会计算长方形和正方形的周长了,但对于一些不是长方形、正方形而是多边形的图形,怎样求它的周长呢?可以把求多边形的周长转化为求长方形和正方形的周长。

例1:如图13—1所示,求这个多边形的周长是多少厘米?

分析:要求这个多边形的周长,也就是求线段AB+BC+CD+DE+EF+FA的和是多少,而在这六条线段中,只有AB和BC这两条线段的长度是已知的,其余四条线段的长度均是未知的.当然,这个多边形的周长还是可以求的.用一个大正方形把这个图形圈起来,如图13—2所示,这个大正方形是ABCG.把线段EF水平向上移动,移到CG边上,这样CD+EF的长度正好与AB的长度相等.同样把竖直方向上的DE边向左移动,移到AG边上,这样AF+DE的长度正好与BC边的长度相等.这样虽然CD、DE、EF、FA这四条线段的长度不知道,但这四条线段的长度和我们可以求出来,这样求这个多边形的周长就转化为求一个正方形的周长。

练习与作业

1. 下图的周长与长__厘米,宽__厘米的长方形周长相同,所以它的周长为__厘米(单位:厘米)。

2. 下图的周长可以看成一个长由__个1厘米的小线段组成,宽由__个1厘米的小线段成的长方形的周长,所以它的周长是___厘米。

3. 求下列各图形的周长(单位:厘米)。

①周长为__厘米。

②周长为___厘米(围成图形的小线段长l厘米)。

第四讲巧求周长(二)

例2.把长2厘米宽1厘米的长方形一层、两层、三层地摆下去,摆完第十五层,这个图形的周长是多少厘米?

分析:先观察图13—3,第一层有一个长方形,第二层有两个长方形,第三层有三个长方形……找到规律,第十五层有十五个长方形.同样,用一个大长方形把这个图形圈起来.因此求这个多边形的周长就转化为求一个长为2×15=30(厘米)、宽为1×15=15(厘米)的长方形周长。

解:(2×15+1×15)×2

=45×2=90(厘米)

答:这个图形的周长为90厘米。

练习与作业

1. 求下列各图形的周长(单位:厘米)。

①周长为多少厘米。

②周长为多少厘米(每条小线段长度都是1厘米)?

2. 用9个边长为2厘米的小正方形摆成下图形状,它的周长为多少厘米?

4. 街心公园有一块草坪(如下图),图上所标数字是线段的米数。在草坪四周从某顶点开始每2米种一棵月季花,一共需种___棵。

第五讲逻辑推理初步

在有些问题中,条件和结论中不出现任何数和数字,也不出现任何图形,因而,它既不是一个算术问题,也不是一个几何问题。

也有这样的题目,表面看来是一个算术或几何问题,但在解决它们的过程中却很少用到算术或几何知识。

所有这些问题的解决,需要我们深入地理解条件和结论,分析关键所在,找到突破口,由此入手,进行有根有据的推理,做出正确的判断,最终找到问题的答案。这类问题我们称它为逻辑推理。

例1.一桩谋杀案中,两个嫌疑犯甲和乙。另有四个证人正在受到讯问。第一个证人说:“我只知道甲是无罪的。”第二个证人说:“我只知道乙是无罪的。”第三个证人说:“前面两个证词中至少有一个是真的。”第四个证人说:“我可以肯定第三个证人的证词是假的。”通过调查研究,已证实第四个证人说了实话,请你分析一下,凶手是谁?

分析与解:题目中条件较多,且四个人的证词有真有假,在这种情况下,要善于抓住关键,由此入手进行有根有据的逐步推理。本题的关键是:第四个人说了实话。

因为第四个人说了实话,所以第三个人的证词是伪证,也就是说“前两个证词中至少有一个是真的”是句假话。由此可以断定,第一个和第二个证人都说了假话。从而判断出甲和乙都是凶手。

练习与作业

1. 有甲、乙两同学,其中一个人有奇数根铅笔,一个人有偶数根铅笔。如果再给甲原有的铅笔数,再给乙原有铅笔数的2倍,他们俩共有铅笔数为偶数。那么,甲同学原有铅笔数是__。

2. 有甲、乙、丙、丁、戊五位同学,其中丙同学比丁同学高,比戊同学矮;丁同学比乙同学高;戊同学比甲同学矮。则最高的同学是__,最矮的同学是__。

3. 有四种树的照片,它们是桃树、杏树、李树、梨树,生物老师将照片从1到4编了号,让同学们区分四种树,每人说出两个,学生回答如下;第一个学生:2号是桃树,3号是李树;第二个学生:1号是梨树,2号是杏树;第三个学生:2号是桃树,4号是梨树;第四个学生:4号是梨树d号是李树。老师发现这四个同学都只说对了一半,那么,1号是__,2号是__,3号是__,4号是__。

第六讲枚举问题(一)

电工买回一批日光灯,在灯座上逐一试一遍,结果全部日光灯都是好的。像这样将事物一个一个全部列举出来的方法就是枚举法。

问题.小明有1个5分币,4个2分币,8个1分币,要拿出8分钱,你能找出几种拿法?

分析为了不重复、不遗漏地找出所有可能的拿法,“找”就要按照一定的规则进行。

先找只拿一种硬币的拿法,有两种:

①1+1+1+1+1+1+1+1=8(分);

②2+2+2+2=8(分)。

再找拿两种不同硬币的拿法,有四种:

①1+1+1+1+1+1+2=8(分);

②1+1+1+1+2+2=8(分);

③1+1+2+2+2=8(分);

④1+1+1+5=8(分)。

最后找拿三种不同硬币的拿法,只有一种:

①1+2+5=8(分)。由此可见,共有7种不同的拿法。

在上面用枚举法寻找可能拿法的过程中,我们对全部拿法作了适当分类。合理分类是枚举法解题中力求又快又省的技巧。

练习与作业

1. 用2、5、8三个数字可以组成几个不同的三位数?其中最大的三位数是什么?最小的三位数是什么?

2. 用0、l、3、6可以组成多少个四位数?

3. 有四张卡片分别写有数字0.l、2、3,从中取出2张卡片并排放在一起,可以组成多少个两位数?

4. 用两个1、一个2、一个3可以组成种种不同的四位数,这些四位数一共有多少个?

5. 在两位整数中,十位数字大于个位数字的共有几个?

第七讲枚举问题(二)

问题1.假设有A、B、C三个城市,从A到C必须经过B.已知从A到B可以坐汽车或坐火车到达,而从B到C则可以坐汽车或坐火车或坐飞机到达.问:从A到C可以有多少种不同的旅行方式?

分析从A到C(A→C)可分两个阶段进行:第一阶段,从A到B(A→B);第二阶段,从B到C(B→C),按照第一阶段使用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论