




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.5.3函数模型的应用第五章
函数的应用(二)教学目标1.会利用已知函数模型解决实际问题.(重点)2.能建立函数模型解决实际问题.(重点、难点)3.了解拟合函数模型并解决实际问题.(重点)4.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力.(重点)数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.
我们知道,函数是描述客观世界变化规律的数学模型,不同的变化规律需要用不同的函数模型来刻画.面临一个实际问题,该如何选择恰当的函数模型来刻画它呢?温故知新
(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按上表的增长趋势,那么大约在哪一年我国的人口数达到13亿?典例解析
事实上,我国1989年的人口数为11.27亿,直到2005年才突破13亿.对由函数模型所得的结果与实际情况不符,你有何看法?因为人口基数较大,人口增长过快,与我国经济发展水平产生了较大矛盾,所以我国从20世纪70年代逐步实施了计划生育政策.因此这一阶段的人口增长条件并不符合马尔萨斯人口增长模型的条件,自然就出现了依模型得到的结果与实际不符的情况.例4.2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%,能否以此推断此水坝大概是什么年代建成的?
典例解析
归纳总结
例5.假设你有一笔资金用于投资,现有三种投资方案供你选择,
这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。请问,你会选择哪种投资方案?①问题中涉及哪些数量关系?②如何用函数描述这些数量关系?投资天数、回报金额日回报累计回报典例解析40404040401010+10=10×210+10+10=10×310+10+10+10=10×410+10+10+10+10=10×50.40.4×20.4×2×2=0.4×220.4×2×2×2=0.4×230.4×2×2×2×2=0.4×24方案一方案二方案三12345则方案一可以用函数________________进行描述;方案二可以用函数__________________描述;方案三可以用函数______________________描述。设第x天的回报是y元,y=40(x∈N*)y=10x(x∈N*)y=0.4×2x-1(x∈N*)三种方案每天回报表x/天方案1方案2方案3y/元增加量/元y/元增加量/元y/元增加量/元140
10
0.4
240020100.80.4340030101.60.8440040103.21.6540050106.43.26400601012.86.47400701025.612.88400801051.225.694009010102.451.21040010010204.8102.4…………………3040030010214748365107374182.4oxy2040608010012014042681012我们看到,底为2的指数函数模型比线性函数模型增长速度要快得多.从中你对“指数爆炸”的含义有什么新的理解?
1234567891011…30方案一4080120160200240280320360400440…1200方案二103060100150210280360450550660…4650方案三012.86122550.8102204409819…429496729.2例5累计回报表投资1~6天,应选择方案一;投资7天,应选择方案一或方案二;投资8~10天,应选择方案二;投资11天(含11天)以上,应选择方案三。
假如某公司每天给你投资1万元,共投资30天。公司要求你给他的回报是:第一天给公司1分钱,第二天给公司2分钱,以后每天给的钱都是前一天的2倍,共30天,你认为这样的交易对你有利吗?你30天内给公司的回报为:0.01+0.01×2+0.01×22+…+0.01×229=10737418.23≈1074(万元)30万元解答如下:公司30天内为你的总投资为:上述例子只是一种假想情况,但从中可以看到,不同的函数增长模型,增长变化存在很大差异一次函数,对数型函数,指数函数。①例6涉及了哪几类函数模型?②你能用数学语言描述符合公司奖励方案的条件吗?例6.某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%。现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?典例解析分析:本例提供了三个不同增长方式的奖励模型,按要求选择其中一个函数作为刻画奖金总数与销售利润的关系.由于公司总的利润目标为1000万元,所以销售人员的销售利润一般不会超过公司总的利润.于是,只需在区间[10,1000]上,寻找并验证所选函数是否满足两条要求:第一,奖金总数不超过5万元,即最大值不大于5;
第二,奖金不超过利润的25%,即Y≤0.25X.不妨先画出函数图象,
通过观察函数图象,得到初步的结论,再通过具体计算,确认结果.解:借助信息技术画出函数y
=5,y=0.25x,y=log7x+1,y=1.002x的图象.观察图象发现,在区间[10,1000]上,模型y=0.25x,
y=1.002x的图象都有一部分在直线y
=5的上方,只有模型y=log7x+1的图象始终在y=5的下方,这说明只有按模型y=log7x+1进行奖励时才符合公司的要求.
对于模型y=log7x+1,它在区间[10,1000]上单调递增,而且当x=1000时,y=log71000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y=log7x+1奖励时,奖金是否不超过利润的25%,
即当x
∈[10,1000]时,是否有y≤0.25x,即y=log7x+1≤0.25x成立.令f(x)=y=log7x+1-0.25x,x∈[10,1000],
利用信息技术画出它的图象由图象可知函数f(x)在区间[10,1000]上单调递减,因此f(x)≤f(10)≈-0.3167<0,即y=log7x+1<0.25x.所以,当x
∈[10,1000]时,
y≤0.25x,说明按模型y=log7x+1奖励,奖金不会超过利润的25%.综上所述,模型y=log7x+1确实能符合公司要求.归纳总结当堂达标实际应用问题审题(设)分析、联想、抽象、转化构建数学模型数学化(列)寻找解题思路(解)解答数学问题还原(答)课堂小结《4.5.3函数模型的应用》同步练习阅读课本148-150页,思考并完成以下问题1.常见的数学模型有哪些?其中待定系数有哪些限制条件?2.解决实际问题的基本过程是什么?
要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。知识清单1.常见的数学模型有哪些?(1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(3)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);注意:二次函数模型是高中阶段应用最为广泛的模型,在高考的应用题考查中最为常见.(4)指数函数模型:f(x)=a·bx+c(a,b,c为常数,a≠0,b>0,且b≠1);(5)对数函数模型:f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,且a≠1);(6)幂函数模型:f(x)=axn+b(a,b,n为常数,a≠0,n≠1);(7)分段函数模型:这个模型实则是以上两种或多种模型的综合,因此应用也十分广泛.2.解答函数实际应用问题时,一般要分哪四步进行?(1)审题——弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模——将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;(3)求模——求解数学模型,得出数学模型;(4)还原——将数学结论还原为实际问题.题型一一次函数与二次函数模型的应用
题型分析举一反三例1某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱.价格每提高1元,平均每天少销售3箱.①求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式;②求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式;③当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?解:①根据题意,得y=90-3(x-50),化简,得y=-3x+240(50≤x≤55,x∈N).②因为该批发商平均每天的销售利润=平均每天的销售量×每箱销售利润.所以w=(x-40)(-3x+240)=-3x2+360x-9
600(50≤x≤55,x∈N).③因为w=-3x2+360x-9
600=-3(x-60)2+1
200,所以当x<60时,w随x的增大而增大.又50≤x≤55,x∈N,所以当x=55时,w有最大值,最大值为1
125.所以当每箱苹果的售价为55元时,可以获得最大利润,且最大利润为1
125元.解题方法(一次、二次函数模型的应用)
1.一次函数模型的应用利用一次函数求最值,常转化为求解不等式ax+b≥0(或≤0).解答时,注意系数a的正负,也可以结合函数图象或其单调性来求最值.2.二次函数模型的应用构建二次函数模型解决最优问题时,可以利用配方法、判别式法、换元法、讨论函数的单调性等方法求最值,也可以根据函数图象的对称轴与函数定义域的对应区间之间的位置关系讨论求解,但一定要注意自变量的取值范围.
1、商店出售茶壶和茶杯,茶壶定价为每个20元,茶杯每个5元,该商店推出两种优惠办法:①买一个茶壶赠一个茶杯;②按总价的92%付款.某顾客需购买茶壶4个,茶杯若干个(不少于4个),若购买茶杯x(个),付款y(元),试分别建立两种优惠办法中y与x之间的函数解析式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更优惠?解:由优惠办法①可得函数解析式为y1=20×4+5(x-4)=5x+60(x≥4,且x∈N).由优惠办法②可得y2=(5x+20×4)×92%=4.6x+73.6(x≥4,且x∈N).y1-y2=0.4x-13.6(x≥4,且x∈N),令y1-y2=0,得x=34.所以,当购买34个茶杯时,两种优惠办法付款相同;当4≤x<34时,y1<y2,即优惠办法①更省钱;当x>34时,y1>y2,优惠办法②更省钱.题型二分段函数模型的应用例2某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元,经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t-t2(万元).(1)若该公司的年产量为x(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量x的函数;(2)当这种产品的年产量为多少时,当年所得利润最大?解:(1)当0<x≤5时,产品全部售出,当x>5时,产品只能售出500件.所以,所以当x=4.75(百件)时,f(x)有最大值,f(x)max=10.781
25(万元).当x>5时,f(x)<12-0.25×5=10.75(万元).故当年产量为475件时,当年所得利润最大.解题方法(分段函数模型注意事项)
1.分段函数的“段”一定要分得合理,不重不漏.2.分段函数的定义域为对应每一段自变量取值范围的并集.3.分段函数的值域求法:逐段求函数值的范围,最后比较再下结论.1.甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(单位:百台),其总成本为G(x)(单位:万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)=
假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本).(2)甲厂生产多少台新产品时,可使盈利最多?解:(1)由题意得G(x)=2.8+x.
(2)当x>5时,∵函数f(x)单调递减,∴f(x)<8.2-5=3.2(万元).当0≤x≤5时,函数f(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 豆类食品加工过程中的质量控制考核试卷
- 2024年轨道交通装备用涂料资金申请报告代可行性研究报告
- 2025年JAVA系统优化报告试题及答案
- 直播流量分成与平台生态建设合作协议
- 2025年中国闭合装置行业市场前景预测及投资价值评估分析报告
- 美容美发连锁品牌品牌加盟店人力资源配置与培训合同
- 2025年中国背包行业市场投资可行性调研报告
- 时尚潮流文化创意工作室普通合伙经营协议
- 抖音火花内部团队技能提升合作协议
- 2025年中国薄膜收卷机行业市场前景预测及投资价值评估分析报告
- GB/T 17468-1998电力变压器选用导则
- 有机化学课件第十九章
- 工程部部门级安全培训课件
- DB42T1745-2021桥梁高强度螺栓连接安装技术指南
- 实验室安全记录表
- 进出口业务内部审计制
- 扬尘污染防治监理实施细则
- 教科版二年级下册各单元知识整理复习及思维导图-课件
- 四年级下册数学课件-3 乘法分配律2-冀教版14张PPT
- 《学弈》优质课教学课件
- 2022年检验科三基试题及答案
评论
0/150
提交评论