版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAI
July2022H19252
WhitePaper
Abstract
Thistechnicalwhitepaperdiscussesthebenefitsofautomatedmachinelearningandthechallengesofnon-automatedmodeldevelopmentthatitovercomes.ThepaperpresentsanoverviewoftheH2ODriverlessAIproductfromH2O.ai,alongwithasolutionarchitectureforH2ODriverlessAIbuiltontheDellValidatedDesignforAI.Italsoprovidesseveralvalidatedusecasesusingthesolution.
DellTechnologiesSolutions
Copyright
Contents
PAGE
2
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAIWhitePaper
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAI
WhitePaper
PAGE
3
Theinformationinthispublicationisprovidedasis.DellInc.makesnorepresentationsorwarrantiesofanykindwithrespecttotheinformationinthispublication,andspecificallydisclaimsimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.
Use,copying,anddistributionofanysoftwaredescribedinthispublicationrequiresanapplicablesoftwarelicense.Copyright©2022DellInc.oritssubsidiaries.PublishedintheUSA07/22.WhitePaperH19252.
DellInc.believestheinformationinthisdocumentisaccurateasofitspublicationdate.Theinformationissubjecttochangewithoutnotice.
Contents
Introduction 5
Executivesummary 5
Documentpurpose 6
Audience 6
ThechallengesofAIadoption 6
Machinelearningchallenges 6
Talent 6
Time 6
Trust 7
OverviewofAutoMLandH2ODriverlessAI 7
AutoMLworkflowwithH2ODriverlessAI 7
Keyfeatures 10
SolutionarchitectureforAutoML 11
Kubernetes-baseddeploymentusingEnterpriseSteam 11
Dockerimage 12
Security 12
GPUsupport 12
Storageandnetworkconfiguration 13
Licensing 13
InvokingH2ODriverlessAIfromcnvrg.ioMLOpsPlatform 13
AutoMLonanoptimizedDellinfrastructure 15
SizingofAutoMLinfrastructure 16
ValidatedusecasesforAutoML 17
SentimentanalysiswithNLP 17
Imageclassification 20
DellTechnologiesservicesandsupport 21
Deploymentandsupport 21
TheDellTechnologiesCustomerSolutionsCenter 22
Conclusion 22
Wevalueyourfeedback 23
References 24
Contents
Introduction
PAGE
4
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAIWhitePaper
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAI
WhitePaper
PAGE
5
DellTechnologiesdocumentation 24
H2O.aidocumentation 24
NVIDIAdocumentation 24
AppendixA–Modelservingincnvrg.io 25
Introduction
Executivesummary
Artificialintelligence(AI)andmachinelearninghaverevolutionizedhoworganizationsareusingtheirdata.Automatedmachinelearning(AutoML)facilitatesandimprovestheend-to-enddatascienceprocess.Thisprocessincludeseverythingfrompreprocessingandcleaningthedata,selectingandengineeringappropriatefeatures,tuningandoptimizingthemodel,analyzingresults,explaininganddocumentingthemodel,andofcourse,deployingitintoproduction.
AutoMLacceleratesyourAIinitiativesbyprovidingmethodsandprocessestomakemachinelearningaccessibletobothexpertsandnonexpertsalike.OrganizationslookingtoapplymachinelearningquicklyandaccuratelywithoutemployinglargenumbersofdatascientistscanbenefitfromAutoMLcapabilities.Fororganizationsthathavedatascientists,AutoMLequipsandempowersthemtocreatemorerobustmodelswithaccuracy,speed,andtransparencytodeliverbetterperformanceandoutcomes.Inallcases,AutoMLhelpsorganizationsquicklydiscoverbusinessvaluehiddeninsidetheirdataandeasilyusethatdatatoaddresscomplexproblems.
H2ODriverlessAIisacomprehensiveautomatedmachinelearningproductthatusesAItodoAI,optimizingdatascienceworkflowstoincreaseboththequantityandqualityofdatascienceprojectsdeliveredtobusinessstakeholders.Itempowersdatascientiststoworkonprojectsfasterandmoreefficientlybyusingautomationtoaccomplishkeymachinelearningtasksinminutesorhours,notmonths.
H2ODriverlessAIprovidescapabilitiessuchas:
Exploratorydataanalysis(AutoViz)
Automaticfeatureengineering
Modelbuildingandvalidation
Automaticmodeldocumentation(AutoDoc)
Modelselectionanddeployment
Machinelearninginterpretability(MLI)
AutoMLdoesnotreplacemachinelearningoperations(MLOps).AutoMLfocusesonautomatingandacceleratingthemodeldevelopmentportionoftheMLpipeline,whileMLOpsprovidesanoveralllifecyclemanagementframeworkfordatapreparation,modeldevelopment,andcoding.AutoMLcomplementsMLOpsandcanrunsuccessfullyandefficientlywithvariousMLOpsframeworkssuchascnvrg.io.MLOpsprovidesanoveralllifecyclemanagementframeworkfordatapreparation,modeldevelopment,andcoding.
WithH2ODriverlessAIbring-your-ownrecipes,andtimeseriesandautomaticpipelinegenerationformodelscoring,H2ODriverlessAIprovidescompanieswithanextensibleandcustomizabledatascienceplatformthataddressestheneedsofvarioususecasesforeveryenterpriseineveryindustry.
ThechallengesofAIadoption
OverviewofAutoMLandH2ODriverlessAI
PAGE
6
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAIWhitePaper
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAI
WhitePaper
PAGE
7
Documentpurpose
Audience
ThiswhitepaperdiscussesAutoML,includingitsbenefitsandthechallengesofmoretraditionalmodeldevelopmentprocessesthatitovercomes.ThewhitepaperprovidesanoverviewoftheH2ODriverlessAIproduct,presentsasolutionarchitectureforH2ODriverlessAIbuiltontheDellValidatedDesignforAIwithVMware,anddescribesseveralvalidatedusecasesusingthesolution.Bydeployingthissolution,datascientistsandITprofessionalscanmovemachinelearningmodelsoutofthelabandintoproductionfasterandmoreeasily,thusbringingabetterreturnoninvestment(ROI)foranorganization’smachinelearninginvestments.
Thiswhitepaperisintendedfordatascientists,solutionarchitects,systemadministrators,andothersdevelopingandsupportingAIandmachinelearningapplications.
ThechallengesofAIadoption
Machinelearningchallenges
AsorganizationsstreamlinedecisionmakingandimprovecustomerexperienceswithAI,theyarerunningintothreecorechallenges:talent,time,andtrust.First,thereisnotenoughdatasciencetalenttobuildmodelsforeveryusecasebyhand.Evenwiththerightpeople,hand-codingtakestoomuchtimeandispronetoerrors.Then,thebusinessmustexplainandvalidateeachmodelsothatuserscantrustthedecisionsthatthemodelsupports.Thekeytobreakingthroughthetalent,time,andtrustbarriersistheautomationofadvancedmachinelearningtechniqueswithH2ODriverlessAI.
Talent
Datascientistsareinshortsupplyforallbutthelargesttechnologycompanies.WithH2ODriverlessAI,bothexpertandnovicedatascientistscanautomaticallybuildhighlyandtransparentaccuratemodelsquickly.H2ODriverlessAIisanaward-winningAutoMLproductthatembedsdatasciencebestpracticesfromtheworld’sleadingexpertsinengineeringanddatascience,includingtheworld’stopKaggleGrandmasters.Itusesauniquegeneticalgorithmthatdeterminesthebestcombinationoffeatures,models,andtuningparametersforeachusecase.Integratedbestpracticesandguardrailsensurethatmodelsdonotoverfitthedataandhelpwithothercommonissueswithwhichnovicedatascientistsmightneedassistance.H2ODriverlessAIenablescompaniestoundertakemoreusecaseswiththetalentthattheyalreadyhaveorcaneasilyfind.
Time
Reducingthetimetodevelopaccurate,production-readymodelsiscriticaltodeliveringAIatscale.H2ODriverlessAIautomatestime-consumingdatasciencetaskssuchasadvancedfeatureengineering,modelselection,hyperparametertuning,modelstacking,andcreationofaneasy-to-deploy,low-latencyscoringpipeline.Withhigh-performancecomputingusingbothCPUsandGPUs,H2ODriverlessAIcomparesthousandsofcombinationsanditerationstofindthebestmodelinminutesorhours.EvenexperienceddatascientistscanuseH2ODriverlessAItoexploremoretechniques,featurecombinations,andtuningparameters.H2ODriverlessAIalsostreamlinesmodeldeploymentthatincludeseverythingneededtorunthemodelinproduction,takingtheprocesstimefromexperimentationtoproductionfrommonthstodays.
Trust
FororganizationstoadoptAIatscale,datateams,businessleaders,andregulatorsmustbeabletoexplain,interpret,andtrustAIresults.H2ODriverlessAIdeliversindustry-leadingcapabilitiesforunderstanding,debugging,andsharingmodelresults,includinganextensivemachinelearninginterpretability(MLI)toolkit,fairnessdashboards,automatedmodeldocumentation,andreasoncodesforeachpredictionforservicerepresentativesandcustomers.WithH2ODriverlessAI,datateamshaveeverythingtheyneedtobuildtrustwithbusinessstakeholdersandregulators.
OverviewofAutoMLandH2ODriverlessAI
H2ODriverlessAIdeliversenterprise-ready,scalable,andsecureAutoMLthatcanrunonanycloudplatformorinon-premisesenvironments,usingthearchitecturethatthisdocumentdescribes.Withanon-premisesenvironment,youdonotneedtomoveyourdatatothecloud;youcanperformAutoMLsecurelywhereveryourdataresides.
H2ODriverlessAIenablesdatascientiststoworkonprojectsfasterandmoreefficientlybyusingautomationtoperformkeymachinelearningtasksinminutesorhours,notmonths.
H2ODriverlessAIincreasestheproductivityofdatapractitionersbyautomatingdataprocessing,featureengineering,modelbuilding,andhyperparametertuning.Itisastand-aloneplatformthatcanbeappliedforusecasessuchasNaturalLanguageProcessing(NLP),timeseriesforecasting,andimageclassifications.EnterprisescanchoosetodeployanMLOPsplatformtoenablecross-functionalcollaborationandtomanagetheend-to-endlifecycleoftheirAIapplications.Inthosecases,userscanintegrateH2ODriverlessAIwiththeirMLOpsplatformsuchascnvrg.io(see
InvokingH2ODriverlessAI
fromcnvrg.ioMLOpsPlatform
).
AutoMLworkflowwith
ThefollowingfigureshowsthestepsinatypicalAutoMLworkflowandhowH2ODriverlessAIenablesthesesteps:
H2ODriverlessAI
Figure1. AutoMLworkflowinH2ODriverlessAI
OverviewofAutoMLandH2ODriverlessAI
OverviewofAutoMLandH2ODriverlessAI
PAGE
10
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAIWhitePaper
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAI
WhitePaper
PAGE
9
Dataingestion—Theworkflowbeginswiththedata.Dataingestionconsistsofimportingandobtainingdatatoperformanalysisandtraining.
H2ODriverlessAIcaningestdatafromdatasetsinvariousformatsandfilesystemsincludingHadoopHDFS,AmazonS3compatiblestorage,AzureBlobStorage,GoogleBigQuery,GoogleCloudStorage,ApacheHive,JDBC,kdb+,MinIO,Snowflake,DataRecipe,DataRecipeFile,andNFS.ForlargerdatasetsthatarealreadyavailableinPowerScalestorage,H2ODriverlessAIprovidesdataconnectorsforaccessingandingestingdata.
Datapreparation—Whenthedataisdefined,thenextstepisdatapreparation.Thedatasetcanbedividedintotraining,test,andvalidationdatasets.Datascientistscaninteractivelymodelthedataforexploration,analysis,andvisualizationusingdataplotsandstatistics.AutoMLtoolsautomaticallyperformfeatureengineeringbyextractingfeatures(domain-specificattributes)fromrawdataanddatatransformationstosuiteMLalgorithms.
H2ODriverlessAIdeterminesthebestpipelineforadataset,includingautomaticdatatransformationandfeatureengineering.Datascientistscancontrolthenumberoforiginalfeaturesusedinmodelbuildingbyselectingorexcludingcolumnsinthedataset.H2ODriverlessAIusesauniquegeneticalgorithmtoautomaticallyfindnew,high-valuefeaturesandfeaturecombinationsforaspecificdatasetthatarevirtuallyimpossibletofindmanually.Theinterfaceincludesaneasy-to-readvariableimportancechartthatshowsthesignificanceoforiginalandnewlyengineeredfeatures.
Automaticvisualizations(AutoViz)inH2ODriverlessAIproviderobustexploratorydataanalysiscapabilitiesbyautomaticallyselectingdataplotsbasedonthemostrelevantdatastatisticsthatarebasedonthedatashape.Inspecificcases,AutoVizcansuggeststatisticaltransformationforsomedata.Experienceduserscanalsocustomizevisualizationstomeettheirneeds.AutoVizhelpsusersdiscovertrendsandissuessuchaslargenumbersofmissingvaluesorsignificantoutliersthatcanimpactmodelingresults.
Modelbuilding—Whenthedataisprepared,thenextstepismodelbuilding.AutomaticmodelbuildingincludesdatatransformationsandhyperparametertuningforthevariousmodelsavailableintheAutoMLproduct.Itautomaticallytrainsseveralin-builtmodelsandselectsthebestmodelorafinalensembleofmodelsbasedonuser-definedparameterssuchasmodelaccuracy.
AutomaticmodeldevelopmentinH2ODriverlessAIisaccomplishedbyrunningexperiments.H2ODriverlessAItrainsmultiplemodelsandincorporatesmodelhyperparametertuning,scoring,andensembling.Datascientistscanconfigureparameterssuchastheaccuracy,time,lossfunction,andinterpretabilityforaspecificexperiment.Thispreviewisautomaticallyupdatedwhenanyoftheexperiment’ssettingschange(includingtheknobs).Userscanalsorunmultiplediverseexperimentsthatprovideanoverviewofthedataset.Thisfeatureprovidesdatascientistswithrelevantinformationfordeterminingcomplexity,accuracy,size,andtimetradeoffswhenputtingmodelsintoproduction.H2ODriverlessAIusesageneticalgorithmthatincorporatesa‘survivalofthefittest’concepttodeterminethebestmodelforspecificdatasetandconfiguredoptionsautomatically.
Productization—Whentheexperimentiscompleted,youcanmakenewpredictionsandpushthemodelforproduction,eitherinthecloud,on-premises,orattheedge.
H2ODriverlessAIoffersconvenientoptionsfordeployingmachinelearningmodels,dependingonwheretheAIapplicationisrun:
Downloadthemodelandbuildyourowncontainer.
Downloadascoringpipeline.
Whentheexperiment(modelbuildingstep)iscomplete,H2ODriverlessAIcanbuildascoringpipelinethatcanbedeployedtoproduction.Ascoringpipelineisapackagedexperimentwhichincludesartifactsnecessaryformodeldeployment,includingmodelbinary,runtime,readme,example,scripts,andsoon.Youcandownloadtwodifferenttypesofscoringpipelines:
PythonScoringPipeline
MOJOScoringPipeline,whichisavailablewithbothJavaandC++backends
Thedecisionaboutwhichtypeofpipelinetousecomesfromvariousfactorsincludingthetypeofmodelbeingbuiltintheexperiment,usecase,latencyrequirements,andsoon.Ingeneral,MOJOScoringPipelinesarefasterbutmightrequireadditionalsetup,whilePythonScoringPipelinesarebuiltintoa
.whlfile,whicheasilyinstallableinPython.H2ODriverlessAIalsoallowsyoutovisualizethescoringpipelineasadirectionalgraph,asshowninthefollowingfigure:
Figure2. VisualizationofH2ODriverlessAIscoringpipeline
Deploythemodeldirectlyinacloudservice.
ConfigurethemodeltorunonalocalRESTserverwithacoupleofclicks.
Keyfeatures
TheH2ODriverlessAIplatformenablesthefollowingelementsofAutoML:
SupportforNVIDIAGPUs—AImodelsareexplodingincomplexity,andautomateddatatransformationanddeeplearningrequiremassivecomputepowerandscalability.H2ODriverlessAIsupportsthelatestNVIDIAGPUstoacceleratefeatureengineeringandtrainingofneuralnetworks.NVIDIA’sMulti-InstanceGPU(MIG)featurecanbeusedtopartitiontheGPUs,increaseoverallGPUutilization,andsupportseveraltypesofusecasesanddeploymentswithguaranteedqualityofservice.
Integratedcatalogofrecipesandmodels—H2ODriverlessAIoffersarichcatalogofAImodels,transformers,andscorersforautomaticfeatureengineeringandmodelbuilding.
Machinelearninganddeeplearning—H2ODriverlessAIincludesleadingopen-sourcetransformers,embeddings,andframeworksformachinelearninganddeeplearningtechniquestohandlevariousdatascienceusecases.WithH2ODriverlessAI,youcanautomaticallybuildmodelsforIndependentandIdenticallyDistributed(IID)data,images,text,andmore.Forexample,H2ODriverlessAIincludesTensorFlowCNNsforimagemodelingandNLPlibrariesfromPyTorch,includingBERTandotherstate-of-the-arttechniques.
MachineLearningInterpretability(MLI)—H2ODriverlessAIprovidesrobustexplainabilityandfairnessanalysisformachinelearningmodelsandhelpsexploreanddemystifymodelingresults.Itincludesstraightforwarddisparateimpactanalysistotestformodelbiasandprovidesreasoncodesforeveryprediction.Maximumtransparencyandminimaldisparateimpactarecrucialdifferentiatorsifyoumustjustifyyourmodelstobusinessstakeholdersandregulators.
Automaticmodeldocumentation(AutoDoc)—Datascientistsmustdocumentthedata,algorithms,andprocessesusedtocreatemachinelearningmodelsforbusinessusersandregulators.H2ODriverlessAIautomaticmodeldocumentationrelievesyoufromthetime-consumingtaskofrecordingandsummarizingyourworkflowwhilebuildingmachinelearningmodels.Thedocumentationincludesdetailsaboutthedataused,thevalidationschemaselected,modelandfeaturetuning,MLI,andthefinalmodelcreated.AutoDocsavesdatascientiststimeandremovestediousworksothattheycanspendmoretimepracticingdatascienceanddrivemorevalueforthebusiness.
Bring-Your-OwnRecipes—ExperienceddatascientistscaneasilyextendH2ODriverlessAIwithcustomizationsthatrunwithintheH2ODriverlessAIplatform,includingdatapreparation,models,transformers,andscorers.Thesecustomizations,calledrecipes,arePythoncodesnippetsthatcanbeuploadedintoH2ODriverlessAIatruntime,likeplugins.H2ODriverlessAIcanconsumerecipeswithmultipleconvenientoptions:uploadingfromalocalmachine,consumingfrompublishedcodeinasourcecontrolhub(Bitbucket)andlinkingtoareciperawcode.YoucanchecktheGitHubrepositoryfortheavailableandoptimizedH2O.airecipes.Duringtrainingofasupervisedmachinelearningmodelingpipeline,H2ODriverlessAIcanusetheserecipesasbuildingblockswithorinsteadofallintegratedcodepieces.Theyareusedintheautomaticmachinelearningoptimizationprocess,eventuallycreatingthewinningmodel.Datascienceteamscandevelopcustomizationsspecifictotheiruse-cases,industry,orbusiness.
SolutionarchitectureforAutoML
SolutionarchitectureforAutoML
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAI
WhitePaper
PAGE
11
PAGE
12
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAIWhitePaper
SolutionarchitectureforAutoML
H2ODriverlessAIprovidesanenterprise-readyAutoMLproductfordatascientistsandmachinelearningengineerstodevelopandpublishAIapplications.ItcanbedeployedeitherinKubernetesaspodsorasastand-alonecontainer.
Kubernetes-baseddeploymentusingEnterpriseSteam
EnterpriseSteamfromH2O.aiisaserviceforsecurelymanaginganddeployinginfrastructureforH2ODriverlessAIonKubernetes.EnterpriseSteamofferssecurity,accesscontrol,resourcecontrol,andresourcemonitoringoutoftheboxsothatorganizationscanfocusonthecoreoftheirdatasciencepractice.Itenablessecure,streamlinedadoptionofH2ODriverlessAIandotherH2O.aiproductsthatcomplieswithcompanypolicies.
Fordatascientists,EnterpriseSteamprovidesPython,R,andwebclientsformanagingclustersandinstances.ItallowsdatascientiststopracticedatascienceintheirownH2ODriverlessAIinstance.Foradministrators,EnterpriseSteamcontrolswhichproductversionsandcomputeresourcesareavailable.
EnterprisesteamisasinglepodthatisdeployedusingHelm.WhenEnterpriseSteamisdeployed,youcanlaunchanewH2ODriverlessAIinstanceandmanageexistinginstances.
Youcanuseeachinstanceformodelbuildingforaspecificproject.Inthefollowingfigure,weshowthreeinstancesofH2ODriverlessAIdeployedforautomatedmodelbuildingforthreedifferentusecases:NLP,timeseriesforecasting,andimageclassification.
Figure3. SolutionarchitectureforKubernetes-basedDriverlessAIdeployment
Datasetsaremadeavailabletotheinstanceeitherbydownloadingthemintothecontainerorthroughseveralofthedataconnectors,asexplainedinthefollowingsections.Datavisualization,featureengineering,andmodeldevelopmentareperformed
onthisinstance.H2ODriverlessAIsupportsNVIDIAGPUaccelerationandsomeusecasessuchasimageclassificationcanbenefitfromGPUresources.Fortheseusecases,GPUsareconfiguredandmadeavailabletothecontainer.
Afterthemodelistrained,youcandownloadthePythonorMOJOScoringPipelineandbuildaDockercontainer.YoucandeploythisDockercontaineroutsideoftheKubernetesenvironmentoraspodexposedasaKubernetesservice.
H2ODriverlessAIcanalsobedeployedasastand-alonecontainereitheronbaremetalorvirtualmachines.Thisdeploymentoptionisoutsidethescopeofthisvalidateddesign.Seethe
H2ODriverlessAIdocumentation
formoreinformation.
Dockerimage
Security
GPUsupport
H2ODriverlessAIDockerimagesareavailablethroughEnterpriseSteam.TheDockerimagescomewithalltherequiredlibrariesandsoftwareinstalled,includinglibrariesfortheGPU.
EnterpriseSteamprovidesaccesscontrol.Userscanbecreatedwithdifferentroles,andresourcescanbeallocatedtoeachuser.H2ODriverlessAIsupportsclientcertificate,LDAP,andotherauthenticationoptions.TheseoptionscanbeconfiguredbyspecifyingtheenvironmentvariableswhenstartingtheH2ODriverlessAIDockerimageorbyspecifyingtheappropriateoptionsintheconfigurationfile.Seethe
H2ODriverlessAI
documentation
formoreinformation.
H2ODriverlessAIcanrunonmachineswithonlyCPUsormachineswithCPUsandGPUs.H2ODriverlessAIsupportsNVIDIAA100andA30GPUs.OnlyoneGPUissupportedperinstance.ImageandNLPusecasesinH2ODriverlessAIbenefitsignificantlyfromGPUusage.ModelbuildingalgorithmssuchasXGBoost(GBM/DART/RF/GLM),LightGBM(GBM/DART/RF),PyTorch(BERTmodels),andTensorFlow(CNN/BiGRU/ImageNet)modelsuseGPU.
NVIDIA’sMulti-InstanceGPU(MIG)featurecanbeusedtopartitiontheGPUs,increaseoverallGPUutilization,andsupportseveraltypesofusecasesanddeploymentswithguaranteedqualityofservice.FormoreinformationaboutGPUpartitioningrecommendations,seetothe
NVIDIAMulti-InstanceGPUandNVIDIATechnicalBrief.
ImageandNLPusecasesinH2ODriverlessAIbenefitsignificantlyfromGPUusage.ModelbuildingalgorithmssuchasXGBoost(GBM/DART/RF/GLM),LightGBM(GBM/DART/RF),PyTorch(BERTmodels),andTensorFlow(CNN/BiGRU/ImageNet)modelsuseGPU.
InvokingH2ODriverlessAIfromcnvrg.ioMLOpsPlatform
InvokingH2ODriverlessAIfromcnvrg.ioMLOpsPlatform
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAI
WhitePaper
PAGE
13
PAGE
14
AutomateMachineLearningwithH2ODriverlessAIonDellInfrastructure
DellValidatedDesignforAIWhitePaper
Storageandnetworkconfiguration
Licensing
H2ODriverlessAIrequiresnospecialnetworkconsiderations.TheKubernetes-baseddeploymentusesingresscontrolandloadbalancerstogovernaccesstothedeployment.
H2ODriverlessAIusespersistentvolumestosavetherequireddataandtoconnecttoexternaldatasourcessuchasNFS.
H2ODriverlessAIislicensedperuser.EachusercandeployaninstanceofH2ODriverlessAI.H2ODriverlessAImanagestheGPUsinthedeployment.Itensuresthatdifferentexperimentsbydifferentuserscanrunsafelysimultaneouslyanddonotinterferewitheachother.NospeciallicensingisrequiredforGPUsupport.
EnterpriseSteamislicensedseparately.UsersrequireonelicenseperEnterpriseSteamdeployment.
InvokingH2ODriverlessAIfromcnvrg.ioMLOpsPlatform
Asshownin
Figure1,
AutoMLenablesautomaticmodelbuilding.However,itdoesnotofferthecompletelifecycleforamachinelearningapplication.Also,AutoMLautomatedmodelbuildingdoesnotsupportallscenariosandusecases.Forexample,AutoMLsupportstrainingonlyforsuperviseddataandunsupervisedlearning.Itdoesnotsupportreinforcementlearning.
ForbuildingmodelsforsuchcomplexusecasesandtomaintainacompletelifecycleofAImodels,enterprisesrelyonanMLOPsplatform.MLOpsisadefinedprocessandlifecycleformachinelearningdata,models,andcoding.TheMLOpslifecyclebeginswithdataextractionandpreparationasthedatasetismassagedintoastructurethatcaneffectivelyfeedthemodel.MLOpsplatformsprovideconstantmonitoringtoensurethattheprocessisrunningsmoothly.MLOpsenablesdatascientiststobuildcomplexpipelinesthatallowforcontinuouslearning.Automaticretrainingcanbeimplementedtohelpadjustthedeployedprocessandimprovetheaccuracywitheachiteration.
EnterprisesthathavemultipleongoingAIprojectstosupportprogresstowardstheirbusinessintelligencegoalscanusebothMLOpsandAutoMLplatformstotheirrespectivestrengths.DellTechnologieshasworkedcloselywithcnvrg.iotodeliverMLOpsforAIandmachinelearningadoptersthroughajointlyengineeredandtestedsolutiontohelporganizationscapitalizeonthebenefitsofMLOpsformachinelearningandAIworkloads.TheOptimizeMachineLearningThroughMLOpswithDellTechnologiesandcnvrg.io
WhitePaper
and
DesignGuide
provideguidanceforarchitecting,deploying,andoperatingMLOps
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产妇乳房常见症状临床护理与干预教案
- 2025年智慧物流五年发展现状与行业报告
- 新教材第一章物质的组成分类性质教案
- 幼儿园大班安全《值日生》教案三
- 小班科学好玩的风车教案
- 幼儿园大班健康《吃健康食物》教案
- 钢结构施工应知测试试题教案(2025-2026学年)
- 《林教头风雪山神庙》统编版高一语文必修下册教案
- 二上数学连加连减公开课教案
- 幼儿园大班社会自己的事情自己做下载教案
- 中华人民共和国农村集体经济组织法
- 药房与线上医疗服务平台协议书
- 河道水质提升治理施工方案
- 汽车配件供货协议书(2篇)
- 2024版强弱电安装合同范本
- 【案例】智慧旅游信息化建设方案
- 《数据库设计》课件
- 牵引供电计算专题(面向交流)
- 新员工入职背景调查表 (职员)
- 云计算环境下中小企业会计信息化建设问题
- 《材料性能学》课件-第四章 材料的断裂韧性
评论
0/150
提交评论