欧盟智能电网-技术发展、趋势、价值链和市场现状报告2023(英文版)-欧盟理事会_第1页
欧盟智能电网-技术发展、趋势、价值链和市场现状报告2023(英文版)-欧盟理事会_第2页
欧盟智能电网-技术发展、趋势、价值链和市场现状报告2023(英文版)-欧盟理事会_第3页
欧盟智能电网-技术发展、趋势、价值链和市场现状报告2023(英文版)-欧盟理事会_第4页
欧盟智能电网-技术发展、趋势、价值链和市场现状报告2023(英文版)-欧盟理事会_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023

ISSN1831-9424

CLEANENERGYTECHNOLOGY

OBSERVATORY

SmartgridsintheEuropeanUnion

STATUSREPORTONTECHNOLOGY

DEVELOPMENT,TRENDS,VALUECHAINS&

MARKETS

EUR31673EN

ThispublicationisaTechnicalreportbytheJointResearchCentre(JRC),theEuropeanCommission’sscienceandknowledgeservice.Itaimstoprovideevidence-basedscientificsupporttotheEuropeanpolicymakingprocess.ThecontentsofthispublicationdonotnecessarilyreflectthepositionoropinionoftheEuropeanCommission.NeithertheEuropeanCommissionnoranypersonactingonbehalfoftheCommissionisresponsiblefortheusethatmightbemadeofthispublication.ForinformationonthemethodologyandqualityunderlyingthedatausedinthispublicationforwhichthesourceisneitherEurostatnorotherCommissionservices,usersshouldcontactthereferencedsource.ThedesignationsemployedandthepresentationofmaterialonthemapsdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheEuropeanUnionconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.

Contactinformation

Name:AntonioDePaola

Address:ViaEnricoFermi,2749

Email:antonio.de-paola@ec.europa.eu

EUScienceHub

https://joint-research-centre.ec.europa.eu

JRC134988

EUR31673EN

PDFISBN978-92-68-07825-9ISSN1831-9424

doi:10.2760/237911

KJ-NA-31-673-EN-N

Luxembourg:PublicationsOfficeoftheEuropeanUnion,2023

©EuropeanUnion,2023

ThereusepolicyoftheEuropeanCommissiondocumentsisimplementedbytheCommissionDecision2011/833/EUof12December2011onthereuseofCommissiondocuments(OJL330,14.12.2011,p.39).Unlessotherwisenoted,thereuseofthisdocumentisauthorisedundertheCreativeCommonsAttribution4.0International(CCBY4.0)licence

(/licenses/by/4.0/)

.Thismeansthatreuseisallowedprovidedappropriatecreditisgivenandanychangesareindicated.

ForanyuseorreproductionofphotosorothermaterialthatisnotownedbytheEuropeanUnion/EuropeanAtomicEnergyCommunity,permissionmustbesoughtdirectlyfromthecopyrightholders.TheEuropeanUniondoesnotownthecopyrightinrelationtothefollowingelements:

-Coverpageillustration:infraFotolia_65145278

-Anyotherimagessoindicatedinthebodyofthedocument

Howtocitethisreport:DePaola,A.,Andreadou,N.,Kotsakis,E.,CleanEnergyTechnologyObservatory:SmartGridsintheEuropeanUnion-2023StatusReportonTechnologyDevelopment,Trends,ValueChainsandMarkets,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2023,doi:10.2760/237911,JRC134988.

i

Contents

Abstract 1

ForewordontheCleanEnergyTechnologyObservatory 2

Acknowledgements 3

ExecutiveSummary 4

1Introduction 6

1.1Scopeandcontext 6

1.1.1High-VoltageDirect-Current(HVDC)Technologies 6

1.1.2SmartMeteringInfrastructure 6

1.2MethodologyandDataSources 6

2High-VoltageDirect-Current(HVDC)Technology 7

2.1Technologydevelopmentandtrends 7

2.1.1TechnologyReadinesslevels 7

2.1.2Installedcapacityandproduction 8

2.1.3Technologycosts 10

2.1.4Patentingtrends 11

2.1.5PublicfundingandimpactofEU-supportedresearch 12

2.2ValueChainAnalysis 12

2.3EUMarketPositionandGlobalCompetiveness 13

2.3.1Global&EUmarketleaders 13

2.3.2Marketvalue 14

3.AdvancedMeteringInfrastructure 15

3.1Technologydevelopmentandtrends 16

3.2Valuechainanalysis 18

3.3Globalcompetiveness 24

3.3.1SmartMeterMarketLeaders 25

4.Conclusions 27

References 28

Listofabbreviationsanddefinitions 30

Listoffigures 31

Listoftables 32

Annexes 33

Annex1SummaryTableofDataSourcesfortheCETOIndicators 34

1

Abstract

ThisdocumentprovidesanoverviewofthelatesttechnologicalandmarkettrendsonthetopicofSmartGridsintheEuropeanUnion.Giventhebroadscopeofthetopicandthecomprehensiveapproachfollowedinthelastyearreport,theanalysishasfocusedinsteadontwospecificenablingtechnologieswhichhaveexhibitedsignificantdevelopmentsinthelastyear:HighVoltageDirect-Current(HVDC)connectionsandSmartMeteringInfrastructure.ThechoiceofanalysingHVDCrecognizesthefundamentalrolethatthenetworkinfrastructurewillplayinthesmoothintegrationofnewrenewablesourcesandinthesupporttoanefficientoperationofadecarbonizedgrid,whereasthefocusonSmartMeteringInfrastructureismeanttohighlightitsrelevanceintheupgradeoftheenergygrid,withnumeroussmartmeterrolloutplansworldwide.Foreachofthesetwotopics,thecurrentstatusisreportedintermsoftechnologydevelopmentsandtrends,valuechainanalysisandglobalcompetitiveness.

2

ForewordontheCleanEnergyTechnologyObservatory

TheEuropeanCommissionsetuptheCleanEnergyTechnologyObservatory(CETO)in2022tohelpaddressthecomplexityandmulti-facedcharacterofthetransitiontoaclimate-neutralsocietyinEurope.TheEU’sambitiousenergyandclimatepoliciescreateanecessitytotackletherelatedchallengesinacomprehensivemanner,recognizingtheimportantroleforadvancedtechnologiesandinnovationintheprocess.

CETOisajointinitiativeoftheEuropeanCommissionJointResearchCentre(JRC),whoruntheobservatory,andDirectorateGeneralsResearchandInnovation(R&I)andEnergy(ENER)onthepolicyside.Itsoverallobjectivesareto:

-monitortheEUresearchandinnovationactivitiesoncleanenergytechnologiesneededforthedeliveryoftheEuropeanGreenDeal

-assessthecompetitivenessoftheEUcleanenergysectoranditspositioningintheglobalenergymarket

-buildonexistingCommissionstudies,relevantinformation&knowledgeinCommissionservicesandagencies,andtheLowCarbonEnergyObservatory(2015-2020)

-publishreportsontheStrategicEnergyTechnologyPlan

(SET-Plan)

SETISonlineplatform

CETOprovidesarepositoryoftechno-andsocio-economicdataonthemostrelevanttechnologiesandtheirintegrationintheenergysystem.Ittargetsinparticularthestatusandoutlookforinnovativesolutionsaswellasthesustainablemarketuptakeofbothmatureandinventivetechnologies.TheprojectservesasprimarysourceofdatafortheCommission’sannualprogressreportson

competitivenessofcleanenergytechnologies.

ItalsosupportstheimplementationofanddevelopmentofEUresearchandinnovationpolicy.

Theobservatoryproducesaseriesofannualreportsaddressingthefollowingthemes:

-CleanEnergyTechnologyStatus,ValueChainsandMarket:coveringadvancedbiofuels,batteries,bioenergy,carboncaptureutilisationandstorage,concentratedsolarpowerandheat,geothermalheatandpower,heatpumps,hydropower&pumpedhydropowerstorage,novelelectricityandheatstoragetechnologies,oceanenergy,photovoltaics,renewablefuelsofnon-biologicalorigin(other),renewablehydrogen,solarfuels(direct)andwind(offshoreandonshore).

-CleanEnergyTechnologySystemIntegration:building-relatedtechnologies,digitalinfrastructureforsmartenergysystem,industrialanddistrictheat&coldmanagement,standalonesystems,transmissionanddistributiontechnologies,smartcitiesandinnovativeenergycarriersandsupplyfortransport.

-ForesightAnalysisforFutureCleanEnergyTechnologiesusingWeakSignalAnalysis

-CleanEnergyOutlooks:AnalysisandCriticalReview

-SystemModellingforCleanEnergyTechnologyScenarios

-OverallStrategicAnalysisofCleanEnergyTechnologySectorMoredetailsareavailableonthe

CETOwebpages

3

Acknowledgements

Theauthorsareparticularlygratefulforthecommentsreceivedfromthefollowingcolleagues:JRC.C.7ERICteamcolleagueAlikiGeorgakaki

GiuliaSERRA(ENER),PeterHorvath(ENER),PabloRiesgoAbeledo(ENER)fortheirreviewandcomments.

JRCcolleaguesNigelTAYLOR(CETOprojectleader)andAndreasSCHMITZ(CETOdeputyprojectleader)fortheirsupport,reviewandcomments.

Theauthorswouldalsoliketothanktheexternalstakeholdersthathavecontributedwithinterestingdiscussionsandinformativedocumentationtothepresentreport:VolkerWendtandAlbertoLampasona(Europacable),BernarddeClercqandHaraldVanOutryved’Ydewalle(EliaGroup)andDiederikPeereboom(T&DEurope).

Authors

DePaola,A.,Andreadou,N.,Kotsakis,E.

4

ExecutiveSummary

ThisreportaimstoprovideanupdatedoverviewofthelatesttrendsanddevelopmentsintheSmartGridsector.Giventheverybroadscopeofthesubjectandconsideringthecomprehensiveapproachfollowedinthe2022report(EuropeanCommission,2022),thisdocumentfocusesinsteadontwospecifictopicsthatexhibitedverysignificantdevelopmentsinthelastyear:High-VoltageDirect-Current(HVDC)technologyandSmartMeteringInfrastructure.

High-VoltageDirect-Current(HVDC)systems

HVDCsystemsareestablishingthemselvesasafundamentalenablingtechnologyforthedecarbonisationoftheenergysystem.ThankstotheirincreasedcapacityandlowerlossesoverlongdistanceswithrespecttotheirACequivalents,theycanefficientlystrengthentheinterconnectivityoftheenergysystembylinkingdistantpowernetworkswithdifferentfrequenciesandfacilitatingtheinterconnectionoflargeoffshorewindplants.Theanalysishasshownthefollowing:

.HVDCisalreadyamatureandwell-establishedtechnologywithseveralsystemsalreadyproveninoperationalenvironments.However,therearestillsignificantmarginsfornewtechnologicaldevelopmentsandimprovements,particularlyinregardtoDC/DCbreakersanduseofCross-linkedPolyethylene(XLPE)cablesatveryhighvoltagelevels(525kVandabove).

.TheworldwideinstalledHVDCcapacityhastripledfrom2010,reachingatotallengthof100000kmandatotalcapacityof350GWattheendof2021.Asof2022,theHVDCcapacityinEuropeamountstoaround43GW,withadditional63GWcomingfrom51newprojects(mostlyintheplanningandpermittingstage.

.Fromapatentingperspective,themostactivecompaniesinthisfieldareChinese(StateGridCorporationofChinaandChinaSouthernPowerGrid).EuropeancompaniessuchasAlstom(France)andABB(Sweden-Switzerland)exhibitsmallerpatentingvolumesbuthighergeographicalreachandapplicationdiversity.

.TheEUisprovidingsubstantialfundingtoHVDC-relatedresearchactivities,with6fundingcallsandatotalbudgetof1300M€intheHorizonEuropeprogram.

.HVDCtransmissionprojectsaregenerallysuppliedseparatelyintheirmaincomponents,i.e.point-to-pointlinesandconverterstations.Currently,procurementleadtimesforcablesusuallyrangebetweentwoandfouryearswhilethetypicalleadtimeforHVDCconverterstationsisbetweentwoandthreeyears.However,leadtimesappeartobeincreasinginthelastperiod,mostlyduetoanincreasingworldwidedemandandextra-Europeancountriesthatareabletoplacebulkordersatcompetitivepricesandwithmorerelaxedstandards.OnepossiblesolutioncouldbeasimplificationanduniformimplementationintheMemberstatesoftheEUtenderinglaw.

.Intermsofsupplychains,themainEuropeanmanufacturersoftransformersareconsideredleadingglobalplayers.ThesameistruefortheEuropeancablemanufacturers,whoareexpectedtosatisfytheforecastdemandoverthenexttenyears.Theonlyrelevantconcernisassociatedwithhigh-powersemiconductors(akeycomponentofconvertervalves),whoseproductionisconcentratedinTaiwan.

.EstimationsonthevalueoftheglobalHVDCmarketat2021rangebetween9.48and16.96Bn$.Thefutureoutlookappearsquitepositive,withCompoundAnnualGrowthRate(CAGR)overthenext10yearsestimatedbetween7.1%and10.6%.

5

AdvancedMeteringInfrastructure

SmartmetersandingeneralAdvancedMeteringInfrastructureplayakeyroletothedigitalizationoftheenergygrid.Theyhavenumerousadvantagestoofferatmultipleactors,fromtheDSO/energyprovidertotheend-consumers.

Theadvantagesthatadvancedmeteringinfrastructureofferaresummarisedasfollowsbothfromanenergyproviderperspectiveandend-consumerperspective:

.Gridmonitoringandbettergridmanagement(outages,faultsinthenetwork);

.Enableinitiaveslikesmartcities,increaseusageofrenewableenergysources;

.Empowerconsumerstocontroltheirconsumptions;

.Enableenergysavinginacomprehensiveandeffectiveway;

.Enabletheparticipationinsmartenergyprograms,likedemandsideflexibilityprogram.

.Furthermore,associatedtoEVs(notably@Home/@workcharging),theyallowtwo-wayenergyanddataflows(V2G),significantlycontributingtopeak-shaving,thereforeimprovingtheoveralleconomiccompetitivenessofaregion(seeChinaandSouthKorearecentlylegislativeinitiativestogeneraliseV2GpluslinkswithAFIR,EPBD,SustainableTransportForuminitiative).

Advancemeteringinfrastructurehasattractedtheinterestofstakeholdersintheenergychainatgloballevel,withmassiverollout-plansongoingorscheduledaroundtheglobe.Duetothetechnology’simportance,itisconsideredfundamentaltomonitorthetechnologyreadinesslevel,thevaluechainandtheglobalmarketstatus.Forthisreason,theCleanenergyTechnologyObservatoryoffersmonitoringoftheAdvancedMeteringInfrastructuretechnology.Forthecurrentrelease,weprovideanupdateandacomparisonwithlastyear’sreport,showingthelatestimprovementsinthefieldtogetherwiththeoverallpicture.TherelatedthemeofcharginginfrastructureforEVshasnotbeenconsideredinthisdocument,asitisalreadyextensivelyanalysedinthelatestCINDECSreport(Kuokkanen,etal.,2023).

6

1Introduction

1.1Scopeandcontext

ThisdocumentaddressestheCleanEnergyTechnologyObservatorySub-TaskA.2andaimstoprovideanupdatedoverviewofthelatestdevelopmentsandtrendsintheSmartGridsector.Thereportreleasedlastyear(EuropeanCommission,2022)analysedfivedistincttopics:TransmissionNetworkInnovation,Grid-ScaleStorageServices,ElectricVehicleSmartCharging,AdvancedMeteringInfrastructureandHomeEnergyManagementSystems.Differentlyfromtheextensivescopeconsideredin(EuropeanCommission,2022),thepresentreportfocusesindetailontwospecificsectors(High-VoltageDirect-CurrentTechnologiesandSmartMeteringInfrastructure)thatexhibitedverysignificantdevelopmentsinthelastyear.Inregardtothesetwotopics,thereportpresentstheirmostrelevanttechnologicalstatusesandtrends,analisesthekeyfeaturesandmosttimelyissuesoftheirvaluechainsandassessesthemarketpositionandglobalcompetitevenessofEUcompanies.

1.1.1High-VoltageDirect-Current(HVDC)Technologies

Thechoiceofthisfirsttopicrecognizesthefundamentalrolethatthenetworkinfrastructurewillplayinthesmoothintegrationofnewrenewablesourcesandinthesupporttoanefficientoperationofadecarbonizedgrid.TheanalysisfollowsuponthegeneralTransmissionInnovationoverviewprovidedin(EuropeanCommission,2022)byfocusingonthespecifictopicofHigh-VoltageDCTransmission.ThescopeofthestudyincludesthemainphysicalassetsofHVDCsystems,i.e.transformers,HVDCconverters,DCcircuitbreakersandcables.Thestudydoesnotconsiderotheremergingtechnologiesinthetransmissionsectors,suchasFlexibleAlternatingCurrentsTransmissionSystems(FACTS),whichwillbethesubjectoffutureanalyses.

1.1.2SmartMeteringInfrastructure

ThechoiceofthistopicintendstoaddressmainadvancementsintheAdvancedMeteringInfrastructurefieldtogetherwithprovidingtheoverallpicture,notonlyatEuropeanlevel,butatgloballevel.Indeed,advancemeteringinfrastrureandinparticular,smartmeters,playakeyrolefortheupgradeoftheenergygrid,withnumeroussmartmeterrolloutplansworldwide.Thescopeofthisstudyistogiveanupdatewithrespecttolastyear’sstatusforsmartmeters,andinparticularfortheirtechnologyreadinesslevel,thevaluechainsandtheglobalmarketpicture.

1.2MethodologyandDataSources

ThereporthasbeenwrittenfollowingtheCETOmethodologythataddressesthreeprincipalaspects:

a)Technologymaturitystatus,developmentandtrends

b)Valuechainanalysis

c)GlobalmarketsandEUpositioning

Themainsourcesutilisedforthestudyinclude:

-Technicalreportsbypublicinstitutionsandprivateentities

-Scientificreviewpapersontechnologystate-ofthe-art

-ENTSO-Eenergyscenarios

-CORDISdatabaseforHorizon2020andHorizonEuroperesearchprojects

Additionalinformation,bothintheformofqualitativeassessmentsandquantitativedata,hasbeenobtainedthroughcontactswithexternalstakeholders,includingTSOentities(Elia,ENTSO-E),individualmanufacturers(Hitachi,GeneralElectric)andindustryassociations(T&DEurope,Europacable).

7

2High-VoltageDirect-Current(HVDC)Technology

High-VoltageDirectCurrent(HVDC)systemsareplayinganincreasinglysignificantroleinsupportingthedecarbonisationoftheenergysystem.Thankstotheirincreasedcapacityandlowerlossesoverlongdistances(see

Figure1)

withrespecttotheirACequivalents,theycanstrengthenefficientlytheinterconnectivityoftheenergysystembylinkingdistantpowernetworkswithdifferentfrequenciesandsignificantlyfacilitatingtheinterconnectionoflargeoffshorewindplants.

Figure1.ComparisonofenergylossesinACandDCoverheadlines.

Source:(ABB,2014)

Initsbasicstructure(see

Figure2)

,aHVDCsystemincludes:

-CircuitbreakersontheACside(considerablycheaperthanDCbreakers)

-HVDCconverters,includingAC/DCandDC/ACconvertersandequipmentforreactivepowersupportandfiltering.TheAC/DCandDC/ACconverterscangenerallyusetwodifferenttopologies:Line

CommutatedConverters(LCC),awell-establishedtechnologyrelyingonthyristors,andVoltageSourceConverters(VSC),whicharemorerecentandprovidegreatercontrollability

-HVDCconductors,whichcaneitherbeonshore(overheadorunderground)oroffshore(mainlysubmarinecables)

Figure2.GenericHVDCtransmissionprojectlayout.

Source:JRCre-elaborationoffigurein(Alassi,Bañales,Ellabban,Adam,&MacIver,2019)

2.1Technologydevelopmentandtrends

2.1.1TechnologyReadinesslevels

HVDCtransmissionhasnowadaysreachedasignificantlevelofmaturity.AsindicatedinthelatesttechnologyfactsheetsbyENTSO-E(ENTSO-E,2021),thebulkoftheHVDC-relatedtechnologieshavealreadybeenprovenintheoperationalenvironmentofactualsystem(TRL9).

8

Figure3.TechnologyReadinessLevel(TRL)ofprimaryenergytransmissiontechnologies(HVDCcomponentshighlightedinyellow).

Source:(ENTSO-E,2021)

Forexample,LineCommutatedConverters(LCC)areawell-establishedtechnologythathasbeenusedinHVDCsystemssincethe1970sandnowadayscanoperateonlinesuptoalengthof2000km.VoltageSourceConverters(VSC)havebeendevelopedmorerecentlybuttheyarebeingutilisedinmostofthenewHVDCprojectsastheyallowrapidcontrolofactiveandreactivepower.TheseconvertersgenerallyachieveaTRLof8-9,withtheexceptionofDC/DCconverterwhicharecurrentlyonlybeingvalidatedinlab(TRL4).

Intermsofconductors,MassImpregnated(MI)cablesrepresentaveryconsolidatedandtraditionaltechnologyforHVDCsystem,usedforbothon-shoreundergroundconnectionsandoff-shoreapplications.Recently,Cross-linkedPolyethylene(XLPE)cables,i.e.conductorswithextrudedinsulation,areseeinganincreaseddiffusionastheycanoperateatawiderangeoftemperaturesandareparticularlyresistanttocorrosionandvibrations.XLPEcablesoperatingat320kVareaverymaturetechnology(TRL9)whiletheirapplicationat525kVisstillbeingvalidated(TRL5)andtheiruseat600kVisatanexperimentalstage(TRL3).

Finally,intermsofswitchingcomponents,theHVDCcircuitbreakersarelessmaturethentheirACcounterparts,mostlyduetothechallengeofbreakingdirectcurrentinabsenceofzero-currentcrossings.Atthemoment,High-VoltageDCbreakersarebeingdemonstratedinrelevantenvironments(TRL6)whileExtra-High-Voltage(345kVandabove)DCbreakersarestillatanexperimentalstage(TRL3).

2.1.2Installedcapacityandproduction

Accordingtothelatestdataprovidedin(IEA,2023)andshownin

Figure4,

bytheendof2021thetotallengthofHVDClineshasreached100000kmandatotaltransmissioncapacityofmorethan350GW.HVDClineshavealmosttripledsince2010,althoughtheystillrepresentonly2%ofthetotaltransmissioninfrastructure.In2021,thelargestcapacityadditionshavebeenmadeinChina,whichintroduced50%ofthenewHVDClineswhileEuropecontributedby10%.

9

Figure4.GlobalHVDCtransmissionlinesbycountry/regionandlinetype.

Source:(IEA,2023)

Asof2022,theHVDCtransmissioncapacityinstalledinEuropeamountstoaround43GW(PowerTechnologyResearch,2022).Germanyleadsthismetricwith11.25GWofinstalledHVDCcapacity,whichmostlyconsistsofinterconnectionofoffshorepowerplantsintheNorthSearegion.ThesecondcountryintermsofinstalledcapacityistheUK,with6.4GWofinstalledHVDClinks,includingseveralcross-borderinterconnectionswithFrance,theNetherlandsandNorway.OthercountrieswithsubstantialHVDCcapacityareItaly,with3.7GWofinternallinksandconnectionswithFranceandMontenegroandDenmark,with2GWthataremostlysubseaconnectionswithSweden,NorwayandGermany.Forfutureinvestments,(ENTSO-E,2022)envisages51projectsthatentailneworexpandedDCtransmissionlines,with3projectsalreadyunderconstruction,31intheevaluationorplanningstageand17inthepermittingstage.Theadditionalaggregatecapacityoftheseprojectsamountstoabout63GW.AdetailedprojectiononthepotentialdemandforHigh-Voltage(HV)andExtraHigh-Voltage(EHV)cablesoverthenexttenyears,estimatedbyEuropacableonthebasisoftheENTSO-

E’sTYNDP2022andthedifferentNationalDevelopmentPlansisshownin

Table1.

Table1.ProjectedEuropeandemandofHVandEHVcablesby2032.

Cables(km)

HV&EHVACland

HV&EHV

DCland

HV&EHVACsubsea

HV&EHV

DCsubsea

Total

ENTSO-E’sTYNDP2022

804

9,670

2,478

38,752

51,764

ENTSO-E’sTYNDP2022&EuropeanNationalDevelopmentPlans

4,116

14,054

11,295

58,292

87,757

Source:EuropacableelaborationofTYNDP2022andEuropeanNationalDevelopmentPlans.

Itisestimatedthat,inthenexttenyears,thetotallengthofnewlandcablesinstalledinEuropeforHVDCprojectswillbeapproximatelybetween10,000and14,000km,aquantitysignificantlyhigherthanfornewACassets.Newsubseainstallationswillbeevenmoresubstantial,withanestimateofnewDCsubseacablesapproximatelybetween39,000and58,000km.

10

TheEuropeanUnionsupportsthissubstantialdeploymentofHVDCinfrastructurethroughitsProjectsofCommonInterest(PCIs),i.e.,keycross-borderinfrastructureprojectsthatbringsignificantpositiveimpactonenergymarketintegrationandenergysecurityinatleasttwoEUcountries(EuropeanCommission,2021).Suchprojectsbenefitfromanacceleratedpermit-grantingprocess,improvedregulatorytreatment,andthepossibilitytoapplyforfinancialsupportundertheConnectingEuropeFacility(CEF)forEnergy(totalbudgetof€5.84billionfortheperiod2021-2027).ThelatestPCIlist(EuropeanCommission,2021)includes14differentprojectsthatentailthedevelopmentofnewHVDClines.NineoftheseprojectsenvisageanHVDCconnectionbetweendifferentcountries,foratotal10.9GWofnewtransmissioncapacity,overatotalconnectionlengthofatleast3300km.FourotherprojectsentailthestrengtheningofnationalgridinfrastructureswithadditionalHVDClinks,foranadditional12GWcapacityandmorethan2200kmoflines.Finally,HVDCinterconnectorswillalsobeusedintheNorthSeaWindPowerHub,withtheobjectiveofconnecting12GWoffutureoffshorewindparkstoDenmark,theNetherlandsandGermany(EuropeanCommission,2021).

Intermsoftechnology,investmentshavebeengraduallyshiftingfromLCCtoVSCtransformers,withthelatterconstitutingthe72%ofnewinvestmentsbetween2010and2020,comparedtoonly44%intheprevioustenyears.Asshownin

Figure5,

newVSCprojectshavesignificantlyincreasedsince2015andhavereachedabout30GWofcumulativenewcapacityin2020.

Figure5.CumulativenewcapacityofVSCHVDClines.

Source:(Nishioka,Alvarez,&Omori,2020)

2.1.3Technologycosts

SomeofthelatestdataonthecostoftheHVDCtransmissioninfrastructureareprovidedin(DeSantis,James,Houchins,Saur,&Lyubovsky,2021),whichindicatesacapitalcostof933.34$/km-MWforatransmissionprojectof1610km(1000miles).Suchcostisgivenbythesumoffourmaincomponents,eachwithadifferentimpactonthetotal:thebiggestcostfactorsarematerials(57%)andsubstations(26%)whiletheimpactoflabor(11%)andRight-of-way(6%).ThesameauthorsalsoprovideacomparisonbetweenthecostsofACandDChigh-voltagelineoverdifferentconnectionlengths,asshownin

Figure6.

Itcanbeseenthatcostparityisachievedataround300miles(483km).Overlongerdistances,theadditionalcostsofthetransformersubstationsrequiredfortheHVDCconnectionsarecompensatedbytheincreasedefficiencyandlowerlossesprovidedbythedirectcurrentlink.

11

Figure6.ComparisonoftransmissioncostsvsdistanceforACandDCtechnologies.

Source:(DeSantis,James,Houchins,Saur,&Lyubovsky,2021)

2.1.4Patentingtrends

AsummaryofthepatentingactivitiesbykeyplayersintheHVDCsectorisshownin

Figure7.

ItcanbeseenthatthemostactivecompaniesinthisfieldarebyfarStateGridCorporationofChinaandChinaSouthernPowerGrid.Otherrelevantcompanieswithsmallerpatentingvolumesbuthighergeographicalreachandapplicationdiversityinclude:LSElectric(Korea),Alstom(France),NRElectric(China)andABB(Sweden-Switzerland).

Fi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论