一种INS辅助的PPP周跳探测方法_第1页
一种INS辅助的PPP周跳探测方法_第2页
一种INS辅助的PPP周跳探测方法_第3页
一种INS辅助的PPP周跳探测方法_第4页
一种INS辅助的PPP周跳探测方法_第5页
全文预览已结束

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一种INS辅助的PPP周跳探测方法Title:INS-AssistedPPPCycleSlipDetectionMethodAbstract:PrecisePointPositioning(PPP)isawidelyusedtechniqueforhigh-precisionpositioningapplications,relyingondual-frequencycarrierphasemeasurementsfromGlobalNavigationSatelliteSystems(GNSS).However,thepresenceofcycleslipsinthecarrierphasemeasurementscansignificantlydegradethepositioningaccuracy.ThispaperpresentsanovelmethodtodetectcycleslipsinPPPusingInertialNavigationSystem(INS)measurementsasanauxiliarysourceofinformation.TheproposedmethodcombinestheadvantagesofbothGNSSandINStoimprovereal-timecycleslipdetectionaccuracy.1.Introduction1.1Background1.2Motivation1.3Objectives2.LiteratureReview2.1PPPCycleSlipDetection2.2INSIntegrationwithPPP2.3OtherApproachesforCycleSlipDetection3.Methodology3.1OverviewoftheProposedMethod3.2INSDataCollectionandCalibration3.3INSDataFusionwithPPPObservations3.4CycleSlipDetectionAlgorithm3.5Real-TimeImplementationConsiderations4.ExperimentalSetup4.1TestEnvironment4.2DataCollection4.3DataAnalysis5.ResultsandDiscussion5.1PerformanceEvaluationMetrics5.2ComparisonwithExistingMethods5.3DiscussionofFindings6.Conclusion6.1SummaryofContributions6.2PracticalImplications6.3FutureResearchDirections1.Introduction1.1BackgroundPrecisePointPositioning(PPP)isaGNSS-basedtechniquethataimstoachievehigh-precisionpositioningbyestimatingreceiverclockbiases,ionosphericandtroposphericdelays,andsatelliteorbits.However,theaccuracyofPPPissusceptibletovariouserrorsources,oneofwhichiscycleslipsincarrierphasemeasurements.Cycleslipsoccurwhenthephasemeasurementsexperienceanabruptchangeofanintegermultipleofthecarrierwavelength.Detectingandcorrectingcycleslipspromptlyiscrucialtomaintainaccuratepositioning.1.2MotivationConventionalmethodsforcycleslipdetectioninPPPpredominantlyutilizestatisticalpropertiesofGNSSobservables.However,thesemethodsmaybepronetofalsedetectionsandcanfailtoidentifyallcycleslips,especiallyinchallengingenvironments.Therefore,incorporatingadditionalinformationfromINSmeasurementscanenhancecycleslipdetectionaccuracyandimprovetherobustnessofPPP.1.3ObjectivesThemainobjectiveofthisstudyistoproposeanINS-assistedcycleslipdetectionmethodforPPPthatexploitsthecomplementarypropertiesofGNSSandINS.Theproposedmethodaimstoimprovetheaccuracyandreal-timeperformanceofcycleslipdetection,leadingtoenhancedpositioningaccuracyandreliability.2.LiteratureReview2.1PPPCycleSlipDetectionExistingcycleslipdetectionmethodsforPPPincluderatiotests,LAMBDAmethods,powerspectraldensityanalysis,andKalmanfilter-basedtechniques.ThesemethodsprimarilyrelyonstatisticalpropertiesoftheGNSSobservablesandhavelimitationsindetectingcycleslipsaccuratelyandinreal-time.2.2INSIntegrationwithPPPIntegrationofINSwithPPPhasbeenextensivelystudiedintheliterature,mainlyfocusingonaidingPPPinitializationandenhancingpositioningaccuracy.However,limitedresearchhasexploredtheuseofINSmeasurementsforcycleslipdetectioninPPP.2.3OtherApproachesforCycleSlipDetectionAlternativeapproachesforcycleslipdetectionincludetheuseofcarrier-smoothedcodemeasurements,dual-frequencymeasurements,andGNSSreceiverinternaldata.ThesemethodshaveshownimprovementoverconventionalmethodsbutcanbenefitfromtheintegrationofINSmeasurements.3.Methodology3.1OverviewoftheProposedMethodTheproposedmethodutilizesINSmeasurementstoenhancethedetectionofcycleslipsinPPP.INSmeasurementsprovideinformationabouttheuser'smotionanddynamics,whichcanaidinidentifyingplausiblecycleslipevents.3.2INSDataCollectionandCalibrationINSmeasurementsarecollectedusingahigh-precisioninertialmeasurementunit(IMU)integratedwiththeGNSSreceiver.ThecollecteddataarecalibratedandsynchronizedwithGNSSobservationsforfurtherprocessing.3.3INSDataFusionwithPPPObservationsTheINSmeasurementsareintegratedwithPPPobservablesinatightlycouplednavigationfilter,leveragingthecomplementaryinformationfrombothsystems.Theintegrationprocessimprovesthequalityofthepositionsolutionandprovidesadditionalcontextualinformationforcycleslipdetection.3.4CycleSlipDetectionAlgorithmTheproposedcycleslipdetectionalgorithmutilizesacombinationofstatisticaltestsanddynamicbehavioranalysis.ThestatisticaltestsanalyzetheresidualsbetweenthepredictedandobservedGNSScarrierphasemeasurements,whilethedynamicbehavioranalysisexaminestheconsistencybetweentheuser'sposition,velocity,andaccelerationprofilesderivedfromINSmeasurements.3.5Real-TimeImplementationConsiderationsReal-timeimplementationoftheproposedmethodrequiresefficientdataprocessingalgorithms,low-latencyINSdatafusiontechniques,andanoptimizedcycleslipdetectionalgorithm.Theseconsiderationsarediscussedindetailtoensurethepracticalapplicabilityoftheproposedmethod.4.ExperimentalSetup4.1TestEnvironmentAcomprehensivetestingenvironmentisestablished,includingbothopen-skyscenariosandchallengingurbanenvironmentswithpotentialmultipathandsignalblockage.MultipleGNSSreceiversandanINS-equippedplatformareusedtocollectdataundervariousconditions.4.2DataCollectionDatacollectionisperformedforasignificantduration,capturingdiversemotionpatternsandGNSSsignalcharacteristics.Multiplereferencestationsareusedfordifferentialcorrectionandpreciseorbitdeterminationofthesatellites.4.3DataAnalysisThecollecteddataareanalyzedtoevaluatetheaccuracyandeffectivenessoftheproposedINS-assistedcycleslipdetectionmethod.Performancemetricssuchasdetectionrate,falsedetectionrate,andpositioningaccuracyarecomputedandcomparedwithexistingcycleslipdetectionmethods.5.ResultsandDiscussion5.1PerformanceEvaluationMetricsTheproposedmethodisevaluatedbasedondetectionrate,falsedetectionrate,andpositioningaccuracymetrics.Thesemetricsprovideinsightsintotheeffectivenessofthemethodinaccuratelydetectingcycleslipsandimprovingtheoverallpositioningperformance.5.2ComparisonwithExistingMethodsTheresultsobtainedfromtheproposedmethodarecomparedwithconventionalandexistingcycleslipdetectionmethods.ThecomparativeanalysisdemonstratesthesuperiorityandefficacyoftheproposedINS-assistedmethod.5.3DiscussionofFindingsThefindingsfromtheexperimentalevaluationarediscussedindetail,highlightingthestrengths,limitations,andpotentialareasforimprovementoftheproposedmethod.Recommendationsforfutureresearchdirectionsarealsoprovided.6.Conclusion6.1SummaryofContributionsTheproposedINS-assistedcycleslipdetectionmethodforPPPcombinestheadvantagesofGNSSandINStoimprovereal-timecycleslipdetectionaccuracy.ThemethodleveragesthecomplementaryinformationfrombothsystemsandenhancesthereliabilityandaccuracyofPPPpositioning.6.2PracticalImplicationsTheproposedmethodhasseveralpracticalimplicationsforhigh-precisionpositioningapplications,suchasautonomousvehicles,robotics,andsurveying.Theimprovedcycleslipdetectionaccuracycanl

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论