channel coding 4信道编码第四部分_第1页
channel coding 4信道编码第四部分_第2页
channel coding 4信道编码第四部分_第3页
channel coding 4信道编码第四部分_第4页
channel coding 4信道编码第四部分_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

BCHCodesOUTLINE[1]Finitefields[2]Minimalpolynomials[3]CyclicHammingcodes[4]BCHcodes[5]Decoding2error-correctingBCHcodesBCHCodes[1]Finitefields1.Irreduciblepolynomialf(x)K[x],f(x)hasnoproperdivisorsinK[x] Eg. f(x)=1+x+x2isirreducible f(x)=1+x+x2+x3=(1+x)(1+x2)isnotirreducible

f(x)=1+x+x4isirreducibleBCHCodes2.Primitivepolynomialf(x)isirreducibleofdegreen>1f(x)isnotadivisorof1+xmforanym<2n-1 Eg.f(x)=1+x+x2isnotafactorof1+xmform<3sof(x)isaprimitivepolynomialf(x)=1+x+x2+x3+x4isirreduciblebut1+x5=(1+x)(1+x+x2+x3+x4)andm=5<24-1=15sof(x)isnotaprimitivepolynomialBCHCodes3.DefinitionofKn[x]

ThesetofallpolynomialsinK[x]havingdegreelessthannEachwordinKncorrespondstoapolynomialinKn[x]MultiplicationinKnmoduloh(x),withirreducibleh(x)ofdegreenIfweusemultiplicationmoduloareducibleh(x),say,1+x4todefinemultiplicationofwordsinK4,however:

(0101)(0101)(x+x3)(x+x3) =x2+x6 =x2+x2(mod1+x4) =0

0000(K4-{0000}isnotclosedundermultiplication.)

BCHCodes4.DefinitionofField(Kn,+,x)(Kn,+)isanabeliangroupwithidentitydenoted0Theoperationxisassociativeax(bxc)=(axb)xcThereisamultiplicativeidentitydenoted1,with101xa=ax1=a,aKnTheoperationxisdistributiveover+ax(b+c)=(axb)+(axc)Itiscommunicativeaxb=bxa,a,bKnAllnon-zeroelementshavemultiplicativeinversesGaloisFields:GF(2r)Foreveryprimepowerorderpm,thereisauniquefinitefieldoforderpmDenotedbyGF(pm)BCHCodesExampleLetusconsidertheconstructionofGF(23)usingtheprimitivepolynomialh(x)=1+x+x3todefinemultiplication.Wedothisbycomputingximodh(x): word

ximodh(x) 100 1 010 x 001 x2 110 x31+x 011 x4x+x2 111 x51+x+x2 101 x61+x2BCHCodes5.UseaprimitivepolynomialtoconstructGF(2n)LetKnrepresentthewordcorrespondingtoxmodh(x)

i

ximodh(x)

m1form<2n-1sinceh(x)dosenotdivide1+xmform<2n-1Sincej=

iforjiiffi=

j-i

i

j-i=1Kn\{0}={i|i=0,1,…,2n-2}BCHCodes6.

GF(2r)isprimitive

isprimitiveif

m1for1m<2r-1Inotherwords,everynon-zerowordinGF(2r)canbeexpressedasapowerof

Example

ConstructGF(24)usingtheprimitivepolynomialh(x)=1+x+x4.Writeeveryvectorasapowerof

xmodh(x)(seeTable5.1below) Notethat

15=1. (0110)(1101)=5.

7=12=1111BCHCodesTable1ConstructionofGF(24)usingh(x)=1+x+x4wordpolynomialinxmodh(x)powerof

00000-10001

0=10100x

0010x2

20001x3

311001+x=x4

40110x+x2=x5

50011x2+x3=x6

6BCHCodesTable1(continue)ConstructionofGF(24)usingh(x)=1+x+x4wordpolynomialinxmodh(x)powerof

11011+x+x3=x7

710101+x2=x8

80101x+x3=x9

911101+x+x2=x10

100111x+x2+x3=x11

1111111+x+x2+x3=x12

1210111+x2+x3=x13

1310011+x3=x14

14BCHCodes[2]Minimalpolynomials

1.Rootofapolynomial:anelementofF=GF(2r),p(x)

F[x]isarootofapolynomialp(x)iffp()=02.Orderof

Thesmallestpositiveintegermsuchthat

m=1inGF(2r)isaprimitiveelementifithasorder2r-1BCHCodes3.MinimalpolynomialofThepolynomialinK[x]ofsmallestdegreehavingasrootDenotedbym

(x)m

(x)isirreducibleoverKIff(x)isanypolynomialoverKsuchthatf()=0,thenm

(x)isafactoroff(x)m

(x)isuniquem

(x)isafactorofBCHCodesExampleLetp(x)=1+x3+x4,andletbetheprimitiveelementinGF(24)constructedusingh(x)=1+x+x4(seeTable5.1): p()=1+3+4=1000+0001+1100=0101=9isnotarootofp(x).However p(7)=1+(7)3+(7)4=1+21+28=1+6+13=1000+0011+1011=0000=0

7isarootofp(x).BCHCodes4.FindingtheminimalpolynomialofReducetofindalinearcombinationofthevectors{1,,2,…,r},whichsumsto0Anysetofr+1vectorsinKrisdependent,suchasolutionexistsRepresentm

(x)bymi(x)where=

Ieg.

Findthem

(x),=

3,

GF(24)constructedusingh(x)=1+x+x4BCHCodesUsefulfacts:f(x)2=f(x2)

Iff()=0,thenf(2)=(f())2=0Ifisarootoff(x),soare,2,4,…,Thedegreeofm

(x)is|{,2,4,…,}|BCHCodesExampleFindthem

(x),=

3,

GF(24)constructedusingh(x)=1+x+x4Letm

(x)=m3(x)=a0+a1x+a2x2+a3x3+a4x4thenwemustfindthevaluefora0,a1,…,a4{0,1}

m

()=0=a01+a1+a2

2+a3

3+a4

4 =a0

0+a1

3+a2

6+a3

9+a4

12 0000=a0(1000)+a1(0001)+a2(0011)+a3(0101)+a4(1111)

a0=a1=a2=a3=a4=1and

m

(x)=1+x+x2+x3+x4BCHCodesExampleLet

m5(x)betheminimalpolynomialsof=

5,

5

GF(24) Since{,2,4,8}={

5,10},therootsofm5(x)are

5and10whichmeansthatdegree(m5(x))=2.Thusm5(x)=a0+a1x+a2x2: 0=a0+a1

5+a2

10

=a0(1000)+a1(0110)+a2(1110) Thusa0=a1=a2=1andm5(x)=1+x+x2BCHCodesTable2:MinimalpolynomialsinGF(24)constructedusing1+x+x4ElementofGF(24)Minimalpolynomial01,2,4,8

3,6,9,12

5,10

7,11,13,14x1+x1+x+x41+x+x2+x3+x41+x+x21+x3+x4BCHCodes[3]CyclicHammingcodes1.ParitycheckmatrixTheparitycheckmatrixofaHammingcodeoflengthn=2r-1hasitsrowsall2r-1nonzerowordsoflengthrisaprimitiveelementof GF(2r)Histheparitycheckma- trixofaHammingcodeof lengthn=2r-1BCHCodes2.GeneratorpolynomialForanyreceivedwordw=w0w1…wn-1 wH=w0+w1+…+wn-1

n-1w()wisacodewordiffisarootofw(x)m

(x)isitsgeneratorpolynomialTheorem5.3.1

AprimitivepolynomialofdegreeristhegeneratorpolynomialofacyclicHammingcodeoflength2r-1BCHCodesExample: Letr=3,son=23-1=7.Usep(x)=1+x+x3toconstruct

GF(23),and010astheprimitiveelement.Recallthat

i

ximodp(x).ThereforeaparitycheckmatrixforaHammingcodeoflength7isBCHCodes3.DecodingthecyclicHammingcodew(x)=c(x)+e(x),wherec(x)isacodeword,e(x)istheerrorw()=e()ehasweight1,e()=j,jisthepositionofthe1inec(x)=w(x)+xjBCHCodesExample: SupposeGF(23)wasconstructedusing1+x+x3.m1(x)=1+x+x3isthegeneratorforacyclicHammingcodeoflength7.Suppose w(x)=1+x+x3+x6isreceived.Then w()=1+2+3+6 =100+001+110+101 =110 =3

e(x)=x3andc(x)=w(x)+x3=1+x2+x6

BCHCodes[4]BCHcodes1.BCH:Bose-Chaudhuri-HocquenghamAdmitarelativelyeasydecodingschemeTheclassofBCHcodesisquiteextensiveForanypositiveintegersrandtwitht2r-1-1,thereisaBCHcodesoflengthn=2r-1whichist-errorcorrectingandhasdimensionkn-rtBCHCodes2.

Paritycheckmatrixforthe2error-correctingBCHThe2error-correctingBCHcodesoflength2r-1isthecycliclinearcodes,generatedbyg(x)=,r4Thegeneratorpolynomial:g(x)=m1(x)m3(x)Degree(g(x))=2r,thecodehasdimensionn-2r=2r-1-2rBCHCodesExample:

isaprimitiveelementinGF(24)constructedwithp(x)=1+x+x4.Wehavethatm1(x)=1+x+x4andm3(x)=1+x+x2+x3+x4.Therefore g(x)=m1(x)m3(x)=1+x4+x6+x7+x8 isthegeneratorfora2error-correctingBCHcodeoflength15BCHCodes3.TheparitycheckmatrixofC15(distanced=5)

(Table3)BCHCodes[5]Decoding2error-correctingBCHcodes1.Errorlocatorpolynomial

w(x):receivedword

syndromewH=[w(),w(3)]=[s1,s3]Histheparitycheckmatrixforthe(2r-1,2r-2r-1,5)2error-correctingBCHcodewithgeneratorg(x)=m1(x)m3(x)wH=0ifnoerrorsoccurredIfoneerroroccurred,theerrorpolynomiale(x)=xi wH=eH=[e(),e(

3)]=[i,3i]=[s1,s3],BCHCodesIftwoerrorsoccurred,sayinpositionsiandj,ij,e(x)=xi+xj,wH=eH=[e(),e(

3)]=[i+j,3i+3j]=[s1,s3]Theerrorlocatorpolynomial:BCHCodesExample: Letww(x)beareceivedwordwithsyndromess1=0111=w()ands3=1010=w(

3),wherewwasencodedusingC15.FromTable5.1wehavethats1

11ands3

8.Then Weformthepolynomialx2+11x+2andfindthatithasroots

4and

13.Thereforewecandecidethatthemostlikelyerrorsoccurredinpositions4and13,e(x)=x4+x13,themostlikelyerrorpatternis 0000100000000010BCHCodes2.DecodingalgorithmofBCHcodesCalculatethesyndromewH=[s1,s3]=[w(),w(

3)]Ifs1=s3=0,noerrorsoccurredIfs1=0ands30,askforretransmissionIf(s1)3=s3,asingleerroratpositioni,wheres1=iFromthequadraticequation: (*)Ifequation(*)hastwodistinctrootsiandj,correcterrorsatpositionsiandjIfequation(*)doesnothavetwodistinctrootsinGF(2r),concludethatatleastthreeerrorsoccurredBCHCodesExample:

AssumewisreceivedandthesyndromeiswH=01111010[

11,8].Now Inthiscaseequation(*)isx2+11x+2=0whichhasroots

4and

13.Correcterrorinpositionsi=4andj=13.Example:

AssumethesyndromeiswH=[w(),w(

3)]=[

3,9].Then(s1)3=(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论