




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FLAC/FLAC3DShortCourseItascaSoftwareTrainingCourseTongjiUniversityShanghai,ChinaOctober27-31,2008PeterCundall,YanhuiHan&RogerHartItascaConsultingGroup,Inc.1TrainingSchedule
October27,2008(afternoon)01:00-02:00 OverviewofFLAC/FLAC3Dfeaturesandcapabilities
–Overviewofcapabilitiesingeo-engineering –Theoreticalbasis –Generaloperationprocedures02:00-03:00GridgenerationforFLACmodels –Newvirtual-gridgenerationtools –Automaticre-meshingcapabilityduringcycling03:00–03:15Break03:15-04:15 Structuralelementtopics
–Connectingstructuralelementstorepresentmultiplesupport –Simulatingpre-tensioning04:15–05:00 Stressinitializationtechniques
–Techniquesforinitializingstressinnon-uniformgrids
2FLACisageneral-purposecodethatcansimulateafullrangeofnonlinearstatic&dynamicmechanicalproblems,withcoupledfluidflow,heatflowandstructuralinteraction.Anygeometrycanberepresented,andtheboundaryconditionsarequitegeneral.FLACsimulatesthebehaviorofnonlinearcontinua(withembeddedinterfaces)bythegeneralizedfinitedifferencemethod(arbitraryelementshapes),alsoknownasthefinitevolumemethod.FLACsolvesthedynamicequationsofmotioninthetimedomainandfollowsanyconstitutiverelationinlargeorsmallstrainmode.EveryfeatureofFLACisaccessiblefromapowerfulGraphicalUserInterface.FLACcontainsanembeddedlanguage,FISH,thatgivestheuseraccesstoallinternalvariables,andallowscustom-writtenfunctions.WhatisFLAC?3FLACLarge-strainorsmall-straincalculationmode.Manybuilt-inconstitutivemodelsthatarerepresentativeofgeologic,orsimilar,materials;optionalC++user-writtenmodels.Interfaceelementstosimulatejointsordistinctplanesofweakness.Plane-strain,plane-stressandaxisymmetricgeometrymodes.Groundwaterandconsolidation(fullycoupled)modelswithautomaticphreaticsurfacecalculation;two-phaseflow.Structuralelementmodelsforsoil-structureinteraction–cables,piles,beams,liners,shotcrete,soilreinforcement,etc.Dynamicanalysiscapability;fullgroundwatercoupling.Creepanalysis,withviscoelasticandviscoplasticmodels.Thermalanalysis,withcouplingtosolid&fluid.…issuitedtomodelingcontinuousmaterials(containing,perhaps,afewdiscontinuities)thatexhibitnonlinearbehavior.Inparticular,itfeatures:Shearstrainratecontours4FLAC3DsimilartoFLAC,butinthreedimensionscontainsthesamefeaturesaslistedforFLACupstreamdownstream
5NewFeaturesinFLACVersion6.0Speedupofdouble-precisionversionbyconvertingtoIntelFortrancompilerAutomaticre-meshingschemeforlarge-strainanalysistoovercomebad-geometryproblems.NewconstitutivemodelforsimulatingfrictionhardeningbehaviorofgranularsoilGenericgridgenerationtooltofacilitategridcreation
ReleasedinSeptember2008example6New
FeaturesinFLAC3DVersion3.1Parallelprocessingonmultiprocessorcomputers(e.g.,dualprocessorsordualcoreprocessor)Newstructuralelementtype“EmbeddedLiner”providesshear/slipandnormalinteractionwiththegridonbothsidesoftheliner(e.g.,tosimulateburiedsheetpilewalls)NewMixedDiscretizationschemefortetrahedralelements“NodalMixedDiscretization”providesmoreaccuratesolutionofplasticityproblemsusingtetrahedralgrids64bitversionofFLAC3DHelpFilecontainingCommandReference,FISHReferenceandExampleApplicationsReleasedinDecember20067PlannedNewFeaturesinFLAC3DVersion4.0NewconstitutivemodelforsimulatingfrictionhardeningbehaviorofgranularsoilAutomaticre-meshingschemeforlarge-strainanalysistoovercomebad-geometryproblems3. ImprovedinterfacelogicFastfluid-flowlogicUpdatedDynamicAnalysisvolumeEstimatedrelease:mid20098ConstitutiveModelsforFLACandFLAC3DBuilt-inModelsUser-definedModels*Elasticitymodels:IsotropicTransverselyisotropicOrthotropicPlasticitymodels:Drucker-PragerMohr-CoulombUbiquitous-jointStrain-hardening/softeningBilinearstrain-hardening/softening/ubiquitous-jointDouble-yieldModifiedCam-clayHoek-BrownCYsoil–frictionhardening,withellipticalcapDynamicLiquefactionmodels:Finn(Martinetal.,1975)modelBryne,1991modelCreepmodels:ViscoelasticBurger’ssubstanceviscoelasticTwo-componentpowerlawReferencecreepformulation(WIPP)Burger-creep/Mohr-CoulombviscoplasticTwo-componentpowerlaw/Mohr-CoulombviscoplasticWIPP-creep/Drucker-PragerviscoplasticCrushed-salt*partiallistofmodelscreatedby(ordevelopedfor)codeusersElasticitymodels:HyperbolicelasticDuncan-Chang,1980Plasticitymodels:NorSandJardineetal.,1986Manzari-Dafalias,1997Kleineetal.,2006ConcretehydrationvonWolffersdorffhypo-plasticDynamicLiquefactionmodels:UBCSANDUBCTOTWang,1990Rothetal.,2001Andrianopoulos,2005Creepmodels:MinkleyviscoplasticHein-crushedsaltSalzercreepLubby2creep9FiniteDifferenceFormulation
ofFLAC&FLAC3D
10BASISOFFLACFLACsolvesthefulldynamicequationsofmotionevenforquasi-staticproblems.Thishasadvantagesforproblemsthatinvolvephysicalinstability,suchascollapse,aswillbeexplainedlater.Tomodelthe“static”responseofasystem,arelaxationschemeisusedinwhichdampingabsorbskineticenergy.Thisapproachcanmodelcollapseproblemsinamorerealisticandefficientmannerthanotherschemes,e.g.,matrix-solutionmethods.11ASIMPLEMECHANICALANALOGmF(t)Newton´sLawofMotion
Foracontinuousbody,thiscanbegeneralizedaswhere=massdensity,xi=coordinatevector(x,y)
ij=componentsofthestresstensor,andgi=gravitation12STRESS-STRAINEQUATIONSInadditiontothelawofmotion,acontinuousmaterialmustobeyaconstitutiverelation-thatis,arelationbetweenstressesandstrains.Foranelasticmaterialthisis:Ingeneral,theformisasfollows:where13AGENERALFINITE-DIFFERENCEFORMULAInthefinitedifferencemethod,eachderivativeinthepreviousequations(motion&stress-strain)isreplacedbyanalgebraicexpressionrelatingvariablesatspecificlocationsinthegrid.Thealgebraicexpressionsarefullyexplicit;allquantitiesontheright-handsideoftheexpressionsareknown.Consequentlyeachelement(zoneorgridpoint)inaFLACgridappearstobephysicallyisolatedfromitsneighborsduringonecalculationaltimestep.Thisisthebasisofthecalculationcycle:(Thetime-stepissufficientlysmallthatinformationcannotpropagatebetweenadjacentelementsduringonestep)14BasicExplicitCalculationCycleEquilibriumEquation(EquationofMotion)Stress-StrainRelation(ConstitutiveEquation)Forallgridpoints(nodes)Forallzones(elements)newstressesnodalforcesGauss´theoremstrainratesvelocitiese.g.,elastic15FLAC’sgridisinternallycomposedoftriangles.Thesearecombinedintoquadrilaterals.Theschemeforderivingdifferenceequationsforapolygonisdescribedasfollows:OverlaidTriangularelementNodalforcevectorElementswithvelocityvectorsThebasicFLACelementisatriangle.16FLAC:Forallgridpoints...Gridpointforcesarederivedfromthetractionsactingonthesidesofeachtriangle,derivedfromthezonestresses.Forexample,Thena“classical”centralfinite-differenceformulaisusedtoobtainnewvelocitiesanddisplacements:(…inlargestrainmode)17FLAC:Forallelements...Gauss’theorem,isusedtoderivedafinitedifferenceformulaforelementsofarbitraryshape.nodalvelocitybanodalvelocitySForapolygontheformulabecomesThisformulaisappliedtocalculatingthestrainincrements,eij,forazone:18Overlay&Mixed-DiscretizationFormulationofFLAC:+/2=Each
isconstant-stress/constant-strain:Volumestrainaveragedover
Deviatoricstrainevaluatedforandseparately(Mixeddiscretizationprocedure)Solutionis“UpdatedLagrangian”(gridmoveswiththematerial),andexplicit(localchangesdonotaffectneighborsinonetimestep)19Methodsofsolutionintimedomaindisplacement
uforce
FxFstress
unumericalgridEXPLICITAllelements:(nonlinearlaw)Allnodes:Repeatforntime-stepsNoiterationswithinstepsInformationcannotphysicallypropagatebetweenelementsduringonetimestepAssume(u)arefixedAssume(F)arefixedCorrectif
p-wavespeedIMPLICITelementglobalSolvecompletesetofequationsforeachtimestepIteratewithintimestepifnonlinearitypresent20MethodscomparedExplicit,time-marchingImplicit,static1.Canfollownonlinearlawswithoutinternaliteration,sincedisplacementsare“frozen”withinconstitutivecalculation.2.SolutiontimeincreasesasN3/2forsimilarproblems.3.Physicalinstabilitydoesnotcausenumericalinstability.4.Largeproblemscanbemodeledwithsmallmemory,sincematrixisnotstored.5.Largestrains,displacementsandrotationsaremodeledwithoutextracomputertime.1.Iterationoftheentireprocessisnecessarytofollownonlinearlaws2.SolutiontimeincreaseswithN2orevenN3.3.Physicalinstabilityisdifficulttomodel.4.Largememoryrequirements,ordiskusage.5.Significantlymoretimeneededforlargestrainmodels.21Strengths&LimitationsTheexplicitsolutionschemeusedinFLACenablesthefollowingproblemstobesolvedmostefficiently:
Stronglynonlinearsystems,withextensiveyieldandlargestrain.Systemsinwhichlocalizationoccurs.Systemsthatembodycomplexinteractions,orwhichneedspecialuser-definedconditionsormaterialmodels.Disadvantagesare:Slowexecution(comparedto–say–finiteelements)forlinear(orwell-behaved)systems.Slowexecutioniftherearegreatcontrastsinmaterialstiffnessesorelementsizes.22DYNAMICRELAXATIONIndynamicrelaxationgridpointsaremovedaccordingtoNewton’slawofmotion.Theaccelerationofagridpointisproportionaltotheout-of-balanceforce.Thissolutionschemedeterminesthesetofdisplacementsthatwillbringthesystemtoequilibrium,orindicatethefailuremode.Therearetwoimportantconsiderationswithdynamicrelaxation:ChoiceoftimestepEffectofdamping23TIMESTEPInordertosatisfynumericalstabilitythetimestepmustsatisfythecondition:whereCpisproportionalto1/mgp.Forstaticanalysis,gridpointmassesarescaledsothatlocalcriticaltimestepsareequal()whichprovidestheoptimumspeedofconvergence.Nodalinertialmassesarethenadjustedtofulfillthestabilitycondition:Notethatgravitationalmassesarenotaffected.24DAMPINGVelocity-proportionaldampingintroducesbodyforcesthatcanaffectthesolution.LocaldampingisusedinFLAC---Thedampingforceatagridpointisproportionaltothemagnitudeoftheunbalancedforcewiththesignsettoensurethatvibrationalmodesaredamped:25LOCALDAMPINGThedampingforce,
Fd
is:
Dampingforcesareintroducedtotheequationsofmotion:whereFi
istheunbalancedforceInFLACtheunbalancedforceratio(ratioofunbalancedforce,
Fi
,totheappliedforcemagnitude,Fm)ismonitoredtodeterminethestaticstate.Bydefault,when
Fi
/Fm
<0.001,thenthemodelisconsideredtobeinanequilibriumstate.26STATICANALYSISFLACisadynamicsolutionmethodthatprovidesastaticsolution(withtheeffectofinertialforcesminimized)providedtheunbalancedforceratioreachesasmallvalue(~0.001orless).Thisiscomparabletothe“levelofresidualerror”or“convergencecriterion”definedformatrixsolutionmethodsusedinmanyfiniteelementprograms.InFLAC,theleveloferrorisquantifiedbytheunbalancedforceratio.InbothFLACandFEsolutions,thestaticsolutionprocessterminateswhentheerrorisbelowadesiredvalue.27OverviewofFLACoperation-Engineeringsimulationsusuallyconsistofalengthysequenceofoperations.-AFLACdatafilecanbeeasilymodifiedwithatexteditor.Severalfilescanbelinkedtogether.-Thewordorientedinputfilesprovideanexcellentmeansforkeepingadocumentedrecordofanalyses.-Thecommanddrivenstructureallowsthedevelopmentofpre-andpost-processingprogramstomanipulateFLAC
inputoroutputasdesired.FLACisacommand-drivenprogram28COMMAND
keyword
value…<keyword
value>CommandSyntaxExample,
new (clearsthememory)
grid5,5 (createsagrid) modelelastic (definesanelasticmodel) plotgrid (drawsthegridonthescreen)Thereareover50commandsand400keywordsinFLAC!!!OverviewofFLACoperation29FLACCOMMANDSUMMARYSpecifyProgramControlSpecifySpecialCalculationModesorAdditionalMemoryInputProblemGeometryDelimitRegionsintheModelAssignConstitutiveModelsandPropertiesAssignInitialConditionsandApplyBoundaryConditionsSpecifyStructuralSupportSpecifyInterfacesSpecifyUser-DefinedVariablesorFunctions(FISH)MonitorModelConditionsduringSolutionProcessSolvetheProblemGenerateModelOutput30FLACisamenu-drivenprogram-Point-and-clickoperationaccessesallcommandsandfacilitiesinFLAC.-DesignedtoemulateexpectedWindowsfeatures.-Includesagridlibrarywithcommontypesofgeo-engineeringgrids.-Digitizedplotsorgraphicsfilescanbeimportedtoguidegridgeneration.-Providesaccesstoadatabaseofmaterialproperties.OverviewofFLACoperation31TheGIICisaJAVA-basedapplicationthatrunsindependentlyofFLAC;dataareexchangeddirectlybetweenFLACandtheGIICsothatyoumaymanipulatemodelresultswithoutinterferingwiththesolutionprocess.FLACwiththeGIICrunsasaWindowsapplication.TheGIICrequiresapproximately40MB(includingtheJavaRuntimeEnvironment).FLACcanstillberunwithouttheGIIC(fordie-hardusers).GraphicalInterfaceforItascaCodes32
TheFLAC-GIICmainwindow33
MODELLING-STAGETABS34Virtual-gridGenerationModeinFLAC6.035
GRIDGENERATIONBuildToolsGenerateToolGeometries36
GRIDLIBRARY37VirtualGridfor“SimpleSlopewithTunnel”GridObject38VirtualToolTabs39BlocksEditStageinEditTool40BoundariesEditStageinEditTool41MeshEditStageinEditTool421.Definemodelboundaries432.Specifyboundaryconditionsandtypes443.Selectzoning454.CreateFLACmodelfrom“virtual”model461.Definemodelboundaries472.Specifyboundaryconditionsandtypes483.Selectzoning494.CreateFLACmodelfrom“virtual”model50*TheNewOrleansHurricaneProtectionSystem:WhatWentWrongandWhyAReportbytheAmericanSocietyofCivilEngineersHurricaneKatrinaExternalReviewPanal,2007Figure4.5TypicalUSACEFloodProtectionStructures*51Figure7.417thStreetCanalFailureMechanism**TheNewOrleansHurricaneProtectionSystem:WhatWentWrongandWhyAReportbytheAmericanSocietyofCivilEngineersHurricaneKatrinaExternalReviewPanel,200752StabilityanalysisofI-wallstructureCreateFLACgridrepresentinggeometryofI-wallstructure.I-wallsimulatedwithbeamelementsconnectedtothegridviainterfaces.Assignmaterialsandpropertiesforclay,sandandfill.(fortotal-stressanalysis,assignundrainedshearstrengthandzerofrictiontoclaymaterial)AssignpropertiesforI-wallstructureandwall/soilinterface.Establishstateofstressbeforefloodlevel.ApplywaterpressurestowallrepresentingfloodlevelCalculatefactorofsafety:Case1–nowater-filledgapatwallCase2–withwater-filledgapatwallAnalysisStages:53I-wallgeometry(-65,-75)(78,-75)(156,-75)(156,-17)(150,-17)(124-15)(-65,-3.5)(10,-3.5)(46,-1)(63,4)(78,-1)(93,-1)(112,-9)(78,6.5)(78,14)(78,-17)54Slidingsurfacewithoutawater-filledgap55Slidingsurfacewithawater-filledgap56Automaticre-meshinglogic
inlargestraincontinuumsimulations
-AnewfeatureinFLACVersion6.0
andFLAC3DVersion4.057Necessitytodevelopre-meshinglogicThemeshhastoberezonedinordertocontinuetherunItmightbedesirabletorezonesomeareaatintermediatestages58Atypicalre-meshingprocessThreeStepsStep1:Triggerre-meshingoperation,e.g.,badgeometryStep2:Generateanew,regularmeshStep3:Transfermodelinformation(stresses,velocities,etc)fromtheold,distortedmeshtothenewmesh59Datatransfer(mapping)formulationsMappinginvolume/area(e.g.,propertiesandzonequantities)Interpolationatpoint(e.g.,grid-pointquantities)60Asimpleslopeexample30x20gridMaterialpropertiesK=2E8PaG=1E8PaC=0density=200061Asimpleslopeexampleconfiggrid3020modelmohrtable1010101020203020gentab1modnullreg120fixxyj=1fixxi=1fixxi=31setgrav10propdens2000bulk2e8sh1e8fric10coh1e20tens1e20solvesaveslope_ini.sav;nore-meshingpropcoh0setlargeSolvesaveslope_norez.sav62AsimpleslopeexampleRe-meshingsteps:Step1:StorethesurfaceoftheoldmeshtoatableStep2:Generateanewblockmesh,removetheupper-leftcornerabovethesurfacetableStep3:InformationtransferbyissuingREZONEcommandOld,distortedmeshNew,regularmesh63Asimpleslopeexampledef_autorezcommandrezsetsepmeth=slopeRezonerezsetsurffrom1,11to31,21tab4rezonecyclecontinueendCommandendsetgeom0.25;triggerbadgeomeventifratioofsub-zoneareatototalzoneareaislessthan0.25setrez_func_autorez;invoke‘_autorez’functionifbadgeometryeventoccursplotgridmovieonfileslope.dcx;makemoviemoviestepon50;samplingevery50stepsstep400064AsimpleslopeexampledefslopeRezone_rezcnt=_rezcnt+1oo=rez_exe('gen000203020300')oo=rez_exe('modmohr')_toltab4oo=rez_exe('gentable4')oo=rez_exe('modnullregion1,20')enddef_toltab4_ts=table_size(4)xtable(4,1)=xtable(4,1)-5.xtable(4,_ts)=xtable(4,_ts)+5.endRemeshingprocess65SummaryMeshgenerationmakesuseofFISH,theembeddedprogramminglanguageinFLAC.Informationtransferisautomatic.Thelogicisstillunderdevelopment,althoughmostmodules/modelsarecovered;itisnotcompletelytestedNotapplicabletomodelswithinterfacesorattachedgridsatthecurrentstage66FLAC3DStructuralElements
JoiningStructuralElements(SELs)andPretensioningCables67FLAC3DCapabilitiesInadditiontomodelingasolidcontinuumwiththemaingrid(zonesandgridpoints),FLAC3Dhasthecapabilitytomodelstructures(cables,beams,piles,shells,geogrids,liners)SELsaretruefiniteelements(elementsandnodes)formulatedtoworkinthefinitedifferenceframeworkofFLAC3DStructurescaninteractwiththemaingridandotherstructures68Nomenclature69WhyUseSELsWecouldmodeleverythingwithzonesZonesarepooratmodelingbending(alargenumbermayberequiredacrossthethickness)Gridgenerationbecomesproblematicwhenmodelingstructureswithzones(geometricproblemsaswellasRAMshortage).Ifwearenotinterestedinsmallscalelocaleffects(e.g.,detailedstressdistributionacrossanoddlyshapedbeamsection)thenSELsareideal70SELLinksSELnodescommunicatewithzonesandothernodesvialinks(alogicalconnection)Twotypesoflinksnode-zoneandnode-nodeLinkshaveattachmentconditions(e.g.springs)Linkscanattachanywheretothemaingrid(SELnodesdonotneedtocoincidewithgridpoints)!71DefaultlinkattachmentWhenyoucreateaSELwithinazonetheSELnodeswillautomaticallylinktothezonewithdefaultattachmentconditions(node-zonelinks)72Node-NodeLinksSELnodeswillneverautomaticallylinktoeachother,eveniftheSELnodescoincidewhentheSELiscreated.Youmustmanuallycreatenode-nodelinkstoallowdifferentSELs(e.g.,beamandcable)tointeractwitheachother.73JoiningSELs2.Createnewnode-nodelinkfromSELAtoSELB1.Deletenode-zonelinkonSELASELnodesconnecttogridorotherSELnodeswithlinks74NO!
FLAC3Ddoesnotsupportchainedrigidconnections75Yes!76Example:Retainingwallwithtiebackcableembeddedliner7778cableembeddedliner;printselnodelinkrangeid79;deletethecablelinkclosesttotheretainingwallseldeletelinkrangeid157;createanode-nodelinkfromthecabletothewallsellink79targetnodetgt_num64;printselnodelinkrangeid79sellinkattachxdirrigidrangeid188sellinkattachydirrigidrangeid188sellinkattachzdirrigidrangeid188sellinkattachxrdirfreerangeid188sellinkattachyrdirfreerangeid188sellinkattachzrdirfreerangeid18879cableembeddedlinerseljoincableid2linerid1printselnodelinkrangeid79printsellinkattachrangeid188sellinkattachxrdirfreerangeid188sellinkattachyrdirfreerangeid188sellinkattachzrdirfreerangeid188printsellinkattachrangeid188easier80PretensioningCablesRemoveasegmentfromtheungroutedportionApplyopposingforcestonodesoneithersideofthebreakandequilibriateClosethegapwithapretensionedsegment81plotselgeomcablecidon;createabreakintheungroutedportionofthecableseldeletecablerangecid10882Applynodalforcesdef_appTieLoadRamp_tloadtot=2e5;totalpretensionforce_imaxramp=5_ndid1=87;nodeononesideofthebreakinthecable_ndid2=88;nodeontheothersideofthebreakinthecableloop_iramp(1,_imaxramp)_tloadapp=_tloadtot*float(_iramp)/float(_imaxramp)_ntload=-_tloadappcommandselnodeapplyremoveforcerangeid_ndid1selnodeapplyremoveforcerangeid_ndid2selnodeapplyforce_tloadapp00systemlocalrangeid_ndid1selnodeapplyforce_ntload00systemlocalrangeid_ndid2solveend_commandendloopend83AxialForceinCableSegmentAdjacenttotheBreakvsStepDuringPretensioning84InserttheMissingCableSegmentselcableselid2nodes8788selcableid2propemod2.05e11gr_coh0.0gr_fric0.0gr_k0.0&ycomp1.0e5ytens15.34e5xcarea5.54e-3rangecid131selcablepretension_tloadtotrangecid131;IMPORTANT85FinalAxialForceinCable86Techniquesforinitializingstressesinnon-uniformgrids87In-situStresses
Presentbeforeanyexcavationorconstruction.
Ideally,in-situstressesshouldbemeasuredinthefieldandinitializedinthemodel.
Ifthisisnotavailable,themodelcanberuntoequilibriumforarangeofpossibleconditions.88PossibleScenarios-deepundergroundexcavations-initializeuniformstress-closetogroundsurface-initializestressgradient
uniformmaterial
iniszzszgrad0,0,vznonuniformmaterial
iniszzszgrad0,0,vzrangezz1z2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国联通娄底市2025秋招笔试行测题库及答案计算机类
- 国家能源漳州市2025秋招面试专业追问及参考机械工程岗位
- 南阳市中石化2025秋招笔试模拟题含答案油气储运与管道岗
- 恩施自治州中石化2025秋招笔试模拟题含答案电气仪控技术岗
- 固原市中石油2025秋招笔试综合知识专练题库及答案
- 定西市中石化2025秋招笔试模拟题含答案炼化装置操作岗
- 绍兴市中储粮2025秋招面试专业追问题库综合管理岗
- 丽江市中储粮2025秋招面试专业追问题库安全环保岗
- 2025年物理杠杆考试题及答案
- 襄阳市中储粮2025秋招仓储保管岗高频笔试题库含答案
- 产品设计调研课件
- 2024年黑龙江省《辅警招聘考试必刷500题》考试题库附完整答案
- 静脉输液团标课件
- 证券公司合伙协议书
- 2025年高新技术研发成果转化市场分析报告
- 2025年编外人员考试题库答案
- 江苏省城镇供水管道清洗工程估价表及工程量计算标准 2025
- 加气现场安全知识培训课件
- 前庭大腺脓肿
- 2025年秋人教版二年级上册数学教学计划含教学进度表
- 激光焊接技术在钛合金材料加工中的前沿应用
评论
0/150
提交评论