特斯拉可持续性能源发展“宏图计划”第三篇章-2023-04-新势力_第1页
特斯拉可持续性能源发展“宏图计划”第三篇章-2023-04-新势力_第2页
特斯拉可持续性能源发展“宏图计划”第三篇章-2023-04-新势力_第3页
特斯拉可持续性能源发展“宏图计划”第三篇章-2023-04-新势力_第4页
特斯拉可持续性能源发展“宏图计划”第三篇章-2023-04-新势力_第5页
已阅读5页,还剩77页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MasterPlanPart3

SustainableEnergyforAllofEarth

MasterPlanPart3–SustainableEnergyforAllofEarth

TableofContents

ExecutiveSummary

03

TheCurrentEnergyEconomyisWasteful

04

ThePlantoEliminateFossilFuels

05

1.RepowertheExistingGridwithRenewables

05

2.SwitchtoElectricVehicles

05

3.SwitchtoHeatPumpsinResidential,Business&Industry

07

4.ElectrifyHighTemperatureHeatDeliveryandHydrogen

09

5.SustainablyFuelPlanes&Boats

12

6.ManufacturetheSustainableEnergyEconomy

12

ModelingTheFullySustainableEnergyEconomy

13

•EnergyStorageTechnologiesEvaluated

18

•GenerationTechnologiesEvaluated

19

ModelResults

20

•USOnlyModelResults–MeetingNewElectrificationDemand

20

•WorldModelResults–MeetingNewElectrificationDemand

21

•BatteriesforTransportation

22

•Vehicles

22

•ShipsandPlanes

23

•WorldModelResults–Electrification&BatteriesforTransportation

24

InvestmentRequired

26

LandAreaRequired

30

MaterialsRequired

31

Conclusion

37

Appendix

38

•Appendix:Generationandstorageallocationtoend-uses

38

•Appendix:BuildtheSustainableEnergyEconomy–EnergyIntensity

39

PublishedonApril5,2023

Acknowledgements

TeslaContributors

TeslaAdvisors

Weappreciatethemanypriorstudiesthathavepushedthetopicof

FelixMaire

DrewBaglino

asustainableenergyeconomyforward,theworkoftheInternational

MatthewFox

RohanMa

EnergyAgency(IEA),U.S.EnergyInformationAdministration(EIA),

MarkSimons

VineetMehta

U.S.DepartmentofEnergyNationalLaboratories,andtheinputfrom

TurnerCaldwell

variousnon-Teslaaffiliatedadvisors.

AlexYoo

EliahGilfenbaumAndrewUlvestad

02MasterPlanPart3–SustainableEnergyforAllofEarthT

ElectricitySupply

Constructaleast-costportfolioofelectricitygenerationandstorageresourcesthatsatisfieshourly

electricitydemand.

MaterialFeasibility&Investment

Determinethefeasibilityof

materialneedsfortheelectric

economyandmanufacturing

investmentnecessarytoenableit.

ExecutiveSummary

OnMarch1,2023,TeslapresentedMasterPlanPart3–aproposedpathtoreachasustainableglobalenergyeconomythroughend-useelectrificationandsustainableelectricitygenerationandstorage.Thispaperoutlinestheassumptions,sourcesand

calculationsbehindthatproposal.Inputandconversationarewelcome.

Theanalysishasthreemaincomponents:

ElectricityDemand

Forecasttheelectricitydemandofafullyelectrifiedeconomy

thatmeetsglobalenergyneedswithoutfossilfuels.

Figure1:Processoverview

Thispaperfindsasustainableenergyeconomyistechnicallyfeasibleandrequireslessinvestmentandlessmaterialextractionthancontinuingtoday’sunsustainableenergyeconomy.Whilemanypriorstudieshavecometoasimilarconclusion,thisstudyseekstopushthethinkingforwardrelatedtomaterialintensity,manufacturingcapacity,andmanufacturinginvestmentrequiredforatransitionacrossallenergysectorsworldwide.

240TWh

Storage

0.21%

LandAreaRequired

30TW

RenewablePower

10%

2022WorldGDP

1/2

TheEnergyRequired

$10T

ManufacturingInvestment

ZERO

InsurmountableResourceChallenges

Figure2:EstimatedResources&InvestmentsRequiredforMasterPlan3

03MasterPlanPart3–SustainableEnergyforAllofEarth

TheCurrentEnergyEconomyisWasteful

AccordingtotheInternationalEnergyAgency(IEA)2019WorldEnergyBalances,theglobalprimaryenergysupplyis165PWh/year,andtotalfossilfuelsupplyis134PWh/year

1

ab.37%(61PWh)isconsumedbeforemakingittotheendconsumer.Thisincludesthefossilfuelindustries’self-consumptionduringextraction/refining,andtransformationlossesduringelectricitygeneration.

Another27%(44PWh)islostbyinefficientend-usessuchasinternalcombustionenginevehiclesandnaturalgasfurnaces.Intotal,only36%(59PWh)oftheprimaryenergysupplyproducesusefulworkorheatfortheeconomy.AnalysisfromLawrenceLivermoreNationalLabshowssimilarlevelsofinefficiencyfortheglobalandUSenergysupply

2

,

3

.

Today’sEnergyEconomy(PWh/year)

Figure3:GlobalEnergyFlowbySector,IEA&Teslaanalysis

aThe2021and2022IEAWorldEnergyBalanceswerenotcompleteatthetimeofthiswork,andthe2020datasetshowedadecreaseinenergyconsumptionfrom2019,whichlikelywaspandemic-relatedandinconsistentwithenergyconsumptiontrends.

bExcludedcertainfuelsuppliesusedfornon-energypurposes,suchasfossilfuelsusedinplasticsmanufacturing.

04MasterPlanPart3–SustainableEnergyforAllofEarth

ThePlantoEliminateFossilFuels

Inanelectrifiedeconomywithsustainablygeneratedenergy,mostoftheupstreamlossesassociatedwithmining,refiningandburningfuelstocreateelectricityareeliminated,asarethedownstreamlossesassociatedwithnon-electricend-uses.Some

industrialprocesseswillrequiremoreenergyinput(producinggreenhydrogenforexample),andsomeminingandrefiningactivityneedstoincrease(relatedtometalsforbatteries,solarpanels,windturbines,etc.)

Thefollowing6stepsshowtheactionsneededtofullyelectrifytheeconomyandeliminatefossilfueluse.The6stepsdetailtheelectricitydemandassumptionsforthesustainableenergyeconomyandleadstotheelectricitydemandcurvethatismodeled.

ModelingwasdoneontheUSenergyeconomyusinghigh-fidelitydataavailablefromtheEnergyInformationAdministration(EIA)from2019-2022c,andresultswerescaledtoestimateactionsneededfortheglobaleconomyusinga6xscalingfactor

basedonthe2019energyconsumptionscalarbetweentheU.S.andtheworld,accordingtoIEAEnergyBalances.Thisisa

significantsimplificationandcouldbeanareaforimprovementinfutureanalyses,asglobalenergydemandsaredifferentfromtheU.S.intheircompositionandexpectedtoincreaseovertime.ThisanalysiswasconductedontheU.S.duetoavailabilityofhigh-fidelityhourlydata.

Thisplanconsidersonshore/offshorewind,solar,existingnuclearandhydroassustainableelectricitygenerationsources,and

considersexistingbiomassassustainablealthoughitwilllikelybephasedoutovertime.Additionally,thisplandoesnotaddresssequesteringcarbondioxideemittedoverthepastcenturyoffossilfuelcombustion,beyondthedirectaircapturerequiredforsyntheticfuelgeneration;anyfutureimplementationofsuchtechnologieswouldlikelyincreaseglobalenergydemand.

01RepowertheExistingGridwithRenewables

TheexistingUShourlyelectricitydemandismodeledasaninflexiblebaselinedemandtakenfromtheEIA

4

.FourUSsub-regions(Texas,Pacific,Continental,Eastern)aremodeledtoaccountforregionalvariationsindemand,renewableresourceavailability,weather,andgridtransmissionconstraints.Thisexistingelectricaldemandisthebaselineloadthatmustbesupportedby

sustainablegenerationandstorage.

Globally,65PWh/yearofprimaryenergyissuppliedtotheelectricitysector,including46PWh/yearoffossilfuels;howeveronly26PWh/yearofelectricityisproduced,duetoinefficienciestransformingfossilfuelsintoelectricityd.Ifthegridwereinstead

renewablypowered,only26PWh/yearofsustainablegenerationwouldberequired.

02SwitchtoElectricVehicles

Electricvehiclesareapproximately4xmoreefficientthaninternalcombustionenginevehiclesduetohigherpowertrain

efficiency,regenerativebrakingcapability,andoptimizedplatformdesign.Thisratioholdstrueacrosspassengervehicles,light-dutytrucks,andClass8semisasshownintheTable1.

VehicleClass

ICEVehicleAvg

5

ElectricVehicles

EfficiencyRatio

PassengerCar

24.2MPG

115MPGe(292Wh.mi)e

4.8X

LightTruck/Van

17.5MPG

75MPGe(450Wh.mi)f

4.3X

Class8Truck

5.3MPG(diesel)

22MPGe(1.7kWh.mi)f

4.2X

Table1:ElectricvsInternalCombustionVehicleEfficiency

cUShourlytimeseriesdatausedasmodelinputsareavailableat

/opendata/browser/fordownload

.

dEmbeddedinthe26PWh/yearis3.5PWh/yearofusefulheat,mostlyproducedinco-generationpowerstations,whichgenerateheatandpowerelectricity.eTesla’sglobalfleetaverageenergyefficiencyincludingModel3,Y,SandX

fTesla’sinternalestimatebasedonindustryknowledge

05MasterPlanPart3–SustainableEnergyforAllofEarth

Consumption[Wh/mi]

ThePlantoEliminateFossilFuels

Asaspecificexample,Tesla’sModel3energyconsumptionis131MPGevs.aToyotaCorollawith34MPG

6

,7

,or3.9xlower,

andtheratioincreaseswhenaccountingforupstreamlossessuchastheenergyconsumptionrelatedextractingandrefiningfuel(SeeFigure4).

1200

driveconsumptionupstreamlosses

1000

800

600

400

200

0

ToyotaCorollaModel3

Figure4:ComparisonTeslaModel3vs.ToyotaCorolla

Toestablishtheelectricitydemandofanelectrifiedtransportationsector,historicalmonthlyUStransportationpetroleumusage,excludingaviationandoceanshipping,foreachsub-regionisscaledbytheEVefficiencyfactorabove(4x)

8

.Tesla’shourby

hourvehiclefleetchargingbehavior,splitbetweeninflexibleandflexibleportions,isassumedastheEVchargingloadcurveinthe100%electrifiedtransportationsector.Supercharging,commercialvehiclecharging,andvehicleswith<50%stateofchargeareconsideredinflexibledemand.HomeandworkplaceACchargingareflexibledemandandmodeledwitha72-hourenergy

conservationconstraint,modelingthefactthatmostdrivershaveflexibilitytochargewhenrenewableresourcesareabundant.Onaverage,Tesladriverschargeonceevery1.7daysfrom60%SOCto90%SOC,soEVshavesufficientrangerelativetotypicaldailymileagetooptimizetheirchargingaroundrenewablepoweravailabilityprovidedthereischarginginfrastructureatbothhomesandworkplaces.

Globalelectrificationofthetransportationsectoreliminates28PWh/yearoffossilfueluseand,applyingthe4xEVefficiencyfactor,creates~7PWh/yearofadditionalelectricaldemand.

06MasterPlanPart3–SustainableEnergyforAllofEarth

ThePlantoEliminateFossilFuels

03SwitchtoHeatPumpsinResidential,Business&Industry

Heatpumpsmoveheatfromsourcetosinkviathecompression/expansionofanintermediaterefrigerant

9

.Withtheappropriateselectionofrefrigerants,heatpumptechnologyappliestospaceheating,waterheatingandlaundrydriersinresidentialand

commercialbuildings,inadditiontomanyindustrialprocesses.

Air

Water

Ground

WasteHeat

HeatSource

Evaporation

ExpansionCompression

Condensation

HeatSink

Air

Water

Steam

HeatedMaterial

Figure5:HowHeatPumpsWork

10

Airsourceheatpumpsarethemostsuitabletechnologyforretrofittinggasfurnacesinexistinghomes,andcandeliver2.8unitsofheatperunitofenergyconsumedbasedonaheatingseasonalperformancefactor(HSPF)of9.5Btu/Wh,atypicalefficiencyratingforheat-pumpstoday

11

.Gasfurnacescreateheatbyburningnaturalgas.Theyhaveanannualfuelutilizationefficiency

(AFUE)of~90%

12

.Therefore,heatpumpsuse~3xlessenergythangasfurnaces(2.8/0.9).

07MasterPlanPart3–SustainableEnergyforAllofEarthT

InputEnergy/HeatDelivered

PercentofAverageLoad

ThePlantoEliminateFossilFuels

1.4

energyconsumptionupstreamlosses

1.2

1.0

0.8

0.6

0.4

0.2

0.0

GasFurnaceHeatPump

Figure6:Efficiencyimprovementofspaceheatingwithheatpumpvsgasfurnace

ResidentialandCommercialSectors

TheEIAprovideshistoricalmonthlyUSnaturalgasusagefortheresidentialandcommercialsectorsineachsub-region

8

.The3xheat-pumpefficiencyfactorreducestheenergydemandifallgasappliancesareelectrified.Thehourlyloadfactorofbaseline

electricitydemandwasappliedtoestimatethehourlyelectricitydemandvariationfromheatpumps,effectivelyascribing

heatingdemandtothosehourswhenhomesareactivelybeingheatedorcooled.Insummer,theresidential/commercialdemandpeaksmid-afternoonwhencoolingloadsarehighest,inwinterdemandfollowsthewell-known“duck-curve”whichpeaksin

morning&evening.

Globalelectrificationofresidentialandcommercialapplianceswithheatpumpseliminates18PWh/yearoffossilfuelandcreates6PWh/yearofadditionalelectricaldemand.

140

Summer

Winter

130

120

110

100

90

80

70

05101520

TimeofDay[hr]

Figure7:Residential&commercialheating&coolingloadfactorvstimeofday

08MasterPlanPart3–SustainableEnergyforAllofEarth

ThePlantoEliminateFossilFuels

IndustrialSector

Industrialprocessesupto~200C,suchasfood,paper,textileandwoodindustriescanalsobenefitfromtheefficiencygains

offeredbyheatpumps

13

,althoughheatpumpefficiencydecreaseswithhighertemperaturedifferentials.Heatpumpintegrationisnuancedandexactefficienciesdependheavilyonthetemperatureoftheheatsourcethesystemisdrawingfrom(temperatureriseiskeyindeterminingfactorforheatpumpefficiency),assuchsimplifiedassumptionsforachievableCOPbytemperature

rangeareused:

Temperature/Application

COP

0-60CHeatPump

4.0

60-100CHeatPump

3.0

100-200CHeatPump

1.5

Table2:AssumedHeatPumpEfficiencyImprovementsbyTemperature

Basedonthetemperaturemake-upofindustrialheataccordingtotheIEAandtheassumedheatpumpefficiencybytemperatureinTable2,theweightedindustrialheatpumpefficiencyfactormodeledis2.2

14

,15

,16

.

TheEIAprovideshistoricalmonthlyfossilfuelusagefortheindustrialsectorforeachsub-region

8

.Allindustrialfossilfueluse,excludingembeddedfossilfuelsinproducts(rubber,lubricants,others)isassumedtobeusedforprocessheat.AccordingtotheIEA,45%ofprocessheatisbelow200C,andwhenelectrifiedwithheatpumpsrequires2.2xlessinputenergy

16

.Theaddedindustrialheat-pumpelectricaldemandwasmodeledasaninflexible,flathourlydemand.

Globalelectrificationofindustrialprocessheat<200Cwithheatpumpseliminates12PWh/yearoffossilfuelsandcreates5PWh/yearofadditionalelectricaldemand.

04ElectrifyHighTemperatureHeatDeliveryandHydrogenProduction

ElectrifyHighHeatIndustrialProcesses

Industrialprocessesthatrequirehightemperatures(>200C),accountfortheremaining55%offossilfueluseandrequirespecialconsideration.Thisincludessteel,chemical,fertilizerandcementproduction,amongothers.

Thesehigh-temperatureindustrialprocessescanbeserviceddirectlybyelectricresistanceheating,electricarcfurnacesor

bufferedthroughthermalstoragetotakeadvantageoflow-costrenewableenergywhenitisavailableinexcess.On-sitethermalstoragemaybevaluabletocosteffectivelyaccelerateindustrialelectrification(e.g.,directlyusingthethermalstoragemediaandradiativeheatingelements)

17

,18

.

09MasterPlanPart3–SustainableEnergyforAllofEarth

ThePlantoEliminateFossilFuels

Identifytheoptimalthermalstoragemediabytemperature/application

Charging=

heatingthermalstoragemediawithelectricity,steam,hotair,etc

ThermalBattery

Energy

=massthermal_battery

*heatcapacity*∆T

Discharging=

coolingthermal

storagemediaby

heatingsomethingelse

Figure8:ThermalStorageOverview

DeliveringHeattoHighTemperatureProcesses

HotFluidsforDeliveryProcess

Steam

MoltenSalt(upto550C)

HotAir(upto2000+C)

FluidstobeHeated

Water

MoltenSalt

Air

WaterEvaporating

MoltenSaltHeating

AirHeating

Figure9A:ThermalStorage-HeatDeliverytoProcessviaHeatTransferFluids

RadiantHeatDirectlytoProduct

Figure9B:ThermalStorage-HeatDeliverytoProcessviaDirectRadiantHeating

Electricresistanceheating,andelectricarcfurnaces,havesimilarefficiencytoblastfurnaceheating,thereforewillrequirea

similaramountofrenewableprimaryenergyinput.Thesehigh-temperatureprocessesaremodeledasaninflexible,flatdemand.

Thermalstorageismodeledasanenergybufferforhigh-temperatureprocessheatintheindustrialsector,witharoundtrip

thermalefficiencyof95%.Inregionswithhighsolarinstalledcapacity,thermalstoragewilltendtochargemiddayanddischargeduringthenightstomeetcontinuous24/7industrialthermalneeds.Figure9showspossibleheatcarriersandillustratesthat

severalmaterialsarecandidatesforprovidingprocessheat>1500C.

Globalelectrificationofindustrialprocessheat>200Celiminates9PWh/yearoffossilfuelfuelsandcreates9PWh/yearofadditionalelectricaldemand,asequalheatdeliveryefficiencyisassumed.

10MasterPlanPart3–SustainableEnergyforAllofEarth

Temperature(C)

ThePlantoEliminateFossilFuels

3000

●Graphite/Carbon

.

AI203

.

Si02

.

Mullite

.

Steel

.

Sand

.

Alluminum

.

Concrete

.

MoltenSalt

.

ThermalOil

.

Water

2500

2000

1500

1000

500

0

500

1000

350040004500

1500200025003000

SpecificHeat(J/kgK)

Figure10:ThermalStorage-HeatStorageMedia

Note:Bubblediametersrepresentspecificheatoverusablerange.

SustainablyProduceHydrogenforSteelandFertilizer

Todayhydrogenisproducedfromcoal,oilandnaturalgas,andisusedintherefiningoffossilfuels(notablydiesel)andinvariousindustrialapplications(includingsteelandfertilizerproduction).

Greenhydrogencanbeproducedviatheelectrolysisofwater(highenergyintensity,nocarboncontainingproductsconsumed/produced)orviamethanepyrolysis(lowerenergyintensity,producesasolidcarbon-blackbyproductthatcouldbeconvertedintousefulcarbon-basedproducts)g.

Toconservativelyestimateelectricitydemandforgreenhydrogen,theassumptionis:

•Nohydrogenwillbeneededforfossilfuelrefininggoingforward

•SteelproductionwillbeconvertedtotheDirectReducedIronprocess,requiringhydrogenasaninput.Hydrogendemandtoreduceironore(assumedtobeFe3O4)isbasedonthefollowingreductionreaction:

ReductionbyH2

•FeO+H=3FeO+HO

342

2

•FeO+H=FeO+HO

22

•Allglobalhydrogenproductionwillcomefromelectrolysis

gSustainablesteelproductionmayalsobeperformedthroughmoltenoxideelectrolysis,whichrequiresheatandelectricity,butdoesnotrequirehydrogenasareducingagent,andmaybelessenergyintensive,butthisbenefitisbeyondthescopeoftheanalysis

19

.

11MasterPlanPart3–SustainableEnergyforAllofEarthT--

ThePlantoEliminateFossilFuels

Thesesimplifiedassumptionsforindustrialdemand,resultinaglobaldemandof150Mt/yrofgreenhydrogen,andsourcingthisfromelectrolysisrequiresanestimated~7.2PWh/yearofsustainablygeneratedelectricityh,

20

,

21

.

Theelectricaldemandforhydrogenproductionismodeledasaflexibleloadwithannualproductionconstraints,withhydrogenstoragepotentialmodeledintheformofundergroundgasstoragefacilities(likenaturalgasisstoredtoday)withmaximum

resourceconstraints.Undergroundgasstoragefacilitiesusedtodayfornaturalgasstoragecanberetrofittedforhydrogen

storage;themodeledU.S.hydrogenstoragerequires~30%ofexistin

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论