版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MasterPlanPart3
SustainableEnergyforAllofEarth
MasterPlanPart3–SustainableEnergyforAllofEarth
TableofContents
ExecutiveSummary
03
TheCurrentEnergyEconomyisWasteful
04
ThePlantoEliminateFossilFuels
05
1.RepowertheExistingGridwithRenewables
05
2.SwitchtoElectricVehicles
05
3.SwitchtoHeatPumpsinResidential,Business&Industry
07
4.ElectrifyHighTemperatureHeatDeliveryandHydrogen
09
5.SustainablyFuelPlanes&Boats
12
6.ManufacturetheSustainableEnergyEconomy
12
ModelingTheFullySustainableEnergyEconomy
13
•EnergyStorageTechnologiesEvaluated
18
•GenerationTechnologiesEvaluated
19
ModelResults
20
•USOnlyModelResults–MeetingNewElectrificationDemand
20
•WorldModelResults–MeetingNewElectrificationDemand
21
•BatteriesforTransportation
22
•Vehicles
22
•ShipsandPlanes
23
•WorldModelResults–Electrification&BatteriesforTransportation
24
InvestmentRequired
26
LandAreaRequired
30
MaterialsRequired
31
Conclusion
37
Appendix
38
•Appendix:Generationandstorageallocationtoend-uses
38
•Appendix:BuildtheSustainableEnergyEconomy–EnergyIntensity
39
PublishedonApril5,2023
Acknowledgements
TeslaContributors
TeslaAdvisors
Weappreciatethemanypriorstudiesthathavepushedthetopicof
FelixMaire
DrewBaglino
asustainableenergyeconomyforward,theworkoftheInternational
MatthewFox
RohanMa
EnergyAgency(IEA),U.S.EnergyInformationAdministration(EIA),
MarkSimons
VineetMehta
U.S.DepartmentofEnergyNationalLaboratories,andtheinputfrom
TurnerCaldwell
variousnon-Teslaaffiliatedadvisors.
AlexYoo
EliahGilfenbaumAndrewUlvestad
02MasterPlanPart3–SustainableEnergyforAllofEarthT
ElectricitySupply
Constructaleast-costportfolioofelectricitygenerationandstorageresourcesthatsatisfieshourly
electricitydemand.
MaterialFeasibility&Investment
Determinethefeasibilityof
materialneedsfortheelectric
economyandmanufacturing
investmentnecessarytoenableit.
ExecutiveSummary
OnMarch1,2023,TeslapresentedMasterPlanPart3–aproposedpathtoreachasustainableglobalenergyeconomythroughend-useelectrificationandsustainableelectricitygenerationandstorage.Thispaperoutlinestheassumptions,sourcesand
calculationsbehindthatproposal.Inputandconversationarewelcome.
Theanalysishasthreemaincomponents:
ElectricityDemand
Forecasttheelectricitydemandofafullyelectrifiedeconomy
thatmeetsglobalenergyneedswithoutfossilfuels.
Figure1:Processoverview
Thispaperfindsasustainableenergyeconomyistechnicallyfeasibleandrequireslessinvestmentandlessmaterialextractionthancontinuingtoday’sunsustainableenergyeconomy.Whilemanypriorstudieshavecometoasimilarconclusion,thisstudyseekstopushthethinkingforwardrelatedtomaterialintensity,manufacturingcapacity,andmanufacturinginvestmentrequiredforatransitionacrossallenergysectorsworldwide.
240TWh
Storage
0.21%
LandAreaRequired
30TW
RenewablePower
10%
2022WorldGDP
1/2
TheEnergyRequired
$10T
ManufacturingInvestment
ZERO
InsurmountableResourceChallenges
Figure2:EstimatedResources&InvestmentsRequiredforMasterPlan3
03MasterPlanPart3–SustainableEnergyforAllofEarth
TheCurrentEnergyEconomyisWasteful
AccordingtotheInternationalEnergyAgency(IEA)2019WorldEnergyBalances,theglobalprimaryenergysupplyis165PWh/year,andtotalfossilfuelsupplyis134PWh/year
1
ab.37%(61PWh)isconsumedbeforemakingittotheendconsumer.Thisincludesthefossilfuelindustries’self-consumptionduringextraction/refining,andtransformationlossesduringelectricitygeneration.
Another27%(44PWh)islostbyinefficientend-usessuchasinternalcombustionenginevehiclesandnaturalgasfurnaces.Intotal,only36%(59PWh)oftheprimaryenergysupplyproducesusefulworkorheatfortheeconomy.AnalysisfromLawrenceLivermoreNationalLabshowssimilarlevelsofinefficiencyfortheglobalandUSenergysupply
2
,
3
.
Today’sEnergyEconomy(PWh/year)
Figure3:GlobalEnergyFlowbySector,IEA&Teslaanalysis
aThe2021and2022IEAWorldEnergyBalanceswerenotcompleteatthetimeofthiswork,andthe2020datasetshowedadecreaseinenergyconsumptionfrom2019,whichlikelywaspandemic-relatedandinconsistentwithenergyconsumptiontrends.
bExcludedcertainfuelsuppliesusedfornon-energypurposes,suchasfossilfuelsusedinplasticsmanufacturing.
04MasterPlanPart3–SustainableEnergyforAllofEarth
ThePlantoEliminateFossilFuels
Inanelectrifiedeconomywithsustainablygeneratedenergy,mostoftheupstreamlossesassociatedwithmining,refiningandburningfuelstocreateelectricityareeliminated,asarethedownstreamlossesassociatedwithnon-electricend-uses.Some
industrialprocesseswillrequiremoreenergyinput(producinggreenhydrogenforexample),andsomeminingandrefiningactivityneedstoincrease(relatedtometalsforbatteries,solarpanels,windturbines,etc.)
Thefollowing6stepsshowtheactionsneededtofullyelectrifytheeconomyandeliminatefossilfueluse.The6stepsdetailtheelectricitydemandassumptionsforthesustainableenergyeconomyandleadstotheelectricitydemandcurvethatismodeled.
ModelingwasdoneontheUSenergyeconomyusinghigh-fidelitydataavailablefromtheEnergyInformationAdministration(EIA)from2019-2022c,andresultswerescaledtoestimateactionsneededfortheglobaleconomyusinga6xscalingfactor
basedonthe2019energyconsumptionscalarbetweentheU.S.andtheworld,accordingtoIEAEnergyBalances.Thisisa
significantsimplificationandcouldbeanareaforimprovementinfutureanalyses,asglobalenergydemandsaredifferentfromtheU.S.intheircompositionandexpectedtoincreaseovertime.ThisanalysiswasconductedontheU.S.duetoavailabilityofhigh-fidelityhourlydata.
Thisplanconsidersonshore/offshorewind,solar,existingnuclearandhydroassustainableelectricitygenerationsources,and
considersexistingbiomassassustainablealthoughitwilllikelybephasedoutovertime.Additionally,thisplandoesnotaddresssequesteringcarbondioxideemittedoverthepastcenturyoffossilfuelcombustion,beyondthedirectaircapturerequiredforsyntheticfuelgeneration;anyfutureimplementationofsuchtechnologieswouldlikelyincreaseglobalenergydemand.
01RepowertheExistingGridwithRenewables
TheexistingUShourlyelectricitydemandismodeledasaninflexiblebaselinedemandtakenfromtheEIA
4
.FourUSsub-regions(Texas,Pacific,Continental,Eastern)aremodeledtoaccountforregionalvariationsindemand,renewableresourceavailability,weather,andgridtransmissionconstraints.Thisexistingelectricaldemandisthebaselineloadthatmustbesupportedby
sustainablegenerationandstorage.
Globally,65PWh/yearofprimaryenergyissuppliedtotheelectricitysector,including46PWh/yearoffossilfuels;howeveronly26PWh/yearofelectricityisproduced,duetoinefficienciestransformingfossilfuelsintoelectricityd.Ifthegridwereinstead
renewablypowered,only26PWh/yearofsustainablegenerationwouldberequired.
02SwitchtoElectricVehicles
Electricvehiclesareapproximately4xmoreefficientthaninternalcombustionenginevehiclesduetohigherpowertrain
efficiency,regenerativebrakingcapability,andoptimizedplatformdesign.Thisratioholdstrueacrosspassengervehicles,light-dutytrucks,andClass8semisasshownintheTable1.
VehicleClass
ICEVehicleAvg
5
ElectricVehicles
EfficiencyRatio
PassengerCar
24.2MPG
115MPGe(292Wh.mi)e
4.8X
LightTruck/Van
17.5MPG
75MPGe(450Wh.mi)f
4.3X
Class8Truck
5.3MPG(diesel)
22MPGe(1.7kWh.mi)f
4.2X
Table1:ElectricvsInternalCombustionVehicleEfficiency
cUShourlytimeseriesdatausedasmodelinputsareavailableat
/opendata/browser/fordownload
.
dEmbeddedinthe26PWh/yearis3.5PWh/yearofusefulheat,mostlyproducedinco-generationpowerstations,whichgenerateheatandpowerelectricity.eTesla’sglobalfleetaverageenergyefficiencyincludingModel3,Y,SandX
fTesla’sinternalestimatebasedonindustryknowledge
05MasterPlanPart3–SustainableEnergyforAllofEarth
Consumption[Wh/mi]
ThePlantoEliminateFossilFuels
Asaspecificexample,Tesla’sModel3energyconsumptionis131MPGevs.aToyotaCorollawith34MPG
6
,7
,or3.9xlower,
andtheratioincreaseswhenaccountingforupstreamlossessuchastheenergyconsumptionrelatedextractingandrefiningfuel(SeeFigure4).
1200
driveconsumptionupstreamlosses
1000
800
600
400
200
0
ToyotaCorollaModel3
Figure4:ComparisonTeslaModel3vs.ToyotaCorolla
Toestablishtheelectricitydemandofanelectrifiedtransportationsector,historicalmonthlyUStransportationpetroleumusage,excludingaviationandoceanshipping,foreachsub-regionisscaledbytheEVefficiencyfactorabove(4x)
8
.Tesla’shourby
hourvehiclefleetchargingbehavior,splitbetweeninflexibleandflexibleportions,isassumedastheEVchargingloadcurveinthe100%electrifiedtransportationsector.Supercharging,commercialvehiclecharging,andvehicleswith<50%stateofchargeareconsideredinflexibledemand.HomeandworkplaceACchargingareflexibledemandandmodeledwitha72-hourenergy
conservationconstraint,modelingthefactthatmostdrivershaveflexibilitytochargewhenrenewableresourcesareabundant.Onaverage,Tesladriverschargeonceevery1.7daysfrom60%SOCto90%SOC,soEVshavesufficientrangerelativetotypicaldailymileagetooptimizetheirchargingaroundrenewablepoweravailabilityprovidedthereischarginginfrastructureatbothhomesandworkplaces.
Globalelectrificationofthetransportationsectoreliminates28PWh/yearoffossilfueluseand,applyingthe4xEVefficiencyfactor,creates~7PWh/yearofadditionalelectricaldemand.
06MasterPlanPart3–SustainableEnergyforAllofEarth
ThePlantoEliminateFossilFuels
03SwitchtoHeatPumpsinResidential,Business&Industry
Heatpumpsmoveheatfromsourcetosinkviathecompression/expansionofanintermediaterefrigerant
9
.Withtheappropriateselectionofrefrigerants,heatpumptechnologyappliestospaceheating,waterheatingandlaundrydriersinresidentialand
commercialbuildings,inadditiontomanyindustrialprocesses.
Air
Water
Ground
WasteHeat
HeatSource
Evaporation
ExpansionCompression
Condensation
HeatSink
Air
Water
Steam
HeatedMaterial
Figure5:HowHeatPumpsWork
10
Airsourceheatpumpsarethemostsuitabletechnologyforretrofittinggasfurnacesinexistinghomes,andcandeliver2.8unitsofheatperunitofenergyconsumedbasedonaheatingseasonalperformancefactor(HSPF)of9.5Btu/Wh,atypicalefficiencyratingforheat-pumpstoday
11
.Gasfurnacescreateheatbyburningnaturalgas.Theyhaveanannualfuelutilizationefficiency
(AFUE)of~90%
12
.Therefore,heatpumpsuse~3xlessenergythangasfurnaces(2.8/0.9).
07MasterPlanPart3–SustainableEnergyforAllofEarthT
InputEnergy/HeatDelivered
PercentofAverageLoad
ThePlantoEliminateFossilFuels
1.4
energyconsumptionupstreamlosses
1.2
1.0
0.8
0.6
0.4
0.2
0.0
GasFurnaceHeatPump
Figure6:Efficiencyimprovementofspaceheatingwithheatpumpvsgasfurnace
ResidentialandCommercialSectors
TheEIAprovideshistoricalmonthlyUSnaturalgasusagefortheresidentialandcommercialsectorsineachsub-region
8
.The3xheat-pumpefficiencyfactorreducestheenergydemandifallgasappliancesareelectrified.Thehourlyloadfactorofbaseline
electricitydemandwasappliedtoestimatethehourlyelectricitydemandvariationfromheatpumps,effectivelyascribing
heatingdemandtothosehourswhenhomesareactivelybeingheatedorcooled.Insummer,theresidential/commercialdemandpeaksmid-afternoonwhencoolingloadsarehighest,inwinterdemandfollowsthewell-known“duck-curve”whichpeaksin
morning&evening.
Globalelectrificationofresidentialandcommercialapplianceswithheatpumpseliminates18PWh/yearoffossilfuelandcreates6PWh/yearofadditionalelectricaldemand.
140
Summer
Winter
130
120
110
100
90
80
70
05101520
TimeofDay[hr]
Figure7:Residential&commercialheating&coolingloadfactorvstimeofday
08MasterPlanPart3–SustainableEnergyforAllofEarth
ThePlantoEliminateFossilFuels
IndustrialSector
Industrialprocessesupto~200C,suchasfood,paper,textileandwoodindustriescanalsobenefitfromtheefficiencygains
offeredbyheatpumps
13
,althoughheatpumpefficiencydecreaseswithhighertemperaturedifferentials.Heatpumpintegrationisnuancedandexactefficienciesdependheavilyonthetemperatureoftheheatsourcethesystemisdrawingfrom(temperatureriseiskeyindeterminingfactorforheatpumpefficiency),assuchsimplifiedassumptionsforachievableCOPbytemperature
rangeareused:
Temperature/Application
COP
0-60CHeatPump
4.0
60-100CHeatPump
3.0
100-200CHeatPump
1.5
Table2:AssumedHeatPumpEfficiencyImprovementsbyTemperature
Basedonthetemperaturemake-upofindustrialheataccordingtotheIEAandtheassumedheatpumpefficiencybytemperatureinTable2,theweightedindustrialheatpumpefficiencyfactormodeledis2.2
14
,15
,16
.
TheEIAprovideshistoricalmonthlyfossilfuelusagefortheindustrialsectorforeachsub-region
8
.Allindustrialfossilfueluse,excludingembeddedfossilfuelsinproducts(rubber,lubricants,others)isassumedtobeusedforprocessheat.AccordingtotheIEA,45%ofprocessheatisbelow200C,andwhenelectrifiedwithheatpumpsrequires2.2xlessinputenergy
16
.Theaddedindustrialheat-pumpelectricaldemandwasmodeledasaninflexible,flathourlydemand.
Globalelectrificationofindustrialprocessheat<200Cwithheatpumpseliminates12PWh/yearoffossilfuelsandcreates5PWh/yearofadditionalelectricaldemand.
04ElectrifyHighTemperatureHeatDeliveryandHydrogenProduction
ElectrifyHighHeatIndustrialProcesses
Industrialprocessesthatrequirehightemperatures(>200C),accountfortheremaining55%offossilfueluseandrequirespecialconsideration.Thisincludessteel,chemical,fertilizerandcementproduction,amongothers.
Thesehigh-temperatureindustrialprocessescanbeserviceddirectlybyelectricresistanceheating,electricarcfurnacesor
bufferedthroughthermalstoragetotakeadvantageoflow-costrenewableenergywhenitisavailableinexcess.On-sitethermalstoragemaybevaluabletocosteffectivelyaccelerateindustrialelectrification(e.g.,directlyusingthethermalstoragemediaandradiativeheatingelements)
17
,18
.
09MasterPlanPart3–SustainableEnergyforAllofEarth
ThePlantoEliminateFossilFuels
Identifytheoptimalthermalstoragemediabytemperature/application
Charging=
heatingthermalstoragemediawithelectricity,steam,hotair,etc
ThermalBattery
Energy
=massthermal_battery
*heatcapacity*∆T
Discharging=
coolingthermal
storagemediaby
heatingsomethingelse
Figure8:ThermalStorageOverview
DeliveringHeattoHighTemperatureProcesses
HotFluidsforDeliveryProcess
Steam
MoltenSalt(upto550C)
HotAir(upto2000+C)
FluidstobeHeated
Water
MoltenSalt
Air
WaterEvaporating
MoltenSaltHeating
AirHeating
Figure9A:ThermalStorage-HeatDeliverytoProcessviaHeatTransferFluids
RadiantHeatDirectlytoProduct
Figure9B:ThermalStorage-HeatDeliverytoProcessviaDirectRadiantHeating
Electricresistanceheating,andelectricarcfurnaces,havesimilarefficiencytoblastfurnaceheating,thereforewillrequirea
similaramountofrenewableprimaryenergyinput.Thesehigh-temperatureprocessesaremodeledasaninflexible,flatdemand.
Thermalstorageismodeledasanenergybufferforhigh-temperatureprocessheatintheindustrialsector,witharoundtrip
thermalefficiencyof95%.Inregionswithhighsolarinstalledcapacity,thermalstoragewilltendtochargemiddayanddischargeduringthenightstomeetcontinuous24/7industrialthermalneeds.Figure9showspossibleheatcarriersandillustratesthat
severalmaterialsarecandidatesforprovidingprocessheat>1500C.
Globalelectrificationofindustrialprocessheat>200Celiminates9PWh/yearoffossilfuelfuelsandcreates9PWh/yearofadditionalelectricaldemand,asequalheatdeliveryefficiencyisassumed.
10MasterPlanPart3–SustainableEnergyforAllofEarth
Temperature(C)
ThePlantoEliminateFossilFuels
3000
●Graphite/Carbon
.
AI203
.
Si02
.
Mullite
.
Steel
.
Sand
.
Alluminum
.
Concrete
.
MoltenSalt
.
ThermalOil
.
Water
2500
2000
1500
1000
500
0
500
1000
350040004500
1500200025003000
SpecificHeat(J/kgK)
Figure10:ThermalStorage-HeatStorageMedia
Note:Bubblediametersrepresentspecificheatoverusablerange.
SustainablyProduceHydrogenforSteelandFertilizer
Todayhydrogenisproducedfromcoal,oilandnaturalgas,andisusedintherefiningoffossilfuels(notablydiesel)andinvariousindustrialapplications(includingsteelandfertilizerproduction).
Greenhydrogencanbeproducedviatheelectrolysisofwater(highenergyintensity,nocarboncontainingproductsconsumed/produced)orviamethanepyrolysis(lowerenergyintensity,producesasolidcarbon-blackbyproductthatcouldbeconvertedintousefulcarbon-basedproducts)g.
Toconservativelyestimateelectricitydemandforgreenhydrogen,theassumptionis:
•Nohydrogenwillbeneededforfossilfuelrefininggoingforward
•SteelproductionwillbeconvertedtotheDirectReducedIronprocess,requiringhydrogenasaninput.Hydrogendemandtoreduceironore(assumedtobeFe3O4)isbasedonthefollowingreductionreaction:
ReductionbyH2
•FeO+H=3FeO+HO
342
2
•FeO+H=FeO+HO
22
•Allglobalhydrogenproductionwillcomefromelectrolysis
gSustainablesteelproductionmayalsobeperformedthroughmoltenoxideelectrolysis,whichrequiresheatandelectricity,butdoesnotrequirehydrogenasareducingagent,andmaybelessenergyintensive,butthisbenefitisbeyondthescopeoftheanalysis
19
.
11MasterPlanPart3–SustainableEnergyforAllofEarthT--
ThePlantoEliminateFossilFuels
Thesesimplifiedassumptionsforindustrialdemand,resultinaglobaldemandof150Mt/yrofgreenhydrogen,andsourcingthisfromelectrolysisrequiresanestimated~7.2PWh/yearofsustainablygeneratedelectricityh,
20
,
21
.
Theelectricaldemandforhydrogenproductionismodeledasaflexibleloadwithannualproductionconstraints,withhydrogenstoragepotentialmodeledintheformofundergroundgasstoragefacilities(likenaturalgasisstoredtoday)withmaximum
resourceconstraints.Undergroundgasstoragefacilitiesusedtodayfornaturalgasstoragecanberetrofittedforhydrogen
storage;themodeledU.S.hydrogenstoragerequires~30%ofexistin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学文化产业管理(文化产业策划)试题及答案
- 2025年高职(工业工程技术)生产流程优化试题及答案
- 2025年中职钢琴基础(幼儿音乐教学)试题及答案
- 2025年中职护理学基础(护理基础理论)试题及答案
- 2025年中职(财经应用文实训)应用文实训综合测试试题及答案
- 贵州省黔南布依族苗族自治州2025年八年级上学期期末物理试题附答案
- 中国空间站技术
- 2026年泉州市泽区临海实验幼儿园招聘代课老师、保育员备考题库及参考答案详解一套
- 中国石化教学介绍
- 近五年甘肃中考英语试题及答案2025
- 四川藏区高速公路集团有限责任公司2026年校园招聘备考题库完美版
- 多重耐药菌医院感染预防与控制技术指南完整版
- 2026年1月浙江省高考(首考)英语试题(含答案详解)+听力音频+听力材料
- 2026年及未来5年市场数据中国电能计量装置市场竞争格局及投资战略规划报告
- Web渗透测试与防护(虞菊花慕课版)单元设计
- 资本市场运作培训课件
- 地理信息安全在线培训考试系统题库及答案
- 高标准农田监理质量及安全管理措施
- 供应链管理工作计划与目标
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- GB/T 15231-2023玻璃纤维增强水泥性能试验方法
评论
0/150
提交评论