版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上饶市德兴花桥中学高一数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.点(x,y)在直线x+3y-2=0上移动时,z=3x+27y+3的最小值为()A.
B.3+2
C.6
D.9参考答案:D2.不等式的解集是
()A.
B.C.
D.参考答案:B3.已知表示三条不同的直线,表示两个不同的平面,下列说法中正确的是(
)A.若,则 B.若,则C.若,则 D.若,则参考答案:D【分析】利用线面平行、线面垂直的判定定理与性质依次对选项进行判断,即可得到答案。【详解】对于A,当时,则与不平行,故A不正确;对于B,直线与平面平行,则直线与平面内的直线有两种关系:平行或异面,故B不正确;对于C,若,则与不垂直,故C不正确;对于D,若两条直线垂直于同一个平面,则这两条直线平行,故D正确;故答案选D【点睛】本题考查空间中直线与直线、直线与平面位置关系相关定理的应用,属于中档题。4.不等式的解集是
(
)A.
B.
C.
D.参考答案:D略5.有下列四种变换方式:①向左平移,再将横坐标变为原来的②横坐标变为原来的,再向左平移③横坐标变为原来的,再向左平移
④向左平移,再将横坐标变为原来的其中能将正弦曲线的图像变为的图像的是(
)A.①和②
B.
①和③
C.②和③
D.
②和④参考答案:A略6.(5分)如图所示,在菱形ABCD中,∠BAD=120°,则下列说法中错误说法的个数是()①图中所标出的向量中与相等的向量只有1个(不含本身)②图中所标出的向量与的模相等的向量有4个(不含本身)③的长度恰为长度的倍④与不共线. A. 4 B. 3 C. 1 D. 0参考答案:C考点: 命题的真假判断与应用.专题: 平面向量及应用;简易逻辑.分析: ①利用向量相等与菱形的性质即可判断出正误;②利用菱形的性质、模相等的定义即可判断出正误;③利用菱形的性质、直角三角形的边角关系即可判断出正误.④利用向量共线定理即可判断出与共线,即可判断出正误.解答: 解:①图中所标出的向量中与相等的向量只有1个,(不含本身),正确;②图中所标出的向量与的模相等的向量有4个,,,(不含本身),正确;③利用菱形的性质、直角三角形的边角关系可得:的长度恰为长度的倍,正确.④与共线,因此不正确.因此说法中错误说法的个数是1.故选:C.点评: 本题考查了向量相等、菱形的性质、模相等的定义、直角三角形的边角关系、向量共线定理、简易逻辑的判定,考查了推理能力,属于基础题.7.在△ABC中,,,则△ABC周长的最大值为(
)A.8 B.7 C.6 D.5参考答案:C【分析】先由得到A=,再利用基本不等式求b+c的最大值,即得三角形周长的最大值.【详解】由题得所以所以,因为所以.由余弦定理得,所以,当且仅当b=c=2时取等.所以.故选:C【点睛】本题主要考查正弦定理余弦定理解三角形,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.若函数对任意都有,的最小正值为(
)A.
B.
C.
D.
参考答案:A9.若集合,,则能使成立的所有的集合是(
)、
、
、
、参考答案:C略10.的值等于(
)A.cos2
B.
C.-cos2
D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知定义在R上的奇函数f(x),当x﹥0时,,那么x﹤0时,f(x)=
.参考答案:12.函数的单调减区间为
.参考答案:13.已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f(x+1),则f(2+log23)=
.参考答案:【考点】分段函数的应用.【专题】计算题.【分析】判断的范围代入相应的解析式求值即可【解答】解:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)==故应填【点评】本题考查分段函数求值及指数对数去处性质,对答题者对基本运算规则掌握的熟练程度要求较高14.函数的单调递减区间为________.参考答案:略15.函数的零点所在区间是,则正整数
.参考答案:1∵,又函数单调递增,∴函数在区间内存在唯一的零点,∴.答案:1
16.某市生产总值连续两年持续增加,第一年的增长率为,第二年的增长率为,则该市这两年生产总值的年平均增长率为
.参考答案:17.设变量x,y满足约束条件则目标函数的最大值为
。参考答案:3变量满足约束条件的可行域如图:目标函数经过可行域的A点时,目标函数取得最大值,由可得A(0,3),所以目标函数的最大值为:3.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(14分)已知函数f(x)=sin(2x+)+sin(2x﹣)﹣cos2x+a(a∈R,a为为常数)(1)求函数f(x)的最小正周期和单调区间(2)若函数f(x)的图象向右平移m(m>0)个单位后院,得到函数g(x)的图象关于y轴对称,求实数m的最小值.参考答案:考点: 三角函数的周期性及其求法;正弦函数的单调性;函数y=Asin(ωx+φ)的图象变换.专题: 三角函数的求值;三角函数的图像与性质.分析: (1)由两角和与差的正弦公式化简可得函数解析式f(x)=2sin(2x﹣)+a,由正弦函数的图象和性质即可求函数f(x)的最小正周期和单调区间.(2)由函数y=Asin(ωx+φ)的图象变换求得函数解析式,然后根据整体思想求得对称轴,最后确定最小值.解答: (1)∵f(x)=sin(2x+)+sin(2x﹣)﹣cos2x+a=sin2x﹣cos2x+a=2sin(2x﹣)+a,∴T==π,∴由2k≤2x﹣≤2kπ,k∈Z可解得:kπ≤x≤kπ,k∈Z,由2kπ≤2x﹣≤2kπ+,k∈Z可解得:kπ≤x≤kπ+,k∈Z,∴函数f(x)的单调递增区间是:[kπ,kπ],k∈Z,函数f(x)的单调递减区间是:[kπ,kπ+],k∈Z,(2)函数f(x)的图象向右平移m(m>0)个单位后,得到函数解析式为:g(x)=2sin[2(x﹣m)﹣]+a=2sin(2x﹣2m﹣)+a,∵函数g(x)的图象关于y轴对称,∴由2m+=kπ,k∈Z可解得:m=,k∈Z,∴由m>0,实数m的最小值是.点评: 本题主要考查了三角函数的周期性及其求法,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换,属于基础题.19.已知半径为2,圆心在直线y=x+2上的圆C.(1)当圆C经过点A(2,2)且与y轴相切时,求圆C的方程;(2)已知E(1,1),F(1,3),若圆C上存在点Q,使|QF|2﹣|QE|2=32,求圆心横坐标a的取值范围.参考答案:【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】(1)可设圆心坐标为(a,﹣a+2),圆的方程为(x﹣a)2+[y﹣(﹣a+2)]2=4,利用圆经过点A(2,2)且与y轴相切,建立方程,即可求圆C的方程;(2)设Q(x,y),则由|QF|2﹣|QE|2=32得y=3,即Q在直线y=3上,根据Q在(x﹣a)2+[y﹣(﹣a+2)]2=4上,可得⊙C与直线y=3有交点,从而可求圆心的横坐标a的取值范围.【解答】解:(1)∵圆心在直线y=﹣x+2上,∴可设圆心坐标为(a,﹣a+2),圆的方程为(x﹣a)2+[y﹣(﹣a+2)]2=4,∵圆经过点A(2,2)且与y轴相切,∴有,解得a=2,∴所求方程是:(x﹣2)2+y2=4;(2)设Q(x,y),则由|QF|2﹣|QE|2=32得:(x﹣1)2+(y+3)2﹣[(x﹣1)2+(y﹣1)2]=32,即y=3,∴Q在直线y=3上,∵Q在(x﹣a)2+[y﹣(﹣a+2)]2=4上,∴⊙C与直线y=3有交点,∵⊙C的圆心纵坐标为﹣a+2,半径为2,∴⊙C与直线y=3有交点的充要条件是1≤﹣a+2≤5,∴﹣3≤a≤1,即圆心的横坐标a的取值范围是﹣3≤a≤1.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.20.对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a?f1(x)+b?f2(x),那么称h(x)为f1(x),f2(x)的生成函数.(1)给出函数,h(x)是否为f1(x),f2(x)的生成函数?并说明理由;(2)设,生成函数h(x).若不等式3h2(x)+2h(x)+t>0在x∈[2,4]上恒成立,求实数t的取值范围;(3)设,取a>0,b>0,生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1.试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.参考答案:【考点】函数恒成立问题.【分析】(1)根据新定义h(x)=a?f1(x)+b?f2(x),判断即可.(2)根据新定义生成函数h(x),化简,讨论其单调性,利用换元法转化为二次函数问题求解最值,解决恒成立的问题.(3)根据新定义生成函数h(x),利用基本不等式与生成函数h(x)图象的最低点坐标为(2,8).求解出ab.假设最大的常数m,使h(x1)h(x2)≥m恒成立,带入化简,利用换元法与基本不等式判断其最大值是否存在即可求解.【解答】解:(1)函数,若h(x)是af1(x)+bf2(x)的生成函数,则有:lgx=,由:,解得:,存在实数a,b满足题意.∴h(x)是f1(x),f2(x)的生成函数.(2)由题意,,生成函数h(x).则h(x)=2?f1(x)+f2(x)=∴h(x)是定义域内的增函数.若3h2(x)+2h(x)+t>0在x∈[2,4]上恒成立,即.设S=log2x,则S∈[1,2],那么有:y=﹣3S2﹣2S,其对称轴S=.∴﹣16≤y≤﹣5,故得t>﹣5.(3)由题意,得h(x)=a?f1(x)+b?f2(x)=ax,则h(x)=ax≥2∴,解得:a=2,b=8.∴h(x)=2x+,(x>0)假设最大的常数m,使h(x1)h(x2)≥m恒成立,令u=h(x1)h(x2)==∵x1+x2=1,∴u=,令t=x1x2,则t=x1x2≤,即,那么:u=4t,在上是单调递减,∴u≥u()=289.故最大的常数m=289.21.四边形ABCD如图所示,已知,.(1)求的值;(2)记与的面积分别是S1与S2,时,求的最大值.参考答案:(1)1;(2)14.试题分析:(1)在中,分别用余弦定理,列出等式,得出的值;(2)分别求出的表达式,利用(1)的结果,得到是关于的二次函数,利用三角形两边之和大于第三边,两边之差小于第三边,求出的范围,由的范围求出的范围,再求出的最大值.试题解析:(1)在中,,在中,,所以.(2)依题意,,所以,因为,所以.解得,所以,当时取等号,即的最大值为14.22.设函数.(1)若,且,求的最小值;(2)若,且在(-1,1)上恒成立,求实数a的取值范围.参考答案:(1);(2)[-1,1]【分析】(1)由,求得,利用基本不等式,即可求解的最小值;(2)由,求得,得到不等式在上恒成立,等价于是不等式解集的子集,分类讨论求得不等式的解集,进行判定,即可求解.【详解】(1)函数,由,可得,所以,当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专题会议事制度
- 合山市经济贸易和科学技术局招聘备考题库(2025年12月30日)带答案详解
- 二手车贷款销售培训课件
- 小可爱驾驶员安全课件
- 2026年温岭市农业农村和水利局招聘编外工作人员备考题库及参考答案详解1套
- 2025-2030中国外周置入中心导管行业市场发展趋势与前景展望战略研究报告
- 中国人民银行所属企业网联清算有限公司2026年度校园招聘26人备考题库带答案详解
- 2025-2030汽车减震器行业并购重组机会及投融资战略研究咨询报告
- 东莞市公安局沙田分局2025年公开招聘警务辅助人员备考题库(第8期)完整参考答案详解
- 机关保密教育课件知识题
- 呼吸内科一科一品一特色护理
- 负压冲洗式口腔护理
- 结婚函调报告表
- CJJT164-2011 盾构隧道管片质量检测技术标准
- 倒档变速叉工序卡
- SYT 6968-2021 油气输送管道工程水平定向钻穿越设计规范-PDF解密
- GB/T 43824-2024村镇供水工程技术规范
- 心力衰竭药物治疗的经济评估与成本效益分析
- QA出货检验日报表
- 校服采购投标方案
- 中外建筑史课件
评论
0/150
提交评论