版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年浙江省杭州市第12中学高一数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列函数中哪个与函数相同(
)
A.
B.C.
D.参考答案:B2.的值为(
)A.
B.
C.
D.参考答案:A考点:诱导公式.【易错点晴】本题主要考查诱导公式,属于容易题型.本题虽属容易题型,但如果不细心的话容易因判断错象限、或因忘了改变函数名而犯错.解决此类题型的口诀是:奇变偶不变,符号看象限,应用改口诀的注意细节有:1、“奇”、“偶”指的是的奇数倍或偶数倍,2、符号看象限,既要看旧角,又要看旧函数名.要熟练掌握这两个细节才不会“走火入魔”.3.已知直线恒过定点,若点在直线上,则的最小值为A.2
B.
C.4
D.参考答案:C4.已知定义在R上的函数f(x)的图象关于成中心对称,且满足f(x)=,f(0)=–2,则f(1)+f(2)+…+f(2007)的值为(
)A.–2
B.–1
C.0
D.1参考答案:解析:C
由已知f(x)=,又f(x)=,∴,即f(x)为偶函数.又f(x+3)==f(x),∴f(x)是以3为周期的函数.∴f(1)=f(–1)=1,f(2)=f(–1+3)=f(–1)=1,f(3)=f(0)=–2,∴f(1)+f(2)+…+f(2007)=669[f(1)+f(2)+f(3)]=0.5.已知集合,则等于(
)A.
B.
C.
D.参考答案:C6.点在映射下得对应元素为,则在作用下点的原象是(
)A.
B.
C.
D.参考答案:D略7.若点与的中点为(-1,0),则直线必定经过点(
)A.(1,-2) B.(1,2) C.(-1,2) D.(-1,-2)参考答案:A试题分析:由中点坐标公式可得,所以直线化为,令,定点考点:1.中点坐标公式;2.直线方程8.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立两个事件是(
)A.“至少1名男生”与“全是女生”B.“至少1名男生”与“至少有1名是女生”C.“至少1名男生”与“全是男生”D.“恰好有1名男生”与“恰好2名女生”参考答案:D【详解】从3名男生和2名女生中任选2名学生的所有结果有“2名男生”、“2名女生”、“1名男生和1名女生”。选项A中的两个事件为对立事件,故不正确;选项B中的两个事件不是互斥事件,故不正确;选项C中的两个事件不是互斥事件,故不正确;选项D中的两个事件为互斥但不对立事件,故正确。选D。
9.如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[﹣7,﹣3]上是()A.增函数且最小值为﹣5 B.增函数且最大值为﹣5C.减函数且最大值是﹣5 D.减函数且最小值是﹣5参考答案:A【考点】奇偶性与单调性的综合.【分析】根据奇函数的图象关于原点对称,故它在对称区间上的单调性不变,结合题意从而得出结论.【解答】解:由于奇函数的图象关于原点对称,故它在对称区间上的单调性不变.如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[﹣7,﹣3]上必是增函数且最小值为﹣5,故选A.10.的正弦值为(
)A.
B.
C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知R上的偶函数f(x)在[0,+∞)单调递增,若f(m+1)<f(3m﹣1),则实数m的取值范围是.参考答案:m>1或m<0【考点】奇偶性与单调性的综合.【分析】根据题意,结合函数的奇偶性与单调性,分析可得f(m+1)<f(3m﹣1)?|m+1|<|3m﹣1|,解可得m的取值范围,即可得答案.【解答】解:根据题意,由于函数f(x)是偶函数,则f(m+1)=f(|m+1|),f(3m﹣1)=f(|3m﹣1|),又由f(x)在[0,+∞)单调递增,则f(m+1)<f(3m﹣1)?|m+1|<|3m﹣1|;解可得:m>1或m<0,即m的取值范围是:m>1或m<0;故答案为:m>1或m<012.已知直线4x﹣ay+3=0和直线2x+y﹣1=0平行,则a=.参考答案:﹣2【考点】I7:两条直线平行的判定.【分析】由两直线平行,一次项系数之比相等,但不等于常数项之比,即,由此解得a的值.【解答】解:∵直线4x﹣ay+3=0和直线2x+y﹣1=0平行,∴,解得a=﹣2,故答案为﹣2.13.已知,那么_______.参考答案:2【分析】根据分段函数的解析式得出,再求可得解.【详解】由,因为,所以,故填:2【点睛】本题考查根据分段函数的解析式求函数值,关键在于判断自变量在分段函数的相应范围代入相应的解析式可求得函数值,属于基础题.14.当时,函数的最大值为__________.参考答案:21【分析】根据题干中的条件可得到二次函数的对称轴,再由二次函数的性质得到最值即可.【详解】当时,函数,对称轴为x=2,在所给区间内,根据二次函数的性质得到在x=-3处取得最大值,代入得到21.故答案为:21.【点睛】这个题目考查了二次函数在小区间上的最值的求法,一般是讨论轴和区间的位置关系,结合二次函数图像的性质得到相应的最值.15.已知扇形的面积为4cm2,扇形的圆心角为2弧度,则扇形的弧长为.参考答案:4cm【考点】弧长公式.【分析】利用扇形的面积求出扇形的半径,然后由弧长公式求出弧长的值即可得解.【解答】解:设扇形的弧长为l,圆心角大小为α(rad),半径为r,扇形的面积为S,则:r2===4.解得r=2,∴扇形的弧长为l=rα=2×2=4cm,故答案为:4cm.16.已知集合的子集只有两个,则的值为
.参考答案:0或117.已知,且为第二象限角,则的值为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,,,,求的值.
参考答案:解:∵
∴又
∴
………3分∵
∴又
∴
………………6分∴sin(a+b)=-sin[p+(a+b)]=
……………9分
……ks5u……12分
………………14分
略19.已知函数(1)解不等式;(2)若对一切,不等式恒成立,求实数m的取值范围.参考答案:(1);(2)【分析】(1)根据一元二次不等式的求解方法直接求解即可;(2)将问题转化为恒成立的问题,通过基本不等式求得的最小值,则.【详解】(1)
或所求不等式解集为:(2)当时,可化为:又(当且仅当,即时取等号)
即的取值范围为:【点睛】本题考查一元二次不等式的求解、恒成立问题的求解问题.解决恒成立问题的关键是通过分离变量的方式,将问题转化为所求参数与函数最值之间的比较问题.20.已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f()=(1)求实数m,n的值(2)用定义证明f(x)在(﹣1,1)上是增函数.参考答案:【考点】函数单调性的判断与证明;函数奇偶性的性质.【分析】(1)奇函数在原点有定义时,f(0)=0,从而可求得n=0,而由可求出m;(2)根据增函数的定义,设x1,x2∈(﹣1,1),且x1<x2,通过作差的方法证明f(x1)<f(x2)即可.【解答】解:(1)∵f(x)为(﹣1,1)上的奇函数∴f(0)=0;∴n=0;∵;∴;∴m=1;(2)f(x)=;设x1,x2∈(﹣1,1),且x1<x2,则:=;∵x1,x2∈(﹣1,1),且x1<x2;∴x1﹣x2<0,1﹣x1x2>0;∴f(x1)<f(x2);∴f(x)在(﹣1,1)上是增函数.21.(本小题满分16分)为绘制海底地貌图,测量海底两点,间的距离,海底探测仪沿水平方向在,两点进行测量,,,,在同一个铅垂平面内.海底探测仪测得,两点的距离为海里.(1)求的面积;(2)求,之间的距离.参考答案:(1)如图所示,在中由正弦定理可得,,…4分则的面积(平方海里)…………8分(2),…………………12分在中,由余弦定理得,即(海里)答:的面积为平方海里,,间的距离为海里.……16分22.(本小题满分14分)设集合为方程的解集,集合为不等式的解集.(1)当时,求;(2)若,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 边缘二分求幂与AI融合-洞察及研究
- 地幔对流动力学-洞察及研究
- 量子密钥分发在金融交易中的安全性-洞察及研究
- 传统酒企数字化转型-洞察及研究
- 线上互动行为分析-洞察及研究
- 融合技术在三维绘图中的应用研究-洞察及研究
- 隧道衬砌工程的节能降耗技术-洞察及研究
- 智能化包装机械优化设计-洞察及研究
- 蕉制品电商中的行业标准与规范研究-洞察及研究
- 生物质燃烧颗粒物减排-洞察及研究
- (2025年)册人力资源管理试题及答案
- 纪委监委试题题库及答案
- 甜水园吉野家餐厅合同7篇
- 2025年考编护理解剖学题库及答案
- 2025年丽水市属企业面向残疾人公开招聘工作人员7人考试参考试题及答案解析
- 镇江市2025年度专业技术人员继续教育公需科目考试题库(附答案)
- 2025政府采购评审专家考试题库测试题(附完整答案)
- 2025年农险初级核保考试题库
- 大学生创新创业基础(创新创业课程)完整全套教学课件
- 绿色工厂自评价报告及第三方评价报告
- 《材料分析测试技术》全套教学课件
评论
0/150
提交评论