版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter5
绿色化学技术5.1
Theperformanceofcatalystsinchemicalreaction5.2
Greenchemistryandcatalysis5.3
Thedesignofhighefficientandsafecatalyst5.4
Changingstartingmaterialforchemicalreaction5.5
Changingreagents5.6
Changingthesolventofchemicalreaction5.7
Processcontrolandprocessintensification5.1
TheperformanceofcatalystsinchemicalreactionThefunctionofcatalyststo
chemicalreactionAcceleratethechemicalreactionrateNamely,theuseofcatalystscancontroltheselectivityforspecialproducts.Synthesizethespecialconformationofchiralisomers(手性异构体)Incorporatewithreactionconditions,andcontroltheselectivityofchemicalreaction.Catalysthasbeencalledas
molecularmachine
allthereactionsinbiomassarecatalyzedbyenzymewithhighspecificities,selectivityandatomeconomy.MolecularMachine
Recentinvestigationshavereportedthatnotonlyenzymeactsasmolecularmachinebutalsothecommoncatalystsownthesimilarfunctions.Theclassicalexampleisthemetalcyclopentadiene(环戊二烯)complexwhichwasusedasthecatalystinolefin(烯烃)polymerizationCatalysthasbeencalledas
molecularmachine
continueZiegler-Nattacatalyst:mechnsim?。
Enzymeandothertraditionalchemicalcatalyst.Iftheyexhibithighspecificity,selectivity,yieldandatomeconomy,theyshouldbeconsideredasthemolecularmachinewithspecialfunctionsinchemicalreactions.Catalysthasbeencalledas
molecularmachine
5.2GreenChemistryandCatalysisCatalysisandPollutionProtectionTheactivationofnewstartingmaterials
CatalysisandProcessPromotion
Automobileexhaustpurifyingcatalyst(threewayconversioncatalyst,TWC)CatalysisandPollutionProtectionCatalystreactiononTWC
CxHy+O2CO2+H2OCO+O2CO2NOx+COCO2+N2
CompositionofTWC
Activecomponent:Pt,Pd,Rh
Supports:γ-Al2O3,Cordierite(堇青石)Additive:Ce,La,Ba,ZrCatalyticcombustionHighTemperature,NOX.LoadcatalystLowerTemperatureHigh-temperatureflameisoftennotcompletecombustionoffuel.Inadditiontogeneratingcarbondioxideandwater,sidereactionswilloccurinthehightemperatureflameproducingtoxiccompoundssuchasNOx,COandCxHy.
thecatalyticutilizationofCO2Energy-savingandRecoveryofcarbondioxidefromfluegasExploitingCarbondioxideasaresource
CO2+H2CH3OHGasoline
Catalysisplaysaimportantroleinnewlysynthesize
routewithoutpollutionThechemicalreactionmaybecomemoreeffectiveandmoreselectiveovercatalyst,whichcandecreasetheformationofby-productsandotherwastes.Catalystscanimprovethereactionconditions,suchastemperature,pressureandenergyconsuming,andeliminatetheusageoftoxicreactionmedium.
Inshort,theutilizationofcatalystcansatisfytherequirementsofGreenChemistry,simulatouslyThesynthesisofpyrocatechol
Traditionally:Benzeneisharmful,Toomanysteps,By-products(ketenehydroquinone),SO2isnotsafechemicals,continueTheactivationofnewstartingmaterials
Draths&Frostglucose(葡萄糖)asstartingmartialAvoidtheusageoftoxicandharmfulchemicalsandsharplydecreasetheyieldofby-products.CH2=CH2O2PdCl2CuCl2水溶液
CH3CHO
Disadvantages:ConsumelargeamountofcatalystsTheconsternationofCl-isgreater,andcanleadtotheformationofchromateby-products.Thoseby-productsisharmfultohumanhealthyThesynthesisofaceticaldehyde
3.CatalyticProcessPromotion
ThesynthesisofhydrochinoneTraditionalMethod:Disadvantage:toomanysteps,alargemountofby-product,corrosivechmicals(H2SO4,HCl)Environmentalbeigenmethod:
Advantages:Greenermethod:Shortreactionchain,By-productsonlyformattedinthefinalstep.R1C(OH)R2R1COR2cat.microwaveVarmaetal:theactivationundermicrowaveandcatalystTraditionallyOrganicsolvent;CrO3,KMnO4;SlatpollutionThesynthesisofcarbonylcompoundsConversionofBiomassBamboosSmallMoleculesSuchas:CH3COOH,CH3OHetcNewCatalysts
5.3TheDesignofHighEfficient
andSafeCatalyst1:Grossanalysis
1.Atfirst,analyses:thepossibilityofreactionandthelargestequilibriumyelidtheoptimizedreactionconditiontheavailablemartialsatomeconomyofreactioninrealreactioneconomyofcatalystseconomyofcatalyticreactionsinordertounderratedthereliabilityofrealcatalysts2.Severalfactorsshouldbeconsideredtodesignparametersofcatalysts.activity,selectivity,stability,durationandtoxicity,etc3.Accordingtothereactionroutes,searchthecatalystandpossiblestartingmaterials,choosethemostfavorablecatalysts,modifyandoptimizethereactionconditions.4.Confirmthereactionpossibilityexperimentally.Iftheexperimentsdonotconfirmthetheoreticalperdition,theprocessshouldbere-designed.Grossanalysis
2.designanddevelopthenewtypemoleculeoxygenoxidativecatalystsTraditionalinorganicoxidants:NaClO,NaBrO,HNO3,KHSO3,CrO3,KMnO4,KCr2O7,etc.Thetraditionalinorganicoxidativecanintroducealargeamountofwastesalts,hazardousgasesandliquidsheavyatomsO2:ThecleanestoxidativechemicalThelimitationofitsreactionconditions,OftencompaniedbyotherauxiliaryoxidantsCleanoxidantsandtheircharactersCleanoxidativeandtheircharactersH2O2H2O2containmorethan47percentactiveoxygen,anditsoxidativeproducts(water)isenvironmentalbenignchemical.H2O2ismoreexpensivethanO2andO3,andcandiscorporateinroomtemperature
O3:O3isalsotheenvironmentalbenignchemicaloxidative,anditsoxidativeproductsisoxygenmolecule.ButtheusageofO3oftenrequiresomespecialmethodandequipments.CleanoxidativeandtheircharactersO3tubetransformerN2O:itsoxidativeproductsisenvironmentalbenignproduct(N2)thesynthesisofN2OiscomplexandthecostofN2Oisveryhigh.CleanoxidativeandtheircharactersLatticeoxygen:Catalyst:multivalenttransitionmetalcompositeoxidesOxidants:oxygenandairRedoxcircleCatalyticmembranereactorAdvantages:HighselectivityNodangerofexplosionEasyseparationofreactantsDesignofoxidativecatalystbasedonthereactionmechanismThereactionmechanismofdifferentreactionsystem,includingcatalysts,mayvary.Hence,therequirementsforcatalystsshouldalsobedifferent.Thedesignofcatalystsshouldbetoughlyconsideredthereactionmechanismtomeettherequirementofreaction.Metalcomplexes
Thosemetal-organicscatalystsarewidelyusedinhomogenouscatalyticreactionsChiralmetalcomplexeshavebeenusedashomogenouscatalyst,andcancontrolthestereo-selectivity(立体选择性)ofthereaction.Itisveryimportantforhighstereo-selectivitytosearchthesuitablereactionconditions,propercentralmetalionsandchitalgroups(手性基团).3、Thedesignofnew-typemetalcomplexcatalystsSample:thesynthesisofNaproxenTheyieldoftargetproduct(S-Naproxen)reaches97%。
Table5-2SomemetalcomplexesinindustryChiral
complesxIndoctrinationtimeRuBINAPAminehydrogenation1991RuBINAPchinoiline1987(Isoquinolalkaloid)RuBINAPTerpenealcoholhydrogenation1987RuBINAPKetenehydrogenation1911CuSthiffbaseComplexes1985(Cyclopropanationofolefins)RhBINAPhexahydrothymol19904,DesigningofNewMolecularSieveCatalyst
MolecularSieve(分子筛)Molecularsievereferstoakindofinorganicpolymercomposedofaluminumsilicate(siliconaluminate),bearingopenstructure.Structurally,
molecularsievebearsthetetra-XO4structure,inwhichoneatomXsharesOwithotherXatoms.Xmaybetri-(Al,B,orGa),tetra(Ge,Si)-,orpenta-(P)valent.DesigningofNewMolecularSieveCatalyst
DesigningofNewMolecularSieveCatalyst
Theporediameterofmolecularsieveisdependantonthenumberofbuildingunits,andthemolecularsieveisgenerallynamedmacro-,meso-,ormicro-molecularsievecorrespondedrespectivelytothemeanporediameterof0.75,0.67or0.43nm.NaturalMolecularSieve(Zeolite)iswidelyusedinpetrolrefineryforitsmacroporestructure.Synthesizedzeoliteisnowcommercializedandhasbecomeoneofthemostimportantcatalystinpetrolindustry.DesigningofNewMolecularSieveCatalyst
XNaturalMolecularSieve(Zeolite)isalsousedinionexchangeprocess.BecauseNaturalMolecularSieve(Zeolite)oftenownsacidandbasesitesstimulatously.Incatalysis,molecularsieveiswidelyusedasanewacid-basecatalystintherelatedreactionssuchastheconversionofalkanes.DesigningofNewMolecularSieveCatalyst
Thealkylattionofbutene:Traditionalmethod:HFand/orH2SO4areusedasthecatalysts.Advantage:highefficiencyDisadvantages:erosionofHF/H2SO4productionofinorganicsaltsHFcouldberecycled,butH2SO4couldnotandshouldberemoved.theuseofsolidmolecularsieveacidcatalyst:Theerosionofliquidacidiseliminated,Noinorganicsaltsaswastesproduced.SolidacidcatalystMolecularSievecouldalsobeusedasbasiccatalystsoracidic-basicbifunctionalcatalystalreadyusedfortheproductionoffundamentalchemicalsbutnotaswidelyasacidcatalystsItwillundoubtedlyplayanimportantroleintheproductionoffinechemicalsandspecialchemicals.Forexample,CsMolecularsieveisusedinthesynthesisof4-methyl-thiazoline(4-甲基噻啉,onekindofanti-fungus)insteadofCl2orCS2andNaOH.
ChangingtheselectivityofachemicalreactionoriginatedfromtheshapeofmolecularsievebychemicalmodificationofmolecularsieveTheselectivityofchemicalreactionsbasedontheshapeofthemolecularsievecouldbealteredbychemicalmodificationofthemolecularsieveusedasthecatalysts,thisprovideswideapplicationsofmolecularsieveincontrollingchemicalreactions.For
ExampleInthesynthesisof2,6-di-isopropylnaphthalene,amixtureof2,6-,2,7-,and2,4-substitutednaphthaleneisobtainedusingordinarymethods.
2,4-di-isopropylnaphthalene+2,7-di-isopropylnaphthalene2,6-di-isopropylnaphthaleneThetraditionallyusedcatalystSiO2/Al2O3haslargepores,andcouldnotdistinguish3-substituted-isopropylnaphthalenefrom4-substituted-isopropylnaphthalene,andthedistinguishof
2,6-di-isopropylnaphthalenefrom2,7-di-isopropylnaphthalenecouldneitherberealized.Theseparationof2,6-di-isopropylnaphthaleneand2,7-di-isopropylnaphthalenebyusingspecialpolymerliquidcrystalisverytroublesomeandveryexpensive.For
ExampleTheuseofsmallporemolecularsievecouldinhibittheformationof3-,or4-,substitutedproductsbuttheformationofequivalentamountof2,6-and2,7-substitutedproductscouldnotbeavoided.Theformationof3-and4-substitutedproductscouldbeeliminated,andaratioof2,6-to2,7-substitutedproductsof7/3couldbeobtainedbyusingZeolite-Casthecatalyst.Table5-3givesoutthedistributionofproductsbyusingdifferentkindsofcatalysts.For
ExampleTable5-3,ThedistributionoftheproductsfromthealkylationofnaphthalenebyusingdifferentkindsofcatalystsCatalystPorediameter/nm2,6-/2,7-2,6-isomer%SiO2/Al2O36.0132L-molecularsieve0.710.822B-molecularsieve0.73137C*zeolite0.72.770ZSM-50.55Verylowactivity
Prospectfortheresearchofmolecular
sievecatalystsMolecularsievecatalystsmayreplacesuchsubstanceasHF,H2SO4,etc.,whichareobviouslydangeroustopeople’shealthandtheenvironment.Thus,molecularsievecatalystisregardedasonekindofenvironmentallybenigncatalyst.Simultaneously,onaccountofthesignificantincreaseoftheactivityandselectivityduetotheuseofmolecularsievecatalyst,theresearchofmolecularsievecatalystwillundoubtedlybecomeoneofthemostpromisingfieldingreenchemistry.Chapter5Techniques
inGreenChemistry5.1
TheperformanceofCatalystsinChemicalreaction5.2
GreenChemistryandCatalysis5.3
TheDesignofHighEfficientandSafeCatalyst5.4
ChangingStartingMaterialforChemicalreaction5.5
ChangingReagents5.6
ChangingthesolventofChemicalReaction5.7
ProcessControlandProcessIntensificationReferences5.4ChangingStartingMaterialforChemicalReactionSelectionofstartingmaterialsThefeedstockhasgreatinfluenceontheefficiencyofthesyntheticroutes,ontheenvironmentaleffectsandthehealthyofhumanbeings.Thehazardoffeedstockmustbeconsideredbytheproducers,managersinthepreservationandtransportation,aswellastheoperatorsintheprocessing.Forsomebulkchemicals,thechangeoffeedstockmaychangethemarket,forsomesubstanceareproducedjusttoprovidecertainfeedstock.1.Reducinghazardousproperties(1).Certainly,afirstlevelassessmentofanystartingmaterialmustbewhetherthesubstanceitselfisbenign;whetheritposesahazardforhumanbeingsandfortheenvironments;whetheritposesahazardintheformofeithertoxicity,accidentpotential,ecosystemdestruction,orotherform;whetheritisdestructivefortheecologicalenvironmentwhetheritposesotherun-benignproperties(2).UsingpreferablesourcesCurrently,morethan90%organicstartingmaterialsarealmostexclusivelyderivedfromnon-renewablecarbonfeedstocks,suchascoalorcrudeoil.Petrol-refineryisenergyconsuming.Forexample,intheU.S.,theamountofenergyconsumedinpetrol-refineryisabout15%ofitsenergyconsumption.Thecostwillaugmentforthequalityofthecrudeoilisbecomingbad.Intheproductionoforganicchemicalsfromoil,oxidationreactionsareusuallyemployed,anditiswellknownthatoxidationreactionsareseriouslypollutant.usingpreferablesourcesConsideringtheuseupofoil,naturalgasandcoal,wemustreduceourdependenceonthesefossilresources.Agricultureresourcesandbio-resourcesaregoodalternative.Recentstudiesshowthat,manyagricultureresources,suchascorn,potato,soybean,andsooncouldbeconvertedtotextiles(纺织品)ornylon.Agriculturewaste,biomasscontainingcellulose(纤维素)andlignin(木质素)couldalsobeconvertedtochemicals.2.Advantagesanddisadvantagesofbiomassasachemicalfeedstock(1).Advantagesadvantagesbiomasscanbebrokedownintoahugearrayofstructurallydiversematerials,frequentlystereochemically(立体化学的)andenantiomerically(对映体的)defined,givingtheuserawiderangeofnewstructuralfeaturestoexploitinsynthesis.Thestructuralcomplexityofthebuildingblocksavailablefrombiomassisfrequentlyhigherwhencomparedtobuildingblocksderivedfrompetrochemicals.Thispropertycouldleadtoareductionofreactionsideproducts,andhence,areductionoftheamountofwastematerialproducedinchemicalprocessesifmethodologywereavailabletoincorporatethiscomplexityintofinalproducts.
advantagesBuildingblocksisolatedfromcrudeoilarenotoxygenated,yetmanyofthefinalproductsofthechemicalindustryare.Therearefewwaystoaddoxygentohydrocarbons,andmanyofthemrequiretheuseoftoxicreagents(chromium,lead,etc.)instoichiometricamountsresultinginseverewastedisposalproblems.Biomassderivedmaterialsareoftenhighlyoxygenated.advantagesIncreaseduseofbiomasswouldextendthelifetimeoftheavailablecrudeoilsupplies,andthenmakecontributiontosustainabledevelopmentandmakesuretheproductionofcertainchemicalsthatcouldonlybesynthesizedfromoil.TheuseofbiomasshasbeensuggestedasawaytomitigatethebuildupofgreenhouseCO2intheatmosphere.SincebiomassusesCO2forgrowththroughphotosynthesis,theuseofbiomassasafeedstockresultsinnonetincreaseinatmosphericCO2contentwhentheproductsbreakdownintheenvironment.
advantagesAchemicalsindustryincorporatingasignificantpercentageofrenewablematerialsissecurebecausethefeedstocksuppliesaredomestic,leadingtoalesseneddependenceoninternational‘hotspots’.advantagesBiomassisamoreflexiblefeedstockthaniscrudeoil.Crudeoilisformedanditscompositionsetbygeologicalforces.Thediversityofbuildingblocksfrombiomassoffersagreatopportunityfortheproductionofarangeofchemicalsaswideasthatavailablefromnon-renewables.Withtheadventofgeneticengineering,thetailoringofcertainplantstoproducehighlevelsofspecificchemicalsisalsopossible.advantages(2)、disadvantages
Manyofthereporteddisadvantagesarerelatedtocurrenteconomiccircumstances.Thepetrochemicalindustryishugeandhighlyefficient,fromtheinitialremovalofcrudeoil,totheextractionofthesimplerbuildingblocksthatcomprisethecrudeoil,throughthefinaltransformationofthesebuildingblocksintotheirmanyintermediatesandchemicalproducts.Moreover,thepetrochemicalindustryiswellestablished.Muchofitscapitalinvestmentispaidoff.Themechanismsandoperationofitsprocessesarewellunderstoodandgivesingleproductsofhighpurity.Thebiomassindustryisstilldevelopingprocessesthatpossessthesefeatures.disadvantagesManyofthebiomasssourcesbeingconsideredaschemicalfeedstockshavetraditionallybeenusedassourcesoffood,andthejustificationfordivertingpartofthisresourcetochemicalproductionhasbeenquestioned.Theissuebecomesmoreacutewhenbiomassisconsideredasafeedstockforfuelaswellaschemicalproduction.Biomassalsorequiresspacetogrow,andtheenvironmentalimpactoflargescalebiomassplantationshasbeenexamined.
disadvantagesTraditionalsourcesofchemicalfeedstockshavebeenreferredtoas‘threedimensional’becausethestructuresinwhichtheyarefoundhavedepthaswellaslengthandwidth.Thepresenceofthethirddimensionallowsmuchmorefeedstocktobeconcentratedinasmallerarea.Incontrast,biomassfeedstocksare‘twodimensional’feedstocks,andrequireproportionallymorespaceforthesameamountofmaterial.disadvantagesBiomassisnecessarilyseasonal.Thecropisplantedinonepartoftheyear,andharvestedinanother.Thisleadstopeaksandvalleysinthesupplyoffeedstock;yetthechemicalproducerplanningtousebiomassneedsaregulardaytodaysupply,andneedstobeassuredthatthematerialusedatthebeginningoftheyearwillbeofthesamequalityasthatusedattheendoftheyear.disadvantagesThewiderangeofmaterialsthatcomprisebiomasscouldbeadetrimentespeciallyifnewprocessesneedtobedevelopedforeachfeedstock.Moreover,thebuildingblocksextractedfrombiomassareforeigntotraditionalchemicalproducersandmustbedemonstratedtofunctioninamannersimilartoexistingbuildingblockswithoutunduemanipulation.disadvantagesChapter5Techniques
inGreenChemistry5.1
TheperformanceofCatalystsinChemicalreaction5.2
GreenChemistryandCatalysis5.3
TheDesignofHighEfficientandSafeCatalyst5.4
ChangingStartingMaterialforChemicalreaction5.5
ChangingReagents5.6
ChangingthesolventofChemicalReaction5.7
ProcessControlandProcessIntensificationReferences
5.5ChangingReagents
SelectionofreagentsManyprogresshavebeenachievedinthisaspectongreenchemistryForexample:
Usinglightinsteadofsomereagents;Usingrecoverablecatalystasitispossible;Loadingthereagentsonthesupporttorealizethereactions(usingoxidativeagents,reductiveagentstorealizetheloading)
Highsyntheticefficiency;practicable;benigntohuman’shealthandtheenvironmentSelectionofreagentsForexample,fortheoxidationoftertiaryhydrocarbonstoketones,thetraditionalmethodinvolvesthereactionofcopperacetateandhydrogenperoxideintheaqueoussolution,whereas,thisreactioncanalsobewellrealizedbysupportingnitrateofcopperontothehydrogenperoxideimpregnatedK10clay.Highsyntheticefficiency;practicable;benigntohuman’shealthandtheenvironment5.6
ChangingreactionsolventIssolventnecessaryforthereaction?AqueoussolutionsystemIonicliquid
Immobilizationofthesolvent——SolutionofpolymerCarryingoutpolymerizationreactionsusingthesolventasoneofthemonomertoobtainpolymerized-solvent-derivatesthatbearthepropertyofthesolvent.Sincethissolventisanchoredonthepolymer,thustheseparationoftheproductsfromthesolventiseliminatedandpollutionfromthevolatilesolventisalsoeliminated.Solvent-freereactionBandgeretalcombinetheuseofenvironmentallybenigncatalystandmicrowavetosynthesis3-carbinyl-coumarinfromdi-methyoxybenzaldehydeandMeldrumacidwithoutusingsolvent.
Thecombinationofmicrowaveandcatalystinsteadofsolventiseffectiveinsuchprocessesasgroupprotection,deprotection,oxidation,reduction,rearrangementreaction.SupercriticalRegionPressureCriticalPointTemperaturePcTcLiquidVapourSolid超临界区FormationofSCFCO2FormationofSCFCO2Transmissioncharacters
ofSCFSCF:Density:Similartoliquid;Viscosity:1/100thanliquid:Liquidity:muchbetterthanliquidReynoldsnumber:muchbetterthanliquid(samecurrentvelocity)。Transfercoefficient:muchbetterthanliquid;NewtonFormulaμ=τyx/dμx/dy
Withtemperatureincreasing,forgas:Viscosityincreasesforliquid:Viscositydecreases.
SCF:Itsviscosityisnotequaltothatofliquidorgas.ButitisliabletothatofliquidViscosityPartialmolarvolumeInSCF,thepartialmolarvolumeofinfinitedilutionsoluteisnegativeNearthecriticalregion,itwillfurtherbecomemorenegative(about-1000∼16000ml/mol)AdvantagesofSCFinchemicalreactionsolvent1.ItisconvenienttoadjusttheprosperityofSCFfromlikegas-likephasetoliquid-likephaseintermofcontrollingpressure.Thatistosay,thecontrolofpressurecanaltertheprosperityofSCF,whichmakesthereactionbecomemoreeffective.2.ThecontrolofpressurecanadjustthedensityofSCF,andcanalsoadjustotherpropertiesrelatedwithdensity,suchasdialecticconstantandviscosity,whichpromotethepossibilitiestocontrolreactionandtoincreasesthereactiveselectivity.3.SCFalsoowncharacteristicslikesomegases,suchaslowviscosity,largediffusioncoefficient,whichismuchimportanttoacceleratethereactionrate,especiallytothosereactionsincludinggaseousreactants.Anotheradvantageofnon-oxidizabilityforSCFCO2makesitbecomeanidealreactionsolvent.ThehighconcentrationofCO2inSCFCO2makeitliabletoreactinitsSCFcondition,whichacceleratethereactionrateandmakesomereactiontooccur.AdvantagesofSCFinchemicalreactionsolventChapter5Techniques
inGreenChemistry5.1
TheperformanceofCatalystsinChemicalreaction5.2
GreenChemistryandCatalysis5.3
TheDesignofHighEfficientandSafeCatalyst5.4
ChangingStartingMaterialforChemicalreaction5.5
ChangingReagents5.6
ChangingthesolventofChemicalReaction5.7
ProcessControlandProcessIntensificationReferences
5.7ProcessControlandProcessIntensification
ThemonitoringAndcontrollingofChemicalProcessProcessintensificationIfsmallamountofadangerouspollutant(X)willformintheprocessofareactionasaside-product,anditsformationisfacilitatedunderhighpressureandathightemperature,insitumonitoringoftheformationofXcouldbeappliedtodetectcontinuouslyproductionofX,andifitsconcentrationsurpassesacertainthreshold,thereactionconditions(temperatureandpressure)willbechangedimmediatelytoreduceitsproduction.
1.ThemonitoringandcontrollingofChemicalProcessOtherreactionparameters,suchastheratioofthefeedandsooncouldalsobecontrolledinsitutofacilitateorinhibittheformationofcertainproduct.2.Processintensificationastrategyformakingdramaticreductionsinthesizeofachemicalplantsoastoreachagivenproductionobjective.
Definition:viaimprovementoftechnicalmethodsviaimprovementoftechnicalmethods2.Processintensification
ProcessintensificationviaimprovementofequipmentThesereductionscancomefromshrinkingthesizeofindividualpiecesofequipmentcuttingthenumberofunitoperationsorapparatus
ProcessintensificationviaimprovementofequipmentStaticMixerReactorMonolithicCatalystMicroreactors(1)Static-mixer-reactor(SMR)
Thetechnologyofstirringhasbeengreatlyintensifiedduringthelast30years.Surprisingly,thiswasachievednotbyimprovingmechanicalmixerbutquitetheoppositebyabandoningthem—infavorofstaticmixer.Thesedevicesarefineexamplesofprocess-intensifyingequipment.Theyofferamoresize-andenergy-efficientmethodformixingorcontactfluid.
SulzerSMRstatic-mixer-reactor,whichhasmixingelementsmadeofheat-transfertubes,cansuccessfullybeappliedinprocessesinwhichsimultaneousmixingandintensiveheatremovalorsupplyarenecessary,suchasinnitrationorneutralizationreactions.SulzerSMRstatic-mixer-reactorOneofthemoreimportantdisadvantagesofstatic-mixing-reactoristheirrelativelyhighsensitivitytocloggingbysolids.Therefore,theirutilityforreactionsinvolvingslurrycatalystsislimited.Sulzersolvedthisproblem(atleastpartially)bydevelopingstructuredpackingthathasgoodstatic-mixingpropertiesandthatsimultaneouslycanbeusedasthesupportforcatalyticmaterial.(2).MonolithiccatalystMaterialsusedinthepreparationofmonolithiccatalysts:MetallicorNon-metallicsubstratesWhichcouldprovideamultitudeofstraightnarrowchannelsofdefineduniformcross-sectionalshapes.Toensuresufficientporosityandenhancethecatalyticallyactivesurface,theinnerwallsofthemonolithicchannelsareusuallycoveredwithathinlayerofwashcoat,whichactsasthesupportforthecatalyticallyactivespecies.Thecharacteristicsofmonolithiccatalystsverylowpressuredropinthesingleandtwophaseflow,onetotwoordersofmagnitudelowerthanthatofconventionalpackedsystems;highgeometricalareasperreactorvolume,typically1.5-4timesmorethaninthereactorswithparti
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年云南省昆明市单招职业适应性考试题库附答案解析
- 2023年河南职业技术学院单招职业倾向性考试模拟测试卷附答案解析
- 2026年上海电机学院单招职业适应性测试模拟测试卷附答案
- 2023年顺德职业技术学院单招职业技能测试模拟测试卷附答案解析
- 2024年闽江师范高等专科学校单招职业技能考试模拟测试卷附答案解析
- 2023年天津滨海职业学院单招职业适应性考试模拟测试卷附答案解析
- 2024年铁岭师范高等专科学校单招职业技能考试题库附答案解析
- 2023年长治职业技术学院单招职业适应性考试模拟测试卷附答案解析
- 重彩油画棒草莓课件
- 《主动脉瓣狭窄合并慢性心力衰竭管理的欧洲共识声明》解读课件
- 2025呼伦贝尔莫旗消防救援大队招聘消防文员(公共基础知识)综合能力测试题附答案解析
- 《国家赔偿法》期末终结性考试(占总成绩50%)-国开(ZJ)-参考资料
- 社会能力训练教程
- 广东省广州市番禺区2024-2025学年七年级上学期语文期末考试试卷(含答案)
- 2025年河南高二政治题库及答案
- 创新激励机制
- 产品成熟度评估标准文档
- 2025年浙江衢州龙游经济开发区下属国资公司公开招聘普通岗位合同制员工11人笔试考试参考题库附答案解析
- 城市给水管线工程初步设计
- 考研咨询师员工培训方案
- 人工智能+跨学科人才培养模式创新分析报告
评论
0/150
提交评论