版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第=page22页,总=sectionpages33页24.4第二课时圆锥的侧面积和全面积(课中练)知识点1求圆锥的侧面积和全面积例1.一个圆锥的底面半径为3cm,高线长为4cm,则它的侧面积为______结果保留变式2.中,,,.把它沿边所在的直线旋转一周,所得到的几何体的表面积为______.3.若圆锥的母线长为12cm,侧面积为60πcm2,则该圆锥的底面半径为___cm.知识点2圆锥的实际应用例4.如图,蒙古包可以近似地看作是由圆锥和圆柱组成,若用毛毡搭建一个底面半径为5米,圆柱高3米,圆锥高2米的蒙古包,则需要毛毡的面积为()A.米2 B.米2C.米2 D.米2变式5.如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为()A. B. C. D.6.某班设计小组想制作如图纸帽,使纸帽的高为,底面半径为,若小李用漂亮的彩纸做一顶这样的纸帽,则纸帽的外部面积为______.知识点3圆锥表面上的最短距离例7.如图,圆锥的母线长OA=6,底面圆的半径为,一只小虫在圆线底面的点A处绕圆锥侧面一周又回到点A处,则小虫所走的最短路程为___________(结果保留根号)变式8.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A. B. C. D.29.如图,圆锥的底面圆直径为,母线长为,若小虫从点开始绕着圆锥表面爬行一圈到的中点,则小虫爬行的最短距离为________.课堂练习10.设圆锥的底面圆半径为r,圆锥的母线长为l,满足2r+l=6,这样的圆锥的侧面积()A.有最大值π B.有最小值π C.有最大值π D.有最小值π11.如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S,则移动的最短距离为()A.10 B.12 C.14 D.2012.如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧,交AB于点E,交AC于点F,将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高为()A.2 B. C.4 D.13.若圆锥的侧面积为18π,底面半径为3,则该圆锥的母线长是___.14.如图,圆锥的底面半径为1,母线长为3,一只蚂蚁要从底面圆周上一点B出发,沿圆锥侧面爬到过母线AB的轴截面上另一母线AC上,问它爬行的最短路线是多少?15.如图,有一块圆形铁皮,是的直径,,在此圆形铁皮中剪下一个扇形(阴影部分).(1)当的半径为2时,求这个扇形(阴影部分)的面积(结果保留);(2)当的半径为时,在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。答案第=page22页,总=sectionpages1010页参考答案1.【分析】利用勾股定理可得圆锥母线长,则圆锥侧面积=×底面周长×母线长.【详解】解:由勾股定理知:圆锥母线长==5cm,则圆锥侧面积=×6π×5=15πcm2.故本题答案为:15π.【点睛】本题考查圆锥的侧面积计算公式应用.需注意应先求出母线长.2.36π【分析】先利用勾股定理得AB=5,由于Rt△ABC沿边AC所在的直线旋转一周所得几何体为圆锥,圆锥的母线长为5,底面圆的半径为4,然后计算它的侧面积和底面积的和即可.【详解】解:Rt△ABC中,∵∠C=90°,AC=3,BC=4.∴AB=5,Rt△ABC沿边AC所在的直线旋转一周所得几何体为圆锥,圆锥的母线长为5,底面圆的半径为4,所以所得到的几何体的全面积=π×422π×4×5=36π.故答案为36π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.3.5【分析】设底面圆的半径为rcm,根据公式(l表示母线长,r表示底面圆的半径)计算即可得到答案.【详解】解:设底面圆的半径为rcm,由题意得,解得r=5,故答案为:5.【点睛】此题考查圆锥的侧面积计算公式,熟记公式是解题的关键.4.A【分析】由底面圆的半径=5米,根据勾股定理求出母线长,利用圆锥的侧面面积公式,以及利用矩形的面积公式求得圆柱的侧面面积,最后求和.【详解】解:∵底面半径=5米,圆锥高为2米,圆柱高为3米,∴圆锥的母线长=米,∴圆锥的侧面积=,圆柱的侧面积=底面圆周长×圆柱高,即,故需要的毛毡:米,故选:A.【点睛】此题主要考查勾股定理,圆周长公式,圆锥侧面积,圆柱侧面积等,分别得出圆锥与圆柱侧面积是解题关键.5.B【分析】设圆锥的底面的半径为rcm,则DE=2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr,解方程求出r,然后求得直径即可.【详解】解:设圆锥的底面的半径为rcm,则AE=BF=6-2r根据题意得2πr,解得r=1,侧面积=,底面积=所以圆锥的表面积=,故选:B.【点睛】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.6.cm2.【分析】纸帽的外部面积就是圆锥侧面展开图的面积,所以计算侧面展开图的面积,问题即可求解.【详解】解:纸帽底面圆的周长为:∴侧面展开图的扇形的弧长为∵圆锥的母线长为:(cm)∴圆锥侧面展开图的面积为:cm2故答案为:cm2.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.6【分析】利用圆锥的底面周长等于侧面展开图的弧长可得圆锥侧面展开图的圆心角,求出侧面展开图中两点间的距离即为最短距离.【详解】∵底面圆的半径为,∴圆锥的底面周长为2×=3,设圆锥的侧面展开图的圆心角为n.∴,解得n=90°,如图,AA′的长就是小虫所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案为:6.【点睛】本题考查了圆锥的计算,考查圆锥侧面展开图中两点间距离的求法;把立体几何转化为平面几何来求是解决本题的突破点.8.A【分析】将圆锥的侧面展开,设顶点为,连接,.线段与的交点为,线段是最短路程.【详解】解:如图将圆锥侧面展开,得到扇形,则线段为所求的最短路程.设.,即.为弧中点,,,,最短路线长为.故选:A.【点睛】本题考查了平面展开最短路径问题,扇形的面积和特殊值的三角函数等问题,解题时注意把立体图形转化为平面图形.9.【分析】将圆锥的侧面展开,是一个扇形,AC就是小虫爬行的最短路程,利用弧长与圆心角的公式,求展开图的圆心角,R=4,l=2πr=2π,可求出n的大小,由于n=90º,利用勾股定理可求AC的长即可.【详解】把圆锥的侧面展开,弧长是2πr=2π,母线AS=4,侧面展开的圆心角,n=90º即∠ASC=90º,C为AD的中点SD=2,线段AC是小虫爬行的最短距离,在Rt△SAC中,由勾股定理的AC=,故答案为:.【点睛】本题考查圆锥侧面的最短路径问题,掌握弧长公式,会利用弧长与圆锥底面圆的关系确定侧面展开图的圆心角,会用勾股定理求出最短路径是解题关键.10.C【分析】由2r+l=6,得出l=6﹣2r,代入圆锥的侧面积公式:S侧=πrl,利用配方法整理得出,S侧=﹣2π(r﹣)2+π,再根据二次函数的性质即可求解.【详解】解:∵2r+l=6,∴l=6﹣2r,∴圆锥的侧面积S侧=πrl=πr(6﹣2r)=﹣2π(r2﹣3r)=﹣2π[(r﹣)2﹣]=﹣2π(r﹣)2+π,∴当r=时,S侧有最大值.故选:C.【点睛】本题考查了圆锥的计算,二次函数的最值,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.熟记圆锥的侧面积:是解题的关键.11.A【分析】由于圆柱的高为12cm,S为BC的中点,故BS=6cm,先把圆柱的侧面展开,连接AS,利用勾股定理即可得出AS的长.【详解】解:沿着S所在的母线展开,如图,连接AS,则AB=×16=8,BS=BC=6,
在Rt△ABS中,根据勾股定理AB2+BS2=AS2,即82+62=AS2,
解得AS=10.
∵A,S两点之间线段AS最短,
∴点A到点S移动的最短距离为AS=10cm.
故选:A.【点睛】本题考查的是平面展开−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.12.D【分析】设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,解得,然后利用勾股定理计算这个圆锥的高h.【详解】解:设圆锥的底面圆的半径为r,根据题意得,解得,这个圆锥的高,故选D.【点睛】本题主要考查了圆锥的侧面展开图和弧长公式,解题的关键在于能够熟练掌握圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.6【分析】根据圆锥的侧面积=πrl,列出方程求解即可.【详解】解:∵圆锥的侧面积为18π,底面半径为3,3πl=18π.解得:l=6,故答案为:6.【点睛】本题考查了圆锥的侧面积,解题关键是熟记圆锥的侧面积公式,列出方程进行求解.14.【分析】结合题意进行曲面展开,通过在平面扇形图中计算最短路路径问题.【详解】如图,沿过母线AB的轴截面展开得扇形,此时弧的长为底面圆周长的一半,故,由,,则,作,此时即为蚂蚁爬行的最短路径,在中,.【点睛】本题考查了平面展开-最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,来解决.15.(1);(2)不能从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥.理由见解析.【分析】(1)先由圆的性质求得阴影部分扇形的半径,由直径所对的圆周角是90°可知圆心角的度数,可求得阴影部分的面积;(2)先分别用R表示出阴影部分扇形的弧长,即所要围成的圆锥的底面周长为,以EF为直径作圆,是剩余材料中所作的最大的圆,求出其周长为(2﹣)Rπ,比较大小可知不能从第③块余料中剪出一个圆作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年德州市武城县人民医院合同制医师长期招聘12人备考题库及参考答案详解1套
- 超硬材料产业技术研究院公开招聘第二批科研人员20人备考题库及完整答案详解1套
- 2026年废固体废物污染波污染易发区保护保险合同中
- 广西工艺美术研究院有限公司所属企业绢麻所2025年12月招聘备考题库及1套完整答案详解
- 2026年农业量子外尔半金属农业合同
- 中共东莞市委外事工作委员会办公室2025年公开招聘编外聘用人员备考题库及1套完整答案详解
- 2025年中电科海洋信息技术研究院有限公司招聘备考题库及参考答案详解
- 2025年扬州市江都妇幼保健院公开招聘编外合同制专业技术人员备考题库有答案详解
- 2024年中储粮集团江苏分公司招聘考试真题
- 坝工课程设计心得
- 2025云南省人民检察院招聘22人笔试考试备考题库及答案解析
- 银行行业公司银行客户经理岗位招聘考试试卷及答案
- 2026年安全生产管理培训课件与事故预防与应急处理方案
- 2026天津市静海区北师大实验学校合同制教师招聘81人(仅限应届毕业生)考试笔试备考题库及答案解析
- 医学检验质控课件
- 2025陕西陕煤澄合矿业有限公司招聘570人参考笔试题库及答案解析
- 2025年仓储服务外包合同协议
- 2025辽宁沈阳金融商贸经济技术开发区管理委员会运营公司招聘60人考试历年真题汇编带答案解析
- 2025年刑法学考试试题及答案
- 广东省汕头市金平区2024-2025学年七年级上学期期末地理试题
- 2025年二手车交易市场发展可行性研究报告及总结分析
评论
0/150
提交评论