




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ILOWorkingPaper121
July/2024
、BufferorBottleneck?EmploymentExposuretoGenerativeAIandtheDigitalDivideinLatinAmerica
Authors/PawełGmyrek,HernanWinkler,SantiagoGarganta
Copyright©InternationalLabourOrganizationandtheWorldBank2024
ThisisanopenaccessworkdistributedundertheCreativeCommonsAttribution3.0IGOLicense(
/licenses/by/3.0/igo
).Userscanreuse,share,adaptandbuildupontheoriginalwork,asdetailedintheLicense.TheILOandTheWorldBankmustbeclearlycreditedastheownersoftheoriginalwork.TheuseoftheemblemoftheILOandTheWorldBankisnotpermittedinconnectionwithusers’work.
Attribution–Theworkmustbecitedasfollows:Gmyrek,P.,Winkler,H.,Garganta,S.BufferorBottleneck?EmploymentExposuretoGenerativeAIandtheDigitalDivideinLatinAmerica.ILOWorkingPaper121.Geneva:InternationalLabourOfficeandTheWorldBank,2024.
Translations–Incaseofatranslationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThistranslationwasnotcreatedbytheInternationalLabourOrganization(ILO)orTheWorldBankandshouldnotbeconsideredanofficialILOorWorldBanktranslation.TheILOandTheWorldBankarenotresponsibleforthecontentoraccuracyofthistranslation.
Adaptations–Incaseofanadaptationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThisisanadaptationofanoriginalworkbytheInternationalLabourOrganization(ILO)andTheWorldBank.ResponsibilityfortheviewsandopinionsexpressedintheadaptationrestssolelywiththeauthororauthorsoftheadaptationandarenotendorsedbytheILOorTheWorldBank.
ThisCClicensedoesnotapplytonon-ILOorWorldBankcopyrightmaterialsincludedinthispublication.Ifthematerialisattributedtoathirdparty,theuserofsuchmaterialissolelyresponsibleforclearingtherightswiththerightholder.
AnydisputearisingunderthislicensethatcannotbesettledamicablyshallbereferredtoarbitrationinaccordancewiththeArbitrationRulesoftheUnitedNationsCommissiononInternationalTradeLaw(UNCITRAL).Thepartiesshallbeboundbyanyarbitrationawardrenderedasaresultofsucharbitrationasthefinaladjudicationofsuchadispute.
Licensing),1211Geneva22,Switzerland,orbyemailto
rights@
.
AllqueriesonrightsandlicensingshouldbeaddressedtotheILOPublishingUnit(Rightsand
ISBN9789220410028(print),ISBN9789220410035(webPDF),ISBN9789220410042(epub),ISBN9789220410066(mobi),ISBN9789220410059(html).ISSN2708-3438(print),ISSN2708-3446(digital)
/10.54394/TFZY7681
ThedesignationsemployedinILOandWorldBankpublicationsandthepresentationofmaterialthereindonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheILOandTheWorldBankconcerningthelegalstatusofanycountry,areaorterritoryorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.Detailsat
/disclaimer
ThisarticleisaproductofthestaffoftheWorldBankandtheILO.IthasbeenreleasedbothinTheWorldBankPolicyResearchWorkingPaperSeriesandtheILOWorkingPaperSeries.Theresponsibilityforopinionsexpressedinsignedarticles,studiesandothercontributionsrestssolelywiththeirauthors,andpublicationdoesnotconstituteanendorsementbytheILOorTheWorldBankoftheopinionsexpressedinthem.
Referencetonamesoffirmsandcommercialproductsandprocessesdoesnotimplytheiren-
dorsementbytheILOorTheWorldBank,andanyfailuretomentionaparticularfirm,commercialproductorprocessisnotasignofdisapproval.
InformationonILOpublicationsanddigitalproductscanbefoundat:
/
research-and-publications
ILOWorkingPaperssummarizetheresultsofILOresearchinprogress,andseekto
stimulatediscussionofarangeofissuesrelatedtotheworldofwork.CommentsonthisILO
WorkingPaperarewelcomeandcanbesentto
gmyrek@
.
Authorizationforpublication:RichardSamans,Director,ResearchDepartment
ILOWorkingPaperscanbefoundat:
/research-and-publications#working
-papers
Suggestedcitation:
Gmyrek,P.,Winkler,H.,Garganta,S.2024.BufferorBottleneck?EmploymentExposure
toGenerativeAIandtheDigitalDivideinLatinAmerica,ILOWorkingPaper121(Geneva,
ILOandTheWorldBank,2024).
/10.54394/TFZY7681
01ILOWorkingPaper121
Abstract
Empiricalevidenceonthepotentialimpactsofgenerativeartificialintelligence(GenAI)ismostlyfocusedonhigh-incomecountries.Incontrast,littleisknownabouttheroleofthistechnologyonthefutureeconomicpathwaysofdevelopingeconomies.ThispapercontributestofillthisgapbyestimatingtheexposureoftheLatinAmericanlabourmarkettoGenAI.ItprovidesdetailedstatisticsofGenAIexposurebetweenandwithincountriesbyleveragingarichsetofharmonizedhouseholdandlabourforcesurveys.Toaccountfortheslowerpaceoftechnologyadoptionindevelopingeconomies,itadjuststhemeasuresofexposuretoGenAIbyusingthelikelihoodofaccessingdigitaltechnologiesatwork.ThisisthenusedtoassesstheextenttowhichthedigitaldivideacrossandwithincountrieswillbeabarriertomaximizetheproductivitygainsamongoccupationsthatcouldotherwisebeaugmentedbyGenAItools.Thefindingsshowthatcertaincharacteristicsareconsistentlycorrelatedwithhigherexposure.Specifically,urban-basedjobsthatrequirehighereducation,aresituatedintheformalsector,andareheldbyindividualswithhigherincomesaremorelikelytocomeintointeractionwiththistechnology.Moreover,thereisapronouncedtilttowardyoungerworkersfacinggreaterexposure,includingtheriskofjobau-tomation,particularlyinthefinance,insurance,andpublicadministrationsectors.Whenadjust-ingforaccesstodigitaltechnologies,thefindingsshowthatthedigitaldivideisamajorbarriertorealizingthepositiveeffectsofGenAIonjobsintheregion.Inparticular,nearlyhalfofthepo-sitionsthatcouldpotentiallybenefitfromaugmentationarehamperedbylackofuseofdigitaltechnologies.Thisnegativeeffectofthedigitaldivideismorepronouncedinpoorercountries.
Abouttheauthors
PawełGmyrekisaSeniorResearcherattheResearchDepartmentoftheILO.
HernanWinklerisaSeniorEconomistattheWorldBankPovertyandEquityGlobalPracticeforLatinAmericaandtheCaribbean.
SantiagoGargantaisaSeniorResearcherattheCenterforDistributive,LaborandSocialStudies(CEDLAS)oftheNationalUniversityofLaPlata(UNLP).
02ILOWorkingPaper121
Tableofcontents
Abstract
Abouttheauthors
Acronyms
01
01
05
、
Introduction
06
、
1
LACregionandthetheoreticaleffectsofGenAI
08
、
2
Methods
OccupationalexposuretoGenAI
Useofacomputeratwork
15
15
19
、
3
Findings
Cross-countrycomparisonsofthelevelsofexposure
Impactofdigitalinfrastructureonthepotentialoftransformation
Within-countrypatterns
Whichoccupationsdrivetheeffects?
Differentialexposureacrossearningslevels
22
22
26
29
30
32
、
Finaldiscussion
35
Appendix38
References45
Acknowledgements50
03ILOWorkingPaper121
ListofFigures
Figure1.GDPpercapita,populationandincomestatusofLACcountriesinthesample08
Figure2.Automationandaugmentationpotential:LACvsotherregions09
Figure3.Internetcoveragevspercapitaincome:globalandLAC11
Figure4.OccupationsintheLACregion,byISCO1-digitandgender13
Figure5.CoverageofISCO-084-digitmicrodatainSEDLAC(WB)andILOharmonizedmicro-
datacollection17
Figure6.HierarchicalclusteringbasedonISCO2-digitshares,GDP(PPP)andtotalpopulation18
Figure7.TotalexposuretoGenAIbycountry23
Figure8.Automationpotential-detailedbreakdownofsocio-economiccharacteristics24
Figure9.Augmentationpotential-detailedbreakdownofsocio-economiccharacteristics25
Figure10.Jobswithaugmentationpotentialandaccesstocomputeratwork,basedon
PIAACdata27
Figure11.Exposurebycountry,exposuretypeandaccesstodigitalinfrastructure28
Figure12.Exposurebycountry,typeanddetailedcountry-levelcharacteristics30
Figure13.ISCO2-digitoccupationsbytypeofexposureandcountry(shareofexposure>25%)31
Figure14.EarningsofoccupationsexposedtoGenAI,byemploymentstatus(exposure
above25%)33
FigureA1.ComparisonofTechXposurescoresvsGBBscores(meanbyoccupation,z-scores)38
FigureA2.ComparisonofFeltenetal.(2023)MLscoresvsGBBscores(z-scores)38
FigureA3.LabourmarketdistributioninLACcountriesbyISCO-082-digitoccupationsandsex39
FigureA4.RankingofcountriesbythetypeofGenAIexposure40
FigureA5.ComparisonofresultsoncomputerusebetweenPIAAC(atwork)andSEDLAC(at
home)-augmentationcategory40
FigureA6.Jobsinaugmentationcategorythatdonotuseacomputedatwork:totalsby
country40
04ILOWorkingPaper121
ListofTables
Table1.DistributionofAIExposurebyDemographicandSocioeconomicCategoriesin
SEDLACData19
TableA1.IndividualSEDLACobservationsbycountryandyear41
TableA2.EstimatedcoefficientsofcomputeruseatworkfromPIAAC41
TableA3.ResultsofthepooledOLSwithallindividualobservations,withcountry-levelnor-
malizedpopulationweights43
05ILOWorkingPaper121
Acronyms
EMEmergingMarkets
GDPGrossDomesticProduct
GBBGmyrek,BergandBescond(asusedinyourstudyforcitation)
GenAIGenerativeAI
GPT-4GenerativePre-trainedTransformer4
HICHighIncomeCountries
ILOInternationalLabourOrganization
IMFInternationalMonetaryFund
ISCOInternationalstandardClassificationofOccupations
ISCO-08InternationalStandardClassificationofOccupations,2008version
LACLatinAmericaandtheCaribbean
LLMLargeLanguageModels
OECDOrganizationforEconomicCooperationandDevelopment
PIAACProgrammefortheInternationalAssessmentofAdultCompetencies
PPPPurchasingPowerParity
SEDLACSocio-EconomicDatabaseforLatinAmericaandtheCaribbean
TFPTotalFactorProductivity
USUnitedStates
WBWorldBank
WEFWorldEconomicForum
06ILOWorkingPaper121
、Introduction
PublicattentiontoGenerativeAI(GenAI)hasbeenontherisesincetheintroductionoftheconversationalmodels,suchasChatGPT,BardorGemini.TheimpressiveabilitiesoftheLargeLanguageModels(LLM),followedbyotherneuralnetwork-basedAIsystemscapableofgener-atingimageandevenvideofromsimpletextpromptshaveraisedarangeofimportantethi-calandsecurityquestionsfornationalpolicymakersandinternationalcooperationstructures.However,thetopicthatcapturesmostdailyattentionofregularcitizensisthepotentialimpactofthesequicklyadvancingtoolsonjobs.
IntheUnitedStates(US),overhalfofalladultsaremoreworriedthanexcitedaboutAIindailylife,citingthe“lossofhumanjobs”astheirmostimportantconcern(FaverioandTyson,2022;PewResearchCenter,2023;Rutgers,2024).InSwitzerland,a2023surveyfocusedspecificallyonGenAIrevealedthatof1,000respondentsalreadyworkingwithacomputer,almosthalf(43%)wereconcernedaboutlosingtheirjobinthenextfiveyears,withthosefrequentlyusingGenAIatworkbeingdisproportionately(69%)moreconcerned(Gramppetal.,2023).ThissuggestsarapiddeparturefrommorepositiveassessmentsofAIinsurveyscollectedbyOECDpriortothearrivalofpubliclyaccessiblechatbotsinlate2022(Laneetal.,2023;OECD,2023).1
Notsurprisingly,thepotentialtransformationthatmightresultfromtheinteractionofGenAIwithlabourmarketshasalsoattractedgrowingattentionamongscholars.Mainresearchques-tionshavecanteredaroundtheimpactonemployment,emergingoccupations,productivityandjobquality.2ArecentpaperfromtheIMFprovidesacomprehensiveoverviewofthisliterature,atthesametimehighlightingthescarcityofstudiesthatgobeyondhigh-incomecountries(HICs)(ComunaleandManera,2024).
Bridgingthisresearchgap,ourstudyprovidesnewevidenceonthepotentialimpactsofGenAIacrosslabourmarketsintheLatinAmericaandtheCaribbean(LAC)region.Buildingontheap-proachdevelopedbyGmyrek,BergandBescond(2023)–GBBhereafter–weprovidenewevidenceonAIexposurebetweenandwithincountriesbyleveragingharmonizedhouseholdandlabourforcesurveysforLACfromtheWorldBank(WB)andtheInternationalLabourOrganization(ILO).Bybuildingonthecomparativestrengthsofthedatasetsfrombothinstitutions,wedevelopacompleteregionaloverview,accompaniedbycountry-levelestimatesofthepotentialoccupationalexposure,withfurtherbreakdownsbydetaileddemographicandlabourmarketcharacteristics.
Animportantcontributionofthisstudyistoprovideafirstattemptatadaptingmeasuresofjobs’exposuretoGenAItothecontextofdevelopingcountries,whereevenworkersinoccupa-tionsthataregenerallyexpectedtobenefitfromGenAImaynotbeabletoreapitsbenefitsduetopooraccesstodigitalinfrastructure.WeimplementthisadjustmentbyestimatingmeasuresofcomputeruseatworkacrossISCO2-digitoccupations,workersandcountry-levelcharacter-isticsbasedonPIAACdataandbysubsequentlyimputingthemintoindividualobservationsincountry-levelsurveysincludedintheSEDLACdatabase.WethenusethismeasuretocreatetwocategoriesamongworkerswhoareexpectedtobenefitfromGenAIusebecauseofthena-tureoftheiroccupations:thosewhohaveaccesstodigitaltechnologies,andthosewhodonot.Thesizeofthelatterisanindicatorofthenumberofworkerswhowillnotbeabletoenjoythe
1InOECD’ssurveyofworkers“fourinfiveworkerssaidthatAIhadimprovedtheirperformanceatworkandthreeinfivesaidithadincreasedtheirenjoymentofwork”(…)“WorkerswerealsopositiveabouttheimpactofAIontheirphysicalandmentalhealth,aswellasitsusefulnessindecisionmaking”(OECD,2023).
2E.g.,seeBrynjolfssonetal.,2023;Huietal.,2023,Berajaetal.,2023,Adams-Prassletal.,2023.
07ILOWorkingPaper121
productivitybenefitsofGenAIeventhoughtheirjobscouldtheoreticallybenefitfromthetrans-formation.Wealsodiscussthedetaileddemographicsofthegroupsthataremostlikelytobenegativelyaffectedbytheseinfrastructurelimitations.
Ourfindingsindicatethatbetween30and40percentofemploymentintheLACisexposedinsomewaytoGenAI.Thisexposureislinkedwiththeeconomicstatusofcountries,suggestingthatincomelevelsareastrongcorrelateofGenAI’simpactonlabourmarkets.Thistotallevelofexposureincludesthreecategories:exposedtoautomation,augmentation,and“thebigun-known”.Thelatterincludesoccupations,which–dependingontheprogressoftechnologyandtheuseofadjacenttechnologicalapplications,suchasLLM-basedagents–couldfallclosertoautomationoraugmentation.
CertaincharacteristicsconsistentlycorrelatewithhigheroverallGenAIexposure.Specifically,ur-ban-basedjobsthatrequirehighereducation,aresituatedintheformalsector,andareheldbyindividualswithhigherrelativeincomesaremorelikelytocomeintointeractionwiththistech-nology.Theshareofjobsexposedtoautomationisrelativelysmallbutnontrivialatabout2to5percentoftotalemployment.Youngerandfemaleworkerstendtofacegreaterautomationexposure,particularlyinthefinance,insurance,andpublicadministrationsectors.Atthesametime,thesharesofjobsthatcouldbenefitfromaproductivetransformationwithGenAIarecon-sistentlyhigherthanthosewithautomationrisksacrossallLACcountries,rangingbetween8and12percentofemploymentacrosscountries.Thisisparticularlythecaseforthejobsineducation,healthandpersonalservices.Inaddition,thesectorsorientedtowardscustomerservice(retail,trade,hotels,restaurants,etc.)faceanelevatedexposureto"thebigunknown".Thiscategoryencompassesthelargest(14-21percent)shareofemploymentinourestimates,demonstratingthat,whiletheconceptofoccupationalexposureiseasiertoestablish,thepreciseeffectsonhowmanyoccupationsmightevolvearehardertopredictforalargeshareoftoday’slabourmarkets.
Finally,wefindthataccesstodigitaltechnologiesisacriticaldeterminantoftheextenttowhichworkerscanharnessthepotentialbenefitsofGenAI.Nearlyhalfofthepositionsthatcouldpo-tentiallybenefitfromaugmentationarehamperedbydigitalshortcomingsthatwillpreventthemfromrealizingthatpotential.Specifically,6.24percentofjobsheldbywomenand6.22percentofthoseheldbymenareaffectedduetothesegaps.Similarlimitationsapplytothejobsinthe“bigunknown”category:eventhoughsomeofthemcouldpotentiallypivottowardsaugmenta-tionthroughincreasingcomplementaritybetweenGenAIandthehumanworkerintheseoccu-pations,thedigitalgapswillpreventlargesharesofthesejobsfromsuchascenario.
Therestofthisstudyisstructuredasfollows:section2providesageneraloverviewoftheLACregionandelaboratesonthetheoreticaleffectsonecouldexpectfromtheinteractionofGenAIwithitslabourmarkets,section3discussesthedataandmethodsappliedtoouranalysis,section4providesadetailedbreakdownofourfindings,withthefinaldiscussionpresentedinsection5.
08ILOWorkingPaper121
、1LACregionandthetheoreticaleffectsofGenAI
ThedefinitionoftheregionofLatinAmericaandtheCaribbean(LAC)canhaveavaryingscopeacrossdifferentinstitutions.Inthecaseofourstudy,werelyonaheuristicapproachofinclud-ingthemaximumnumberofcountriesforwhichwecanfinddataofsufficientqualityintheda-tabasesoftheWB,ILOandanyotherrelevantsources.Thefinalsampleincludes22countries,showninFigure1accordingtotheirincome-basedgroupingusedbytheWBin2022,andtotalpopulation.Theregionisveryheterogeneous,fromverysmallislandsintheCaribbeanwithfew-erthanhalfamillioninhabitants,tocountrieswithlargepopulationssuchasBrazilandMexico.Accordingly,itrangesfromhigh-incomecountriessuchasUruguayandPanamatolower-incomecountriessuchasNicaraguaandHonduras.
、Figure1.GDPpercapita,populationandincomestatusofLACcountriesinthesample
WhilethereisalargebodyofliteratureanalysingtheimpactsoftechnologicalchangeonthelabourmarketoutcomesofLAC(forexample,seeDutzetal.2018),theexpectedincidenceofGenAIislikelytobedifferentfromthatofprevioustechnologicalbreakthroughs.Autor(2024)claimsthatthetransformationalimpactofnewtechnologiesonlabouristhroughthereshapingofhumanexpertise,andheillustratesthishypothesiswithtwoexamples:theadoptionofmassproductioninthe18thand19thcenturies,andtheadoptionofdigitaltechnologiessincethe1960s.Theemergenceofmassproductionchangedthecomplexworkofartisansintoself-con-tainedandsimpletaskscarriedoutbyproductionworkers,usingnewmachinery,andoverseen
09ILOWorkingPaper121
byotherswithhigherlevelsofeducation.Theincreaseddemandforthis“massexpertise”wasaccompaniedbyanincreasingnumberofhigh-schoolgraduates,leadingtotheriseofanewmiddleclass.Later,digitaltechnologiesallowedtocarryoutroutinetasksbyencodingthemindeterministicrules.Non-routinetaskscouldnotbereplacedbythistechnologybecausetheyarenotattainedbylearningrules,butthroughlearningbydoing.Asaresult,digitaltechnologiesgaverisetoanewformofexpertisebyallowingprofessionalstoobtainandprocessinforma-tionmoreefficiently,andtherebyhavingmoretimetointerpretandapplyit.Theroutinejobsreplacedbythistechnologytendedtobeinthemiddleoftheearningsdistribution,whilethenon-routinejobscomplementedbydigitalizationtendedtobeatthetop,leadingtoapolariza-tionofthelabourmarket.AI,incontrast,canperformnon-routinetasksthatoftenrequiretacitknowledge.Forexample,itcanallownon-eliteworkers(suchasnurses)toengageincomplexdecision-making,anditcanautomatesomeofthetaskscarriedoutbyhigh-skillworkerssuchasdoctors,softwareengineersandlawyers.However,asdescribedbelow,thefinalimpactsonjobswilldependonotherfactorsaswell.Forexample,thedirectautomationimpactsofGenAIonjobsmaybeoffsetbypositiveimpactsonproductivity,whichwouldstrengthenlabourdemand.
WhilenopreviousgranularassessmentsofoccupationalexposuretoGenAIexistfortheLACregion,therehavebeencomparisonstootherregionsmadeinbroaderstudies.Forexample,GBB(2023)placeLACsomewhereinthemiddleoftheregionalrankingofpotentialautomationexposure,with2.5percentoftotalemploymentfallingintothiscategory(Figure2).Intermsofaugmentationpotential,thesamestudyrankedLACasthethirdfromthebottom(12.8percentofemployment).Similarly,whiletheWEF(2023)globalstudydidnotprovideaspecificregionalranking,itprojecteda5-yearstructurallabourchurninLACat22percent,slightlybelowtheglobalaverage(23percent).Inotherwords,theLACregioncanbecharacterizedashavingeconomieswithanaveragelevelofexposuretoGenAIthatislessthanthatofthemostindustrializednations,yethigherthanthatfoundinlow-incomeregions,makingitarelevantintermediatebenchmark.
、Figure2.Automationandaugmentationpotential:LACvsotherregions
Intheory,theriseofGenAIanditspotentialpositiveimpactsonlabourproductivitycouldposeasignificantopportunityfordevelopingcountries.Somerecentprivatesectorstudiesevensug-gestthataggregateimpactofwidespreadAIadoptioncouldaddbetween0.1and1.5ppofan-nualproductivitygrowthinHICs,withslightlylowerfiguresestimatedforEmergingMarkets(EM)(GoldmanSachs,2023;McKinsey,2023).SuchprojectionsmightbeparticularlyenticingfortheLACregion,whichhaslonggrappledwithapersistentproductivitygapincomparisontootherareasoftheworld.WhilethedevelopingnationsinAsiaandEuropemanagedtonarrowtheirproductivitygapwiththeUnitedStatesbetween1990and2019,suchgapincreasedfortheLACregionduringthesameperiod(IMF,2022).Recenttrendsalsoraiseconcerns,since,despitesome
10ILOWorkingPaper121
countryvariation(Erumbanetal.,2024),theoverallproductivitygrowthhasbeenalmostzeroinLACeversincethestartoftheglobalproductivityslowdownofthelast10years(Dieppe,2021).Comparedtootherregions,barrierstoinnovationandtechnologyadoptionhavebeenparticu-larlysalientfactorslimitingproductivitygrowthinLAC.
CouldGenAIhelpunlockthisproductivityimpasse?RecentempiricalstudiesfocusedontheuseofGenAIinparticularoccupationalsettingssuggestthatthepositiveimpactsonproductivitycanbelarge.Forexample,Pengetal.(2023)implementedacontrolledexperimentamongprofes-sionalprogrammersandfoundthataccesstoaGenAIassistantreducedthetimetocompleteprogrammingtasksby56percent.Brynjolfssonetal.(2023)findthataccesstoGenAIincreasesproductivityamongcustomersupportworkersintermsofissuesresolvedperhour,whichisdriv-enmostlybytheboostofperformanceamongthenoviceandlow-skillworkers.Similarly,NoyandZhang(2023)findthathavingaccesstoChatGPThelpsimprovetheproductivityofwritingprofessionals,byincreasingthequality
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论