iloWorld Bank:拉丁美洲生成式人工智能的就业机会与数字鸿沟_第1页
iloWorld Bank:拉丁美洲生成式人工智能的就业机会与数字鸿沟_第2页
iloWorld Bank:拉丁美洲生成式人工智能的就业机会与数字鸿沟_第3页
iloWorld Bank:拉丁美洲生成式人工智能的就业机会与数字鸿沟_第4页
iloWorld Bank:拉丁美洲生成式人工智能的就业机会与数字鸿沟_第5页
已阅读5页,还剩82页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ILOWorkingPaper121

July/2024

、BufferorBottleneck?EmploymentExposuretoGenerativeAIandtheDigitalDivideinLatinAmerica

Authors/PawełGmyrek,HernanWinkler,SantiagoGarganta

Copyright©InternationalLabourOrganizationandtheWorldBank2024

ThisisanopenaccessworkdistributedundertheCreativeCommonsAttribution3.0IGOLicense(

/licenses/by/3.0/igo

).Userscanreuse,share,adaptandbuildupontheoriginalwork,asdetailedintheLicense.TheILOandTheWorldBankmustbeclearlycreditedastheownersoftheoriginalwork.TheuseoftheemblemoftheILOandTheWorldBankisnotpermittedinconnectionwithusers’work.

Attribution–Theworkmustbecitedasfollows:Gmyrek,P.,Winkler,H.,Garganta,S.BufferorBottleneck?EmploymentExposuretoGenerativeAIandtheDigitalDivideinLatinAmerica.ILOWorkingPaper121.Geneva:InternationalLabourOfficeandTheWorldBank,2024.

Translations–Incaseofatranslationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThistranslationwasnotcreatedbytheInternationalLabourOrganization(ILO)orTheWorldBankandshouldnotbeconsideredanofficialILOorWorldBanktranslation.TheILOandTheWorldBankarenotresponsibleforthecontentoraccuracyofthistranslation.

Adaptations–Incaseofanadaptationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThisisanadaptationofanoriginalworkbytheInternationalLabourOrganization(ILO)andTheWorldBank.ResponsibilityfortheviewsandopinionsexpressedintheadaptationrestssolelywiththeauthororauthorsoftheadaptationandarenotendorsedbytheILOorTheWorldBank.

ThisCClicensedoesnotapplytonon-ILOorWorldBankcopyrightmaterialsincludedinthispublication.Ifthematerialisattributedtoathirdparty,theuserofsuchmaterialissolelyresponsibleforclearingtherightswiththerightholder.

AnydisputearisingunderthislicensethatcannotbesettledamicablyshallbereferredtoarbitrationinaccordancewiththeArbitrationRulesoftheUnitedNationsCommissiononInternationalTradeLaw(UNCITRAL).Thepartiesshallbeboundbyanyarbitrationawardrenderedasaresultofsucharbitrationasthefinaladjudicationofsuchadispute.

Licensing),1211Geneva22,Switzerland,orbyemailto

rights@

.

AllqueriesonrightsandlicensingshouldbeaddressedtotheILOPublishingUnit(Rightsand

ISBN9789220410028(print),ISBN9789220410035(webPDF),ISBN9789220410042(epub),ISBN9789220410066(mobi),ISBN9789220410059(html).ISSN2708-3438(print),ISSN2708-3446(digital)

/10.54394/TFZY7681

ThedesignationsemployedinILOandWorldBankpublicationsandthepresentationofmaterialthereindonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheILOandTheWorldBankconcerningthelegalstatusofanycountry,areaorterritoryorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.Detailsat

/disclaimer

ThisarticleisaproductofthestaffoftheWorldBankandtheILO.IthasbeenreleasedbothinTheWorldBankPolicyResearchWorkingPaperSeriesandtheILOWorkingPaperSeries.Theresponsibilityforopinionsexpressedinsignedarticles,studiesandothercontributionsrestssolelywiththeirauthors,andpublicationdoesnotconstituteanendorsementbytheILOorTheWorldBankoftheopinionsexpressedinthem.

Referencetonamesoffirmsandcommercialproductsandprocessesdoesnotimplytheiren-

dorsementbytheILOorTheWorldBank,andanyfailuretomentionaparticularfirm,commercialproductorprocessisnotasignofdisapproval.

InformationonILOpublicationsanddigitalproductscanbefoundat:

/

research-and-publications

ILOWorkingPaperssummarizetheresultsofILOresearchinprogress,andseekto

stimulatediscussionofarangeofissuesrelatedtotheworldofwork.CommentsonthisILO

WorkingPaperarewelcomeandcanbesentto

gmyrek@

.

Authorizationforpublication:RichardSamans,Director,ResearchDepartment

ILOWorkingPaperscanbefoundat:

/research-and-publications#working

-papers

Suggestedcitation:

Gmyrek,P.,Winkler,H.,Garganta,S.2024.BufferorBottleneck?EmploymentExposure

toGenerativeAIandtheDigitalDivideinLatinAmerica,ILOWorkingPaper121(Geneva,

ILOandTheWorldBank,2024).

/10.54394/TFZY7681

01ILOWorkingPaper121

Abstract

Empiricalevidenceonthepotentialimpactsofgenerativeartificialintelligence(GenAI)ismostlyfocusedonhigh-incomecountries.Incontrast,littleisknownabouttheroleofthistechnologyonthefutureeconomicpathwaysofdevelopingeconomies.ThispapercontributestofillthisgapbyestimatingtheexposureoftheLatinAmericanlabourmarkettoGenAI.ItprovidesdetailedstatisticsofGenAIexposurebetweenandwithincountriesbyleveragingarichsetofharmonizedhouseholdandlabourforcesurveys.Toaccountfortheslowerpaceoftechnologyadoptionindevelopingeconomies,itadjuststhemeasuresofexposuretoGenAIbyusingthelikelihoodofaccessingdigitaltechnologiesatwork.ThisisthenusedtoassesstheextenttowhichthedigitaldivideacrossandwithincountrieswillbeabarriertomaximizetheproductivitygainsamongoccupationsthatcouldotherwisebeaugmentedbyGenAItools.Thefindingsshowthatcertaincharacteristicsareconsistentlycorrelatedwithhigherexposure.Specifically,urban-basedjobsthatrequirehighereducation,aresituatedintheformalsector,andareheldbyindividualswithhigherincomesaremorelikelytocomeintointeractionwiththistechnology.Moreover,thereisapronouncedtilttowardyoungerworkersfacinggreaterexposure,includingtheriskofjobau-tomation,particularlyinthefinance,insurance,andpublicadministrationsectors.Whenadjust-ingforaccesstodigitaltechnologies,thefindingsshowthatthedigitaldivideisamajorbarriertorealizingthepositiveeffectsofGenAIonjobsintheregion.Inparticular,nearlyhalfofthepo-sitionsthatcouldpotentiallybenefitfromaugmentationarehamperedbylackofuseofdigitaltechnologies.Thisnegativeeffectofthedigitaldivideismorepronouncedinpoorercountries.

Abouttheauthors

PawełGmyrekisaSeniorResearcherattheResearchDepartmentoftheILO.

HernanWinklerisaSeniorEconomistattheWorldBankPovertyandEquityGlobalPracticeforLatinAmericaandtheCaribbean.

SantiagoGargantaisaSeniorResearcherattheCenterforDistributive,LaborandSocialStudies(CEDLAS)oftheNationalUniversityofLaPlata(UNLP).

02ILOWorkingPaper121

Tableofcontents

Abstract

Abouttheauthors

Acronyms

01

01

05

Introduction

06

1

LACregionandthetheoreticaleffectsofGenAI

08

2

Methods

OccupationalexposuretoGenAI

Useofacomputeratwork

15

15

19

3

Findings

Cross-countrycomparisonsofthelevelsofexposure

Impactofdigitalinfrastructureonthepotentialoftransformation

Within-countrypatterns

Whichoccupationsdrivetheeffects?

Differentialexposureacrossearningslevels

22

22

26

29

30

32

Finaldiscussion

35

Appendix38

References45

Acknowledgements50

03ILOWorkingPaper121

ListofFigures

Figure1.GDPpercapita,populationandincomestatusofLACcountriesinthesample08

Figure2.Automationandaugmentationpotential:LACvsotherregions09

Figure3.Internetcoveragevspercapitaincome:globalandLAC11

Figure4.OccupationsintheLACregion,byISCO1-digitandgender13

Figure5.CoverageofISCO-084-digitmicrodatainSEDLAC(WB)andILOharmonizedmicro-

datacollection17

Figure6.HierarchicalclusteringbasedonISCO2-digitshares,GDP(PPP)andtotalpopulation18

Figure7.TotalexposuretoGenAIbycountry23

Figure8.Automationpotential-detailedbreakdownofsocio-economiccharacteristics24

Figure9.Augmentationpotential-detailedbreakdownofsocio-economiccharacteristics25

Figure10.Jobswithaugmentationpotentialandaccesstocomputeratwork,basedon

PIAACdata27

Figure11.Exposurebycountry,exposuretypeandaccesstodigitalinfrastructure28

Figure12.Exposurebycountry,typeanddetailedcountry-levelcharacteristics30

Figure13.ISCO2-digitoccupationsbytypeofexposureandcountry(shareofexposure>25%)31

Figure14.EarningsofoccupationsexposedtoGenAI,byemploymentstatus(exposure

above25%)33

FigureA1.ComparisonofTechXposurescoresvsGBBscores(meanbyoccupation,z-scores)38

FigureA2.ComparisonofFeltenetal.(2023)MLscoresvsGBBscores(z-scores)38

FigureA3.LabourmarketdistributioninLACcountriesbyISCO-082-digitoccupationsandsex39

FigureA4.RankingofcountriesbythetypeofGenAIexposure40

FigureA5.ComparisonofresultsoncomputerusebetweenPIAAC(atwork)andSEDLAC(at

home)-augmentationcategory40

FigureA6.Jobsinaugmentationcategorythatdonotuseacomputedatwork:totalsby

country40

04ILOWorkingPaper121

ListofTables

Table1.DistributionofAIExposurebyDemographicandSocioeconomicCategoriesin

SEDLACData19

TableA1.IndividualSEDLACobservationsbycountryandyear41

TableA2.EstimatedcoefficientsofcomputeruseatworkfromPIAAC41

TableA3.ResultsofthepooledOLSwithallindividualobservations,withcountry-levelnor-

malizedpopulationweights43

05ILOWorkingPaper121

Acronyms

EMEmergingMarkets

GDPGrossDomesticProduct

GBBGmyrek,BergandBescond(asusedinyourstudyforcitation)

GenAIGenerativeAI

GPT-4GenerativePre-trainedTransformer4

HICHighIncomeCountries

ILOInternationalLabourOrganization

IMFInternationalMonetaryFund

ISCOInternationalstandardClassificationofOccupations

ISCO-08InternationalStandardClassificationofOccupations,2008version

LACLatinAmericaandtheCaribbean

LLMLargeLanguageModels

OECDOrganizationforEconomicCooperationandDevelopment

PIAACProgrammefortheInternationalAssessmentofAdultCompetencies

PPPPurchasingPowerParity

SEDLACSocio-EconomicDatabaseforLatinAmericaandtheCaribbean

TFPTotalFactorProductivity

USUnitedStates

WBWorldBank

WEFWorldEconomicForum

06ILOWorkingPaper121

、Introduction

PublicattentiontoGenerativeAI(GenAI)hasbeenontherisesincetheintroductionoftheconversationalmodels,suchasChatGPT,BardorGemini.TheimpressiveabilitiesoftheLargeLanguageModels(LLM),followedbyotherneuralnetwork-basedAIsystemscapableofgener-atingimageandevenvideofromsimpletextpromptshaveraisedarangeofimportantethi-calandsecurityquestionsfornationalpolicymakersandinternationalcooperationstructures.However,thetopicthatcapturesmostdailyattentionofregularcitizensisthepotentialimpactofthesequicklyadvancingtoolsonjobs.

IntheUnitedStates(US),overhalfofalladultsaremoreworriedthanexcitedaboutAIindailylife,citingthe“lossofhumanjobs”astheirmostimportantconcern(FaverioandTyson,2022;PewResearchCenter,2023;Rutgers,2024).InSwitzerland,a2023surveyfocusedspecificallyonGenAIrevealedthatof1,000respondentsalreadyworkingwithacomputer,almosthalf(43%)wereconcernedaboutlosingtheirjobinthenextfiveyears,withthosefrequentlyusingGenAIatworkbeingdisproportionately(69%)moreconcerned(Gramppetal.,2023).ThissuggestsarapiddeparturefrommorepositiveassessmentsofAIinsurveyscollectedbyOECDpriortothearrivalofpubliclyaccessiblechatbotsinlate2022(Laneetal.,2023;OECD,2023).1

Notsurprisingly,thepotentialtransformationthatmightresultfromtheinteractionofGenAIwithlabourmarketshasalsoattractedgrowingattentionamongscholars.Mainresearchques-tionshavecanteredaroundtheimpactonemployment,emergingoccupations,productivityandjobquality.2ArecentpaperfromtheIMFprovidesacomprehensiveoverviewofthisliterature,atthesametimehighlightingthescarcityofstudiesthatgobeyondhigh-incomecountries(HICs)(ComunaleandManera,2024).

Bridgingthisresearchgap,ourstudyprovidesnewevidenceonthepotentialimpactsofGenAIacrosslabourmarketsintheLatinAmericaandtheCaribbean(LAC)region.Buildingontheap-proachdevelopedbyGmyrek,BergandBescond(2023)–GBBhereafter–weprovidenewevidenceonAIexposurebetweenandwithincountriesbyleveragingharmonizedhouseholdandlabourforcesurveysforLACfromtheWorldBank(WB)andtheInternationalLabourOrganization(ILO).Bybuildingonthecomparativestrengthsofthedatasetsfrombothinstitutions,wedevelopacompleteregionaloverview,accompaniedbycountry-levelestimatesofthepotentialoccupationalexposure,withfurtherbreakdownsbydetaileddemographicandlabourmarketcharacteristics.

Animportantcontributionofthisstudyistoprovideafirstattemptatadaptingmeasuresofjobs’exposuretoGenAItothecontextofdevelopingcountries,whereevenworkersinoccupa-tionsthataregenerallyexpectedtobenefitfromGenAImaynotbeabletoreapitsbenefitsduetopooraccesstodigitalinfrastructure.WeimplementthisadjustmentbyestimatingmeasuresofcomputeruseatworkacrossISCO2-digitoccupations,workersandcountry-levelcharacter-isticsbasedonPIAACdataandbysubsequentlyimputingthemintoindividualobservationsincountry-levelsurveysincludedintheSEDLACdatabase.WethenusethismeasuretocreatetwocategoriesamongworkerswhoareexpectedtobenefitfromGenAIusebecauseofthena-tureoftheiroccupations:thosewhohaveaccesstodigitaltechnologies,andthosewhodonot.Thesizeofthelatterisanindicatorofthenumberofworkerswhowillnotbeabletoenjoythe

1InOECD’ssurveyofworkers“fourinfiveworkerssaidthatAIhadimprovedtheirperformanceatworkandthreeinfivesaidithadincreasedtheirenjoymentofwork”(…)“WorkerswerealsopositiveabouttheimpactofAIontheirphysicalandmentalhealth,aswellasitsusefulnessindecisionmaking”(OECD,2023).

2E.g.,seeBrynjolfssonetal.,2023;Huietal.,2023,Berajaetal.,2023,Adams-Prassletal.,2023.

07ILOWorkingPaper121

productivitybenefitsofGenAIeventhoughtheirjobscouldtheoreticallybenefitfromthetrans-formation.Wealsodiscussthedetaileddemographicsofthegroupsthataremostlikelytobenegativelyaffectedbytheseinfrastructurelimitations.

Ourfindingsindicatethatbetween30and40percentofemploymentintheLACisexposedinsomewaytoGenAI.Thisexposureislinkedwiththeeconomicstatusofcountries,suggestingthatincomelevelsareastrongcorrelateofGenAI’simpactonlabourmarkets.Thistotallevelofexposureincludesthreecategories:exposedtoautomation,augmentation,and“thebigun-known”.Thelatterincludesoccupations,which–dependingontheprogressoftechnologyandtheuseofadjacenttechnologicalapplications,suchasLLM-basedagents–couldfallclosertoautomationoraugmentation.

CertaincharacteristicsconsistentlycorrelatewithhigheroverallGenAIexposure.Specifically,ur-ban-basedjobsthatrequirehighereducation,aresituatedintheformalsector,andareheldbyindividualswithhigherrelativeincomesaremorelikelytocomeintointeractionwiththistech-nology.Theshareofjobsexposedtoautomationisrelativelysmallbutnontrivialatabout2to5percentoftotalemployment.Youngerandfemaleworkerstendtofacegreaterautomationexposure,particularlyinthefinance,insurance,andpublicadministrationsectors.Atthesametime,thesharesofjobsthatcouldbenefitfromaproductivetransformationwithGenAIarecon-sistentlyhigherthanthosewithautomationrisksacrossallLACcountries,rangingbetween8and12percentofemploymentacrosscountries.Thisisparticularlythecaseforthejobsineducation,healthandpersonalservices.Inaddition,thesectorsorientedtowardscustomerservice(retail,trade,hotels,restaurants,etc.)faceanelevatedexposureto"thebigunknown".Thiscategoryencompassesthelargest(14-21percent)shareofemploymentinourestimates,demonstratingthat,whiletheconceptofoccupationalexposureiseasiertoestablish,thepreciseeffectsonhowmanyoccupationsmightevolvearehardertopredictforalargeshareoftoday’slabourmarkets.

Finally,wefindthataccesstodigitaltechnologiesisacriticaldeterminantoftheextenttowhichworkerscanharnessthepotentialbenefitsofGenAI.Nearlyhalfofthepositionsthatcouldpo-tentiallybenefitfromaugmentationarehamperedbydigitalshortcomingsthatwillpreventthemfromrealizingthatpotential.Specifically,6.24percentofjobsheldbywomenand6.22percentofthoseheldbymenareaffectedduetothesegaps.Similarlimitationsapplytothejobsinthe“bigunknown”category:eventhoughsomeofthemcouldpotentiallypivottowardsaugmenta-tionthroughincreasingcomplementaritybetweenGenAIandthehumanworkerintheseoccu-pations,thedigitalgapswillpreventlargesharesofthesejobsfromsuchascenario.

Therestofthisstudyisstructuredasfollows:section2providesageneraloverviewoftheLACregionandelaboratesonthetheoreticaleffectsonecouldexpectfromtheinteractionofGenAIwithitslabourmarkets,section3discussesthedataandmethodsappliedtoouranalysis,section4providesadetailedbreakdownofourfindings,withthefinaldiscussionpresentedinsection5.

08ILOWorkingPaper121

、1LACregionandthetheoreticaleffectsofGenAI

ThedefinitionoftheregionofLatinAmericaandtheCaribbean(LAC)canhaveavaryingscopeacrossdifferentinstitutions.Inthecaseofourstudy,werelyonaheuristicapproachofinclud-ingthemaximumnumberofcountriesforwhichwecanfinddataofsufficientqualityintheda-tabasesoftheWB,ILOandanyotherrelevantsources.Thefinalsampleincludes22countries,showninFigure1accordingtotheirincome-basedgroupingusedbytheWBin2022,andtotalpopulation.Theregionisveryheterogeneous,fromverysmallislandsintheCaribbeanwithfew-erthanhalfamillioninhabitants,tocountrieswithlargepopulationssuchasBrazilandMexico.Accordingly,itrangesfromhigh-incomecountriessuchasUruguayandPanamatolower-incomecountriessuchasNicaraguaandHonduras.

、Figure1.GDPpercapita,populationandincomestatusofLACcountriesinthesample

WhilethereisalargebodyofliteratureanalysingtheimpactsoftechnologicalchangeonthelabourmarketoutcomesofLAC(forexample,seeDutzetal.2018),theexpectedincidenceofGenAIislikelytobedifferentfromthatofprevioustechnologicalbreakthroughs.Autor(2024)claimsthatthetransformationalimpactofnewtechnologiesonlabouristhroughthereshapingofhumanexpertise,andheillustratesthishypothesiswithtwoexamples:theadoptionofmassproductioninthe18thand19thcenturies,andtheadoptionofdigitaltechnologiessincethe1960s.Theemergenceofmassproductionchangedthecomplexworkofartisansintoself-con-tainedandsimpletaskscarriedoutbyproductionworkers,usingnewmachinery,andoverseen

09ILOWorkingPaper121

byotherswithhigherlevelsofeducation.Theincreaseddemandforthis“massexpertise”wasaccompaniedbyanincreasingnumberofhigh-schoolgraduates,leadingtotheriseofanewmiddleclass.Later,digitaltechnologiesallowedtocarryoutroutinetasksbyencodingthemindeterministicrules.Non-routinetaskscouldnotbereplacedbythistechnologybecausetheyarenotattainedbylearningrules,butthroughlearningbydoing.Asaresult,digitaltechnologiesgaverisetoanewformofexpertisebyallowingprofessionalstoobtainandprocessinforma-tionmoreefficiently,andtherebyhavingmoretimetointerpretandapplyit.Theroutinejobsreplacedbythistechnologytendedtobeinthemiddleoftheearningsdistribution,whilethenon-routinejobscomplementedbydigitalizationtendedtobeatthetop,leadingtoapolariza-tionofthelabourmarket.AI,incontrast,canperformnon-routinetasksthatoftenrequiretacitknowledge.Forexample,itcanallownon-eliteworkers(suchasnurses)toengageincomplexdecision-making,anditcanautomatesomeofthetaskscarriedoutbyhigh-skillworkerssuchasdoctors,softwareengineersandlawyers.However,asdescribedbelow,thefinalimpactsonjobswilldependonotherfactorsaswell.Forexample,thedirectautomationimpactsofGenAIonjobsmaybeoffsetbypositiveimpactsonproductivity,whichwouldstrengthenlabourdemand.

WhilenopreviousgranularassessmentsofoccupationalexposuretoGenAIexistfortheLACregion,therehavebeencomparisonstootherregionsmadeinbroaderstudies.Forexample,GBB(2023)placeLACsomewhereinthemiddleoftheregionalrankingofpotentialautomationexposure,with2.5percentoftotalemploymentfallingintothiscategory(Figure2).Intermsofaugmentationpotential,thesamestudyrankedLACasthethirdfromthebottom(12.8percentofemployment).Similarly,whiletheWEF(2023)globalstudydidnotprovideaspecificregionalranking,itprojecteda5-yearstructurallabourchurninLACat22percent,slightlybelowtheglobalaverage(23percent).Inotherwords,theLACregioncanbecharacterizedashavingeconomieswithanaveragelevelofexposuretoGenAIthatislessthanthatofthemostindustrializednations,yethigherthanthatfoundinlow-incomeregions,makingitarelevantintermediatebenchmark.

、Figure2.Automationandaugmentationpotential:LACvsotherregions

Intheory,theriseofGenAIanditspotentialpositiveimpactsonlabourproductivitycouldposeasignificantopportunityfordevelopingcountries.Somerecentprivatesectorstudiesevensug-gestthataggregateimpactofwidespreadAIadoptioncouldaddbetween0.1and1.5ppofan-nualproductivitygrowthinHICs,withslightlylowerfiguresestimatedforEmergingMarkets(EM)(GoldmanSachs,2023;McKinsey,2023).SuchprojectionsmightbeparticularlyenticingfortheLACregion,whichhaslonggrappledwithapersistentproductivitygapincomparisontootherareasoftheworld.WhilethedevelopingnationsinAsiaandEuropemanagedtonarrowtheirproductivitygapwiththeUnitedStatesbetween1990and2019,suchgapincreasedfortheLACregionduringthesameperiod(IMF,2022).Recenttrendsalsoraiseconcerns,since,despitesome

10ILOWorkingPaper121

countryvariation(Erumbanetal.,2024),theoverallproductivitygrowthhasbeenalmostzeroinLACeversincethestartoftheglobalproductivityslowdownofthelast10years(Dieppe,2021).Comparedtootherregions,barrierstoinnovationandtechnologyadoptionhavebeenparticu-larlysalientfactorslimitingproductivitygrowthinLAC.

CouldGenAIhelpunlockthisproductivityimpasse?RecentempiricalstudiesfocusedontheuseofGenAIinparticularoccupationalsettingssuggestthatthepositiveimpactsonproductivitycanbelarge.Forexample,Pengetal.(2023)implementedacontrolledexperimentamongprofes-sionalprogrammersandfoundthataccesstoaGenAIassistantreducedthetimetocompleteprogrammingtasksby56percent.Brynjolfssonetal.(2023)findthataccesstoGenAIincreasesproductivityamongcustomersupportworkersintermsofissuesresolvedperhour,whichisdriv-enmostlybytheboostofperformanceamongthenoviceandlow-skillworkers.Similarly,NoyandZhang(2023)findthathavingaccesstoChatGPThelpsimprovetheproductivityofwritingprofessionals,byincreasingthequality

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论