版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019-2020学年山东省济南市历城区八年级(下)期中数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)在以下四个标志图案中,是中心对称图形的是()A. B. C. D.2.(4分)若a<b,则下列结论不正确的是()A.a+4<b+4 B.a﹣3<b﹣3 C.﹣2a>﹣2b D.3.(4分)如图,直线m∥n,点A在直线m上,点B、C在直线n上,AB=CB,∠1=70°,则∠BAC等于()A.40° B.55° C.70° D.110°4.(4分)下列等式中,从左到右的变形是因式分解的是()A.9﹣a2=(3+a)(3﹣a) B.x2﹣2x=(x2﹣x)﹣x C. D.y(y﹣2)=y2﹣2y5.(4分)在数轴上表示不等式组的解集,正确的是()A. B. C. D.6.(4分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1) B.(1,0) C.(﹣1,0) D.(3,0)7.(4分)若a,b,c是三角形的三边,则代数式(a﹣b)2﹣c2的值是()A.正数 B.负数 C.等于零 D.不能确定8.(4分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90° B.95° C.100° D.105°9.(4分)如图,在△ABC中,∠BAC=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AD的长为()A.2 B.3 C.4 D.610.(4分)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140 B.70 C.35 D.2411.(4分)如图,在△ABC中,AB=,AC=,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.3 B.2 C.2 D.412.(4分)如图,在△ABC中,∠C=90°,AC=2,BC=4,将△ABC绕点A逆时针旋转90°,使点C落在点E处,点B落在点D处,则B、E两点间的距离为()A. B. C.3 D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4分)因式分解:x2﹣9=.14.(4分)若,则ab(填“<、>或=”号).15.(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=5,AC=4,则D点到AB的距离是.16.(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.17.(4分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A'B'C',连接A'C,则线段A'C的长为.18.(4分)如图,∠BAC=90度,AB=AC,AE⊥AD,且AE=AD,AF平分∠DAE交BC于F,若BD=6,CF=8,则线段AD的长为.三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(10分)分解因式:(1)x3﹣x;(2)3x2y﹣6xy+3y.20.(6分)解不等式:2x+1≥3x﹣1,并把它的解集在数轴上表示出来.21.(6分)解不等式组,并把不等式组的解集在数轴上表示出来.22.(6分)解不等式组:并写出满足条件的所有整数x的值.23.(8分)已知:如图,在△ABC中,BE⊥AC,垂足为点E,CD⊥AB,垂足为点D,且BD=CE.求证:∠ABC=∠ACB.24.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.25.(10分)今年3月12日植树节期间,学校预购进A、B两种树苗,若购进A种树苗3棵,B种树苗5棵,需2100元,若购进A种树苗4棵,B种树苗10棵,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?26.(12分)如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm.点D从点C开始沿射线CB方向以每秒2厘米的速度运动,连结AD,设运动时间为t秒.(1)求AB的长.(2)当t为多少时,△ABD为等腰三角形.27.(12分)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=6,D在线段BC上,E是线段AD的一点.现以CE为直角边,C为直角顶点,在CE的下方作等腰直角△ECF,连接BF.(1)如图1,求证:AE=BF;(2)当A、E、F三点共线时,如图2,若BF=2,求AF的长;(3)如图3,若∠BAD=15°,连接DF,当E运动到使得∠ACE=30°时,求△DEF的面积.
2019-2020学年山东省济南市历城区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)在以下四个标志图案中,是中心对称图形的是()A. B. C. D.【分析】根据中心对称图形的概念解答即可.【解答】解:A、是轴对称图形,不是中心对称图形.故本选项不合题意;B、是中心对称图形.故本选项符合题意;C、不是中心对称图形.故本选项不合题意;D、不是中心对称图形.故本选项不合题意.故选:B.2.(4分)若a<b,则下列结论不正确的是()A.a+4<b+4 B.a﹣3<b﹣3 C.﹣2a>﹣2b D.【分析】由不等式的性质解答即可.【解答】解:A、∵a<b,∴a+4<b+4,故本选项不符合题意;B、∵a<b,∴a﹣3<b﹣3,故本选项不符合题意;C、∵a<b,∴﹣2a>﹣2b,故本选项不符合题意;D、∵a<b,∴a<b,故本选项符合题意;故选:D.3.(4分)如图,直线m∥n,点A在直线m上,点B、C在直线n上,AB=CB,∠1=70°,则∠BAC等于()A.40° B.55° C.70° D.110°【分析】先由平行线的性质得出∠ACB=∠1=70°,根据等角对等边即可得出∠BAC=∠ACB=70°.【解答】解:∵m∥n,∴∠ACB=∠1=70°,∵AB=BC,∴∠BAC=∠ACB=70°,故选:C.4.(4分)下列等式中,从左到右的变形是因式分解的是()A.9﹣a2=(3+a)(3﹣a) B.x2﹣2x=(x2﹣x)﹣x C. D.y(y﹣2)=y2﹣2y【分析】直接利用因式分解的意义分别分析得出答案.【解答】解:A、9﹣a2=(3+a)(3﹣a),从左到右的变形是因式分解,符合题意;B、x2﹣2x=(x2﹣x)﹣x,不符合题意因式分解的定义,不合题意;C、x+2无法分解因式,不合题意;D、y(y﹣2)=y2﹣2y,是整式的乘法,不合题意.故选:A.5.(4分)在数轴上表示不等式组的解集,正确的是()A. B. C. D.【分析】本题可根据数轴的性质,实心圆点包括该点用“≥”,“≤”表示,空心圆圈不包括该点用“<”,“>”表示,大于向右,小于向左.【解答】解:依题意得,数轴可表示为:故选:B.6.(4分)如图,在平面直角坐标系中,已知点A(2,1),点B(3,﹣1),平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1) B.(1,0) C.(﹣1,0) D.(3,0)【分析】由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律,由此可得点B的对应点B1的坐标.【解答】解:由点A(2,1)平移后A1(﹣2,2)可得坐标的变化规律是:横坐标﹣4,纵坐标+1,∴点B的对应点B1的坐标(﹣1,0).故选:C.7.(4分)若a,b,c是三角形的三边,则代数式(a﹣b)2﹣c2的值是()A.正数 B.负数 C.等于零 D.不能确定【分析】首先利用平方差公式分解因式,进而利用三角形三边关系得出即可.【解答】解:∵(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c),a,b,c是三角形的三边,∴a+c﹣b>0,a﹣b﹣c<0,∴(a﹣b)2﹣c2的值是负数.故选:B.8.(4分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90° B.95° C.100° D.105°【分析】由CD=AC,∠A=50°,根据等腰三角形的性质,可求得∠ADC的度数,又由题意可得:MN是BC的垂直平分线,根据线段垂直平分线的性质可得:CD=BD,则可求得∠B的度数,继而求得答案.【解答】解:∵CD=AC,∠A=50°,∴∠ADC=∠A=50°,根据题意得:MN是BC的垂直平分线,∴CD=BD,∴∠BCD=∠B,∴∠B=∠ADC=25°,∴∠ACB=180°﹣∠A﹣∠B=105°.故选:D.9.(4分)如图,在△ABC中,∠BAC=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AD的长为()A.2 B.3 C.4 D.6【分析】先利用三角形内角和和角平分线定义计算出∠BAD=30°,∠ABP=∠DBP=30°,则PB=PA=2,再利用含30度的直角三角形三边的关系得到PD=PB=1,然后计算AP+PD即可.【解答】解:∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵AD⊥BC,∴∠BAD=30°,∵BE是∠ABC的平分线,∴∠ABP=∠DBP=30°,∴PB=PA=2,在Rt△PBD中,PD=PB=1,∴AD=AP+PD=2+1=3故选:B.10.(4分)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140 B.70 C.35 D.24【分析】由矩形的周长和面积得出a+b=7,ab=10,再把多项式分解因式,然后代入计算即可.【解答】解:根据题意得:a+b==7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70;故选:B.11.(4分)如图,在△ABC中,AB=,AC=,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.3 B.2 C.2 D.4【分析】根据旋转的性质得出∠CAC1=60°,AC=AC1=,求出∠BAC1=90°,根据勾股定理求出即可.【解答】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,AB=,AC=,∴∠CAC1=60°,AC=AC1=,∵∠BAC=30°,∴∠BAC1=30°+60°=90°,在Rt△BAC1中,由勾股定理得:BC1===3,故选:A.12.(4分)如图,在△ABC中,∠C=90°,AC=2,BC=4,将△ABC绕点A逆时针旋转90°,使点C落在点E处,点B落在点D处,则B、E两点间的距离为()A. B. C.3 D.【分析】延长DE交BC于F,由旋转的性质可得AE=AC=2,∠EAC=90°=∠DEA=∠ACB,可得AE∥CB,AC∥EF,由平行线间的平行线段相等,可得CF=EF=2=AC,∠EFC=90°,由勾股定理可求解.【解答】解:如图,延长DE交BC于F,∵将△ABC绕点A逆时针旋转90°,∴AE=AC=2,∠EAC=90°=∠DEA=∠ACB,∴AE∥CB,AC∥EF,∴CF=EF=2=AC,∠EFC=90°,∴BF=2,∴BE===2,故选:B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4分)因式分解:x2﹣9=(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).14.(4分)若,则a<b(填“<、>或=”号).【分析】根据不等式的性质求出即可.【解答】解:∵<,∴两边乘以3得:a<b,故答案为:<.15.(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=5,AC=4,则D点到AB的距离是3.【分析】过点D作DE⊥AB于E,利用勾股定理列式求出CD,然后根据角平分线上的点到角的两边距离相等可得DE=CD.【解答】解:如图,过点D作DE⊥AB于E,∵AD=5,AC=4,∠C=90°,∴CD===3,∵AD平分∠CAB,∴DE=CD=3.故答案为:3.16.(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是x<3.【分析】观察函数图象得到当x<3时,函数y=kx+6的图象都在y=x+b的图象上方,所以关于x的不等式kx+6>x+b的解集为x<3.【解答】解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.17.(4分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A'B'C',连接A'C,则线段A'C的长为4.【分析】根据平移性质,判定△A′B′C为等边三角形,然后求解.【解答】解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴A'C=A'B'=4,故答案为:4.18.(4分)如图,∠BAC=90度,AB=AC,AE⊥AD,且AE=AD,AF平分∠DAE交BC于F,若BD=6,CF=8,则线段AD的长为6.【分析】由“SAS”可证△ABD≌△ACE,△DAF≌△EAF可得BD=CE,∠4=∠B,DF=EF,由勾股定理可求EF的长,即可求BC的长,由勾股定理可求AD的长.【解答】解:如图,连接EF,过点A作AG⊥BC于点G,∵AE⊥AD,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE,∠4=∠B∵∠BAC=90°,AB=AC,∴∠B=∠3=45°∴∠4=∠B=45°,∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF(SAS).∴DF=EF.∴BD2+FC2=DF2.∴DF2=BD2+FC2=62+82=100,∴DF=10∴BC=BD+DF+FC=6+10+8=24,∵AB=AC,AG⊥BC,∴BG=AG=BC=12,∴DG=BG﹣BD=12﹣6=6,∴AD==6故答案为:6三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(10分)分解因式:(1)x3﹣x;(2)3x2y﹣6xy+3y.【分析】(1)原式提取x,再利用平方差公式分解即可;(2)原式提取3y,再利用完全平方公式分解即可.【解答】解:(1)原式=x(x2﹣1)=x(x+1)(x﹣1);(2)原式=3y(x2﹣2x+1)=3y(x﹣1)2.20.(6分)解不等式:2x+1≥3x﹣1,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:2x﹣3x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,解集在数轴上表示如下:21.(6分)解不等式组,并把不等式组的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:,解不等式①,得:x≥﹣1,解不等式②,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:22.(6分)解不等式组:并写出满足条件的所有整数x的值.【分析】先求出不等式组的解集,再从中找到符合条件的整数解即可得.【解答】解:由不等式①得:x≥2,由不等式②得:x<4,此不等式组的解集为2≤x<4,所以此不等式组的整数解为2,3.23.(8分)已知:如图,在△ABC中,BE⊥AC,垂足为点E,CD⊥AB,垂足为点D,且BD=CE.求证:∠ABC=∠ACB.【分析】证明Rt△BCD≌Rt△CBE(HL),即可得出结论.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠BDC=∠CEB=90°,在Rt△BCD和Rt△CBE中,,∴Rt△BCD≌Rt△CBE(HL),∴∠DBC=∠ECB,即∠ABC=∠ACB.24.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).25.(10分)今年3月12日植树节期间,学校预购进A、B两种树苗,若购进A种树苗3棵,B种树苗5棵,需2100元,若购进A种树苗4棵,B种树苗10棵,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?【分析】(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B种树苗5棵,需2100元,若购进A种树苗4棵,B种树苗10棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设需购进A种树苗a棵,则购进B种树苗(30﹣a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据题意得:,解得:.答:购进A种树苗的单价为200元/棵,购进B种树苗的单价为300元/棵.(2)设需购进A种树苗a棵,则购进B种树苗(30﹣a)棵,根据题意得:200a+300(30﹣a)≤8000,解得:a≥10.∴A种树苗至少需购进10棵.26.(12分)如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm.点D从点C开始沿射线CB方向以每秒2厘米的速度运动,连结AD,设运动时间为t秒.(1)求AB的长.(2)当t为多少时,△ABD为等腰三角形.【分析】(1)运用勾股定理直接求出;(2)分三种情况:①当D在B点右侧,如图1,且BD=AB,②当D在B点右侧,如图2,且AD=BD,③当D在B点左侧,如图3,且BD=AB根据CD=2t,列方程可得t的值.【解答】解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴AC2+AB2=BC2,∴AB===4cm;(2)分三种情况:①当D在B点右侧,如图1,且BD=AB,∴BD=AB=4cm,∴CD=BC﹣BD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学大四(经济学)经济学专业毕业设计答辩测试题及答案
- 2025年大学(生物工程)生物化学工程模拟试题及解析
- 2025年中职密码技术应用(密码方案)试题及答案
- 2025年中职(护理)社区护理基础试题及答案
- 2025年本科特种经济动物饲养(蚕桑养殖学)试题及答案
- 2025年大学大一(环境工程)环境监测基础专项测试卷
- 2025年高职物流条码技术(物流条码技术基础)试题及答案
- 2025年中职(医学检验)临床检验技术试题及答案
- 2025年大学大三(渔业资源与渔政管理)渔业资源保护阶段测试题及答案
- 2025年高职园林植物栽培(植物栽培技术)试题及答案
- 2025年广东省茂名农垦集团公司招聘笔试题库附带答案详解
- 矿业企业精益管理实施方案与案例
- 2026年共青团中央所属事业单位社会人员公开招聘18人备考题库及答案详解(新)
- 2026年宁夏贺兰工业园区管委会工作人员社会化公开招聘备考题库带答案详解
- 装置性违章课件
- 2024年水利部黄河水利委员会事业单位招聘高校毕业生考试真题
- 2025四川成都益民集团所属企业招聘财务综合岗等岗位28人考试重点题库及答案解析
- 脑缺血与急性脑梗死的影像学表现教学设计
- 2026届四川成都七中高三上学期11月半期考数学试题及答案
- 颅内肿瘤切除术手术配合
- 2025年八年级历史时间轴梳理试卷(附答案)
评论
0/150
提交评论