




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IQVIA
WhitePaper
EnsuringEnterpriseExcellence
ThroughanEvolvedApproachtoDataandAnalytics
TYSONKUEHL,Principal,IQVIAConsulting
VALERIEENG,Assoc.Principal,IQVIAConsultingPATRICKGORMAN,Manager,IQVIAConsulting
Tableofcontents
Introduction1
Improvingtheuseofdataandtoolstodriveimpact1
Understandingyourowndatamaturity3
Whatarethepillarsofanevolveddatastrategy?4
Customer
spotlight8
Closingnote10
HowIQVIAcanhelpyou11
Abouttheauthors12
References14
Introduction
DespitethepromiseofBigDataandAdvancedAnalytics,lifesciences
organizationsfrequentlyremainchallengedbyfundamentalbusinessquestions.Thesechallengesare,inpart,owedtocontinuallyevolvingsocioeconomic,
scientific,andtechnologicalfactors,ormisapplicationofthesenewapproaches.Whilethesearenotnewdevelopments,lifesciencesorganizationsstillstrugglewithtransformingdataintoactionableinsightstoachievecommercialexcellence.Thefrequentreasonforthisisalackofaholisticstrategythatisgrounded
inusecasesthatanorganizationwishestoaddress.Thiswhitepaperoffers
recommendationsfortangibleactionsthatorganizationsshouldprioritizetoturnthisdatastrategyandmanagementchallengeintoadifferentiationopportunity.
Improvingtheuseofdataandtoolstodriveimpact
Healthcaredataisatthecenterofeverylifesciences
organization.Itprovidesinsightsonpatients,providers,andotherstakeholders,whileultimatelydrivingbusinessprioritiesandoperations.Lifesciencesorganizations
devoteteamsandinvestresourcestoprocuring,
managing,andanalyzingdata.Thelifesciencesanalyticsindustrywasestimatedtobe$26.2Bin2023andis
forecasttogrowto$48.4Bby2028,representinga13.5%CAGR.1Furthermore,applicationofnewtechnologies
withinlifesciencesanalyticsisexpectedtogrowatan
evenfasterclipof25.2%CAGR,reaching$8.88Bin2029.2
Whiletheappetiteforinnovativedataapproaches
isthere,Pharmaisstillchallengedwithfeedingthat
appetiteinaneffectiveandefficientmanner.Thus,
theindustryrequiresanevolvedDataandAnalytics
Strategy2.0.Theinflectionpointthattheindustryfacesisashiftfromstandarddataprocurementtoclear
demonstrationofreturnoninvestment(ROI)anddata
valuemaximization.Thisinvolvesthinkingaboutexistingdatathroughnewapproachesandsolutionstomeet
changingbusinesspriorities.
Onepharmaceuticalcompanythathasbeenatthe
forefrontofusingdataasadifferentiatorisNovartis.Sincetakingovertheleadershipreinsin2018,NovartisCEOVasNarasimhanhasmadeafuture-focuseddatastrategyakeypillarofthecorporatestrategy.Thishaspaidoffconsiderablywithmostrecentnetsales+10%andcoreoperatingincome+18%forFY2024.3
|1
“Wehaveonefundamentaladvantageversusourpeers:fiveyearsago,wecreatedan
integrateddatalakewecalleddata42.We’reusingthatdatalaketomoveAIveryquicklyforwardinthecompany...ourdataisorganized,ithasaclearontology,andI’mhopingthatwillleadtomorediscoveriesfasterovertime.”
—VasantNarasimhan,NovartisCEO,speakingwithMSNBC“SquawkontheStreet”July,18,2023.4
Economic,societal,scientific,andregulatorychangeshavecomplicateddataanalysis,butalsoelevatedtheexpectationsfordeepinsight.Thisfurtherhighlightstheneedforanevolveddatastrategy.Asanexample,theIQVIAInstitute’srecentreporton
TrendsinAdult
VaccinationsintheU.S.
revealsthatadults,and
specificallyethnicandracialminoritiesandMedicaidpopulations,continuetohavelowvaccinationsrates.5
Asdiseasesbecomemorecomplexandstakeholders
becomemoredifficulttoreach,thelifesciencesindustrymustcometogethertothinkabout,manage,anduse
datadifferently.
Doingsoentailsnotjustaskingfundamentalquestionsthroughouttheproductlifecycle,butalsoleveragingdataandanalyticsandconnectinginsightsgleaned
throughoutthejourney.
Exhibit1:Pharmafunctionsalongproductjourneyandkeybusinessquestions
Pricingand
reimbursement
PatientIDand
Whatformularytier
prescribing
Patient
Regulatory
amImostlikelytoget
HowdoImaximize
use
Researchand
applications
approvalfor?
launchpotential?
HowdoIensure
innovation
Whatisthemost
DoIhaveanynon-clinical
HowdoImaximize
patientadherence?
Whichofmy
expeditiouspath
trialevidencetosupport
awarenessof,and
Whatnuancesto
pipelineassets
toapproval?
higherreimbursement?
accessto,mytreatment?
patientusageexistina
havethegreatest
Whatgeographies
Whatistheoptimal
Whatismyoptimal
givengeography
chanceofsuccess?
shouldwegotofirst?
rebateprogram?
HCPmessaging?
andwhy?
Clinicaltrials
Howdowedesignthetrialtopositionusfor
thewidestindication,whilealsohavingthebestchanceforsuccess(i.e.,meetingclinicalendpoints)?
Marketingregistration
Whatisthebroadestindicationthat
evidencesupportsformydrug?
Manufactureandsupply
Whatarethebottlenecksinmysupplychain?
Whataremyinventorylevelsanddothey
fluctuateovertime?
WhereshouldIlocatemymanufacturingformaximumefficiency/optimizedproduction?
Distribution/pharmacy
WheredoIhave
bottlenecksinmy
distributionnetworkandwhy?
HowdoIreduce
wastageandaccrualinspecialtypharma?
SafetyandPV
Whatistheadverseevent(AE)trendformydrug?
WhatisthecausalityrelationshipbetweenmydrugandtheAE?
2|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics
Understandingyourowndatamaturity
Thesechangesaren’tjustone-size-fits-allupdates.They,infact,firstrequirecompaniestolookinwardtoassesstheirowndatamaturityandhowittiestotheirproductportfolioinsightneeds,corporatestrategy,andabilitytointeractinameaningfulwaywithinternalandexternalstakeholders.Anevolveddatastrategyisrootedin
thedefinitionofthevalueyourorganizationstrives
toderivefromthedata.Basedonthisself-reflection,yourorganizationmustidentifywhereitliesonthe
datamaturitycurveinordertoassesshowtoprogressonwardandupward.
Today,manyofIQVIA’scustomersarestillinstages1-2,withpocketsofstages3-4incertaintherapeuticareasorgeographies.Thisisunderstandableasprogressingalongthedatamaturitycurveisnoeasyfeat—it
takescommitmentatalllevelsofyourorganization;
investmentintime,resources,andmoney;andappetiteforchange.However,ifyourorganizationsuccessfullyprogressesupthedatamaturitycurve,itwillbeableto:
•Maximizethevalueofexistingdataassetswithdeeperandfasterinsights
•Leveragedata,analytics,insights,andcapabilitiesacrossteams
•Lowercostsondataprocurementandinsightsdelivery
Exhibit2:Organizationaldatamaturitycurve
Insight-drivenculture
Scientifichubfordatainsights
Data-drivencapabilities
Governed
self-serviceaccess
Abilitytorapidly
deploy
technology
platforms
designedto
solvespecificbusinessneeds
Thought
leadershipdrivenbywell-governeddataandahighperformingdatascienceteam
Regularadvocacy
fornew
approachesusingdatascienceandmachinelearning
4
Secure,reliabledatarepository
Datawarehouse/lakeandcuratedsystemswith
well-defined
managementandgovernance
Foundationalsystemfor
reportinganddatascience
2
Accesstodatabasedonlevelofexpertise
Reportingteamfocuseson
operational
analyticsandbusinessusers
runqueriesandextractasneeded
3
Businessunits
workwithdatainanuncoordinatedway,withno
shared
definitions/processes
1
Isolateddataprojects
Lackingdataforanalyticsprojects
Keydatasourcesareinfrequentlycollected,withsignificant
manualerrors
0
Data
driven-insightsareingrainedinprocessesand
accessibleacrossthebusinessto
measureresultsanddriveaction
Seamlessly
integratenew
dataanddevelopinsightsintonew
datapolicies
Abilitytorapidlydrivethe
adoptionofnewdigitalanddataapproaches
acrossthe
organization
5
Datamaturity
|3
Whatarethepillarsofanevolveddatastrategy?
Toachievethedegreeofdatamaturityyourorganizationneedstothrive,thereareafewcriticalelementsyou
shouldseek:
1.Business—Directalignmentwithbusiness
objectivesandgoals
•Aligningdatastrategieswithorganizational
objectives:Adatastrategyshouldbeinlinewiththeoverarchingcorporategoalsanddescribehowdatawillhelpachievethosegoals.
•Keyperformanceindicators(KPIs)shouldbe
establishedtoenabletheorganizationtomonitorprogressagainstgoalsinordertomodifystrategyasnecessary.
2.Governance—Definedandyetdynamicdata
governanceanddataarchitecture
•Dataqualityshouldbeestablished,including
qualitycontrols,datacleansingprocedures,andstandardizeddatadefinitions.Doingsohelpstoensuredataaccuracy,reliability,andcompliance.
•Datamanagementsystemsshouldbeableto
combinedatafromvariedsourcesandmakethem
availablethroughouttheorganizationas‘onesourceoftruth’,althoughaccessibilitymaybedeterminedbyroleandneed.
3.Technology—Enablingadvancedanalyticsand
AI/MLcapabilities
•Dataanalyticstoolsandinfrastructureshould
includeresourcessuitedfortheanalysis,as
wellastechnologyplatformsandinfrastructuretoassemble,process,analyze,andvisualize
increasinglylargeamountsofdataefficientlyandeffectivelywithcapacityforscale.
•Datascienceexpertiseshouldbeacquired,
developed,andempowered—thisincludesthe
individualsthatorganizeandcleansedata,aswellasthosethatdeveloptheprogressiveanalytics
modelstouncovernewinsightsandprovidemoreactionablerecommendations(e.g.,AI,ML,GenAI).
4.Security—Compliancewithglobal/regionaldata
privacyandsecurityrequirements
•Datasecurityisofpreeminentimportancegiventhesensitivenatureoftheinformationbeinganalyzed,andreputational,aswellasfinancial,risktothe
organizationshouldsecuritybecompromised.The
datainfrastructureand/orprocessesshouldincluderobustsecuritymeasuressuchasencryption,accesscontrols,andmonitoringsystems.
•Privacyandconsent,particularlywhenusingpatientdata,isafundamentalrequirementandmustbe
addressed.Thisincludesestablishingprotocolstoensurecompliancewiththemarket’sdataprivacyregulations(e.g.,HIPAA,GDPR,LGPD).Additionally,havingtheabilitytoobtainandmanageappropriateconsentfordatausage.
4|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics
5.Integration—Innovativedatauseandintegration
acrossdatasets
•Tosucceed,companiesmustalwaysbehungryto
innovate.Thisappliestocorporatedatauseaswell.Onecommonapproach,usedbycompaniessuch
asGoogle,isthe70:20:10approachtoinnovation
andtime.Thisinvolvesidentifyingandcategorizingyourprojectsintocoregroups:70%(i.e.,product
launchorlifecyclemanagement),adjacent20%(newapproachesforexistingprocesses,likeML/NLP
application),andtransformative10%(commonlymoreblueskyfordeploymentin2+years).
•Lifesciencescompaniesarestartingtorecognize
theimportanceofnon-traditionaldatause(like
consumerdata),aswellaslearningtoleveragenovelintegrationsacrossdatasetstogleannewinsightsintotheirbusiness.
6.Culture—Acompanymindsetof
continuousimprovement
•Embeddingthedataculturerequiresgenuineculturechangeanddevelopment.Thisincludesleadershipadvocatingforamindsetthatvaluesdata-driven
decisionmaking.Additionalstepsincludepromotingdataliteracyandfluencyacrosstheorganization,
andencouragingexperimentationandinnovationwithdata(whilemaintainingcompliance).
•Beyondthis,organizationsshouldregularlymonitorprocessestocelebrate‘wins’,buildmomentum,
demonstrateprogress,andidentifyfuture
opportunitiestooptimize.Doingsoallowsthe
processestoberefinedasneededinordertoadapttochangingbusinessneedsandnewtechnologies.
Exhibit3:Dataandanalyticsorganizationeffort
10%
20%
70%
TRANSFORMATIONAL
Completelynewdataand
analyticsfornewmarketsandcustomerinsightneeds
ADJACENT
ExpandingfromcoreD&Alaunchneeds:taking
existingdataoranalysis
andgoingtoadeeperlevel(i.e.,individual)
CORE
Incrementalimprovementstoyourcurrentdata
collection,utilization,andanalyticsenvironment
|5
Lookout!It’snothardtogetstuck—
companiesoftenfindthemselvestrappedevenwhentryingtogetitright
Whilethegoalisclear,lifesciencesorganizationsstillstrugglewithdevelopingandimplementingafuture-proofeddatastrategy.
•Inertia:Often,itstartswithorganizations
de-prioritizingdatastrategy.Thefocusremains
onlaunchingproductsandrunningthebusiness.
Near-termgoalsoverridelonger-termgoals.While
uncomfortable,organizationsmustchallenge
themselvestothinkabouthowdatastrategycanhelpthemmeetbusinessobjectivesinthenear-term
(<6months),mid-term(6-18months),andlong-term(18months+).
•Complacency:Othertimes,organizationsstrugglewithalackofcommitmentandresourcing.An
evolveddatastrategyrequiresalignmentbehindandcommitmenttosharedgoals—acrossteamsand
acrosslevels.Thisenablestoolstobedevelopedandimplemented,aswellasashiftincultureandmindsettoleveragedatatogether.
•Lookingonlyinwardinsteadofout:Iforganizationsdorecognizetheimportanceofevolvingtheirdata
strategy,theyoftenstrugglewithwheretostart.
Organizationsareoftenunwillingtolookoutside
oftheirorganizationsforinnovativesolutionsthat
mayrequireinvestmentandnewwaysofthinking.
Organizationsarealsonotengagingwiththebusinesstofindtherightdatastrategyfitforallteams(i.e.,
usecases).Itiscriticaltogroundstrategyinbusinessobjectives,usecases,andkeybusinessquestions.
Doingsoalignsstakeholdersandsetsthedirectionandscopeforallactivities.
Onceorganizationsunderstandtheimportanceof
evolvingtheirdatastrategytomaximizetheimpactofdata,aswellastheinvestmentrequiredtoachievethis,theycanbegintotakethesetangiblesteps.
1.Connectdatastrategytobusinessobjectives
andgoals
Firstthing’sfirst—inordertogetitright,yourteams
haveto“rowtogether.”Thereisaplethoraofhealthcaredataavailablefororganizationstoleverage,andwithoutastrategyyourinsightswillgetlostintheshuffle.Thekeytoderivingmaximizedvalue—andvaluefitforyourorganization—isensuringyourdatastrategyisalignedtoyourbusinessgoals.Unfocuseddataprocurement
andusagewillultimatelyleadtoredundancies,highercosts,andadditionalfrictionfrommanagingthat
extradata.
Beginbyunderstandingyourorganization’sobjectivesandkeybusinessquestions.Onceidentified,youcan
narrowinonthekindsofdatathatwillhelpyouachievethoseobjectiveswithoutdistraction.Forexample,is
thisararediseaseproductlaunchinanopenmarket,newproductlaunchintoacrowdedmarket,ormatureproductabouttoreachLOE?
Whenexecutedwell,organizationscanleverage
actionableinsightsacrossteams.Notjustthat,but
organizationscanalsolowercostsondataprocurementandinsightsdelivery.
6|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics
Exhibit4:IQVIAapproachtodatastrategy
Datastrategyshouldbeginwith,andbedirectlytiedto,organizationalgoalsandkeybusinessquestions
3
What
dataacquisitionandmanagementcapabilitiesarerequired?
1
Whatusecasesdoweneed
tosupport?
Datasource
Datainventory
•Datacatalog
•Dataorganizedbygeography
•Dataorganizedbyfunction
•Dataorganizedbyusecases
•Aggregateddata(Copay,SP,Siteofcare,etc..)
•3rdparty(hospital,claims,labs,demo,EMR)
•Patientsupportprograms
•Registries
•Governmentproviders
•Digitaldevice,digitalcare
•Other(Consumer,etc..)
Existing
businessneeds
Current
Adjacent
Future
Strategic
opportunities
Datagovernance
Datadelivery
•Extractandtransform
•Standardization
•De-identification
•Integration
•Tokenization
•Structured/unstructured
•Storageandexchange
•Privacy
•Access,security
•Compliance
•Quality
•Access
•Stewardshipandpolicies
•Operatingmodel
Long-termgoals
Enablingtechnologies—
APIs,datastreams,cloudconnect
2
Whatanalyticmethodologies
doweutilize?
Data
requirements
Market
requirements
HCP/Patient
requirements
2.Establishgovernanceproceduresandtoolsthat
arefitforpurpose
Anevolveddatastrategymustbebuiltonprocessestogovernpeople,processes,andtechnologies.Thisincludesdefiningrolesandresponsibilities,aswellasdeployingtherighttoolstoequipyourteams.
•Rolesandresponsibilitiesenableteamstosolve
businesschallengeseffectivelyandefficiently.They
definehowteamscanandshouldworktogetherto
findpurposefulsolutionsdesignedtoaddressspecificbusinessquestions.However,toaccomplishthis,rolesandresponsibilitiesmustnotonlybedefined,butalsocodified,disseminated,andenforced.Furthermore,organizationsshouldconsidertheneedforrolesto
evolvetomeetfutureorganizationalneeds.
•Toolsenableteamstocarryouttheirrolesand
responsibilities.Thesetoolsshouldalsoenable
measuresofKPIsandothermetricstogaugesuccessoropportunitiestopivot.Whethertheyaredata
catalogsordashboards,teammustassesswhich
aremostfittomeettheirneeds,whilelookingfor
opportunitiestoleveragethesametoolsacrossteams.
•Processes,whencorrectlyestablished,willhelpyourteamunderstandhowtoaccessthedatatheyneedtoanswertheirquestionsinanefficientmannerontheirown.Establishingthepropertechnologiesenables
yourteam’sabilitytoaccessitsdatainatimelymanner.Establishingtheproperpermissionsandprotocols
ensuresthatonlytherightteamshaveaccessto
relevantdata.
Standardizedandstreamlinedprocesses,roles,
responsibilities,andtoolsestablishthestrongfoundationtoaccelerateinsightsusingthevarietyofdataavailable,fromsyndicated,tocurated,togenerated.
|7
Customerspotlight
Theresultwasaholisticdatacatalogthatenabledteamstounderstandhowdataassetswereused.
Groundingthedatacataloginkeybusiness
questionsenabledidentificationofinsightsthat
couldbeleveragedacrossteamsandofredundantdatasetsbeingprocuredandanalyzedbymultipleteams.Establishinggovernanceofthedatacatalogenabledaccountabilityandcommitmenttonotonlymaintenanceofthetool,butalsotothesharedvalueinthetool.
IQVIArecentlyworkedwithaTop10pharmaceuticalcompanyonits2-3yeardataandanalyticsstrategy.Duringtheinitialassessment,werecognizedtheneedforasingle,business-friendlydatacatalogasastrongfoundationforthemanagementanduseofdata
assetsacrossteamsandbrands.Thecommercialdataandanalyticsteambeganbyassessingkeybusinessprioritiesandcorrespondingbusinessquestions.
Thefindingsweremergedwithaninventoryof
commercialdataassets,includingcharacteristicsandconsiderationsforuseofthedataasset.
3.LeverageadvancedanalyticsandAI/MLandbuild
enablingcapabilities
Lifesciencesorganizationsarefollowingotherindustries
inbuildingadvancedanalyticspractices,including
naturallanguageprocessing(NLP)andartificial
intelligence/machinelearning(AI/ML)solutions..
Ultimately,thesesolutionscanyielddeeperandmorepredictiveinsights.Infact,92%oflifesciencesCIOs
andtechnologyexecutivesbelieveAI/MLwillbethetopgame-changingtechnologyinthenextthreeyears.6
However,itiscriticaltorememberthatadvanced
analyticsandAIaresimplytoolstohelpyouansweryourbusinessquestions—notthesolutionsthemselves.
Althoughwhenleveragedcorrectlyandfitforpurpose,thesetechniquescanyieldinsightsthattraditional
analysescannot.Forexample,AI/MLshoulddrive
NextBestAction
,butshouldnotreplacestrategic
planningorgounchecked.Organizationsmustcarefullyassesstheirbusinesspriorities,correspondingbusinessquestions,andanalyticssolutionsthatarefitforpurpose.
4.Ensurecompliancewithapplicableprivacy
regulations,includingthoseoftheUnitedStates(HIPAA),EuropeanUnion(GDPR),andJapan(APPI)
Perhapsthemostimportantdifferencebetween
healthcareindustrydataandthatofothersisthe
requirementtopreventpatientdatafrombeing
compromised.Morespecifically,HIPAArequiresthat
theconfidentiality,integrity,andavailabilityofpersonalhealthinformation(PHI)beprotected,andsafeguardsbeimplemented.Notably,responsibilityforprotectingPHIcanextendbeyondyourorganizationtoinclude
yourpartnersinthebroaderhealthcareecosystem.
Whichbegsthequestion…Areyourpartnersholding
themselvestothesamestandardsasyourorganization?
TheGDPRisbroaderinthatitdealswithallpersonally
identifiableinformation(PII)acrossindustries,butalsoisfocusedonsafeguardinginformation.
“OurworkwithclientsonAIandMLhasfoundthatlessthan15%oftheeffortisneededto
developanalgorithm,withthevastmajoritybeingonsourcingandpreparingthedata.As
pharmapreparestomaximizegenerativeAI’spotential,theymustevolvetheirgo-forwarddatastrategy.Icallit‘DataStrategy2.0.’Thisincludesbuildingspecificcapabilitiesintotheirdataarchitecture,governance,andprocessingtosupportbroadusecases.”
—TysonKuehl,Principal,IQVIAData&AnalyticsConsulting
8|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics
Whiletherearenotabledifferences,inbroadstrokes,theprivacyregulationshaveasimilarframeworkinthattheyrequire:
•Controlledaccesstosensitivedata
•PHIencryptionwhenstoredandwhentransmitted
•Methodsfordetectingbreachesorchangesininformation
5.Embraceinnovativedatasetsandintegrateacross
datasetstouncoverhiddeninsight
Whilelifesciencesorganizationsoftenareawareof
opportunitiestogaingreaterinsightsfromdifferent
datasets,theycontinuetothinktraditionallyabout,andaskthesamequestionswith,existingdatasets.Asthehealthcarelandscapechanges—intermsofpatient
expectations,diseasecomplexity,workforcecapabilities,andmore—organizationsmustchallengethemselvestolooktoinnovativedatasetsandintegrationsthathave
notbeenpreviouslyleveraged.
Asanexample,toppharmaorganizationsareturningtheirattentiontopatientsupportprograms.Whilethereare
avarietyofdatatypesandsourcesthataddresspatient
needs,organizationsmustassesshowtobesttomeettheirpatientneeds.Atauniquepharmalevel,thismeansthat
youshouldconsiderthepatientneedsanddatacollectedforuniquepatientsegment(s).ThiscoulddiffergreatlyifyouareworkinginthehighlyprevalenttherapeuticareaofobesityversusararediseaselikeSickleCellDisease.
Furthermore,lifesciencesorganizationsareincreasinglyinvestinginintegratingdatatogaingreaterinsights
intopatients,providers,andotherstakeholders.ThisincludesintegratingthepurchaseofLRxdatawiththeirin-housepatientsupportprogram(PSP)data.Doing
soenablesaunique,longitudinallookatthepatient
journeytobetterunderstandtheirbackgrounds,
experiences,behaviors,drivers,andmore.However,doingsorequiresadedicationtopatientdataprivacy,whichbecomesmorechallengingasdataiscontinuallyintegrated,requiringgreaterdegreesoftokenization,
anonymization,andmonitoringforriskofre-identification(RRD).
Whileintegrationandinteroperabilitycanleadtogreateranddeeperinsights,theyaremeaninglesswithoutuser-friendlyreportingdashboards.Tobesuccessful,your
organizationandteammusthavetoolstofocusonthemostimpactfulKPIsandbusinessquestionsfocusedon
theirrole.Theymusttakethetimetofullyunderstandthepowerofintegrateddataandshareinsights
acrossteams.
6.Activateteamswithashiftincultureandmindset
Establishingtherightprocessesandtoolswillonlygetyousofar.Itiscriticalthatteamsaresupportedand
empoweredtodriveyourdatastrategy.Thisincludesaculturethatanswersbusinessquestionsanddevelopssolutionsthatdrivetowardsaction.Makesurethat
yourorganizationprioritizes“data-drivenculture”initseverydaylanguageandexpectations.Ensurethatbusinessquestionsandprioritiescanbetestedwithhypothesesandevidence.
Todothis,themessagehastocomefromthetopdown,
aswellasthebottomup.Ensureyourorganization’s
leadershipsubscribestothelevelofdata-drivenrigortheyexpectfromtheircolleagues.Andsupportthosecolleagueswithappropriatetrainingsondataliteracy,whichis
expectedtobecomeamainstreampriorityin2-5years.7
Finally,remember,establishinganenduringcultureisanongoingeffort!
“Perhapsthemostunderappreciatedpart
ofourjourneyhasbeentheimportanceofactivelyengagingourbusinesscolleaguesaspartofthejourney.Nowthattheybetterrecognizewhatwecando,andplantodo,wearebroughtinearlieron,asstrategicpartners.Histo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国开电大本科《马克思主义基本原理概论》一平台终考作业之二(大作业)试题及答案汇编2025春期版
- 茶麸店转让协议书
- 夫妻财产制协议书
- 小情侣惩罚协议书
- 强迫签补偿协议书
- 红酒庄加盟协议书
- 苏引华入股协议书
- 烘焙店转让协议书
- 空压机承包协议书
- 股权制分红协议书
- 南宋官窑教学课件
- 呼吸功能的监测与护理
- 婴儿椅设计研究报告总结
- 自动化机构设计基础
- 厌学怎么办-主题班会课件
- 公务用车租赁服务采购项目比选文件
- 新建混凝土路面道路工程施工工程投标书(技术方案)
- 旁站记录新表(脚手架拆除)
- 低压柜开关更换施工方案
- 织金新型能源化工基地污水处理厂及配套管网工程-茶店污水处理厂环评报告
- 陕西省2023年中考英语真题(附答案)
评论
0/150
提交评论