艾昆纬-通过改进的数据和分析方法确保企业卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第1页
艾昆纬-通过改进的数据和分析方法确保企业卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第2页
艾昆纬-通过改进的数据和分析方法确保企业卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第3页
艾昆纬-通过改进的数据和分析方法确保企业卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第4页
艾昆纬-通过改进的数据和分析方法确保企业卓越 Ensuring Enterprise Excellence Through an Evolved Approach to Data and Analytics 2024_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IQVIA

WhitePaper

EnsuringEnterpriseExcellence

ThroughanEvolvedApproachtoDataandAnalytics

TYSONKUEHL,Principal,IQVIAConsulting

VALERIEENG,Assoc.Principal,IQVIAConsultingPATRICKGORMAN,Manager,IQVIAConsulting

Tableofcontents

Introduction1

Improvingtheuseofdataandtoolstodriveimpact1

Understandingyourowndatamaturity3

Whatarethepillarsofanevolveddatastrategy?4

Customer

spotlight8

Closingnote10

HowIQVIAcanhelpyou11

Abouttheauthors12

References14

Introduction

DespitethepromiseofBigDataandAdvancedAnalytics,lifesciences

organizationsfrequentlyremainchallengedbyfundamentalbusinessquestions.Thesechallengesare,inpart,owedtocontinuallyevolvingsocioeconomic,

scientific,andtechnologicalfactors,ormisapplicationofthesenewapproaches.Whilethesearenotnewdevelopments,lifesciencesorganizationsstillstrugglewithtransformingdataintoactionableinsightstoachievecommercialexcellence.Thefrequentreasonforthisisalackofaholisticstrategythatisgrounded

inusecasesthatanorganizationwishestoaddress.Thiswhitepaperoffers

recommendationsfortangibleactionsthatorganizationsshouldprioritizetoturnthisdatastrategyandmanagementchallengeintoadifferentiationopportunity.

Improvingtheuseofdataandtoolstodriveimpact

Healthcaredataisatthecenterofeverylifesciences

organization.Itprovidesinsightsonpatients,providers,andotherstakeholders,whileultimatelydrivingbusinessprioritiesandoperations.Lifesciencesorganizations

devoteteamsandinvestresourcestoprocuring,

managing,andanalyzingdata.Thelifesciencesanalyticsindustrywasestimatedtobe$26.2Bin2023andis

forecasttogrowto$48.4Bby2028,representinga13.5%CAGR.1Furthermore,applicationofnewtechnologies

withinlifesciencesanalyticsisexpectedtogrowatan

evenfasterclipof25.2%CAGR,reaching$8.88Bin2029.2

Whiletheappetiteforinnovativedataapproaches

isthere,Pharmaisstillchallengedwithfeedingthat

appetiteinaneffectiveandefficientmanner.Thus,

theindustryrequiresanevolvedDataandAnalytics

Strategy2.0.Theinflectionpointthattheindustryfacesisashiftfromstandarddataprocurementtoclear

demonstrationofreturnoninvestment(ROI)anddata

valuemaximization.Thisinvolvesthinkingaboutexistingdatathroughnewapproachesandsolutionstomeet

changingbusinesspriorities.

Onepharmaceuticalcompanythathasbeenatthe

forefrontofusingdataasadifferentiatorisNovartis.Sincetakingovertheleadershipreinsin2018,NovartisCEOVasNarasimhanhasmadeafuture-focuseddatastrategyakeypillarofthecorporatestrategy.Thishaspaidoffconsiderablywithmostrecentnetsales+10%andcoreoperatingincome+18%forFY2024.3

|1

“Wehaveonefundamentaladvantageversusourpeers:fiveyearsago,wecreatedan

integrateddatalakewecalleddata42.We’reusingthatdatalaketomoveAIveryquicklyforwardinthecompany...ourdataisorganized,ithasaclearontology,andI’mhopingthatwillleadtomorediscoveriesfasterovertime.”

—VasantNarasimhan,NovartisCEO,speakingwithMSNBC“SquawkontheStreet”July,18,2023.4

Economic,societal,scientific,andregulatorychangeshavecomplicateddataanalysis,butalsoelevatedtheexpectationsfordeepinsight.Thisfurtherhighlightstheneedforanevolveddatastrategy.Asanexample,theIQVIAInstitute’srecentreporton

TrendsinAdult

VaccinationsintheU.S.

revealsthatadults,and

specificallyethnicandracialminoritiesandMedicaidpopulations,continuetohavelowvaccinationsrates.5

Asdiseasesbecomemorecomplexandstakeholders

becomemoredifficulttoreach,thelifesciencesindustrymustcometogethertothinkabout,manage,anduse

datadifferently.

Doingsoentailsnotjustaskingfundamentalquestionsthroughouttheproductlifecycle,butalsoleveragingdataandanalyticsandconnectinginsightsgleaned

throughoutthejourney.

Exhibit1:Pharmafunctionsalongproductjourneyandkeybusinessquestions

Pricingand

reimbursement

PatientIDand

Whatformularytier

prescribing

Patient

Regulatory

amImostlikelytoget

HowdoImaximize

use

Researchand

applications

approvalfor?

launchpotential?

HowdoIensure

innovation

Whatisthemost

DoIhaveanynon-clinical

HowdoImaximize

patientadherence?

Whichofmy

expeditiouspath

trialevidencetosupport

awarenessof,and

Whatnuancesto

pipelineassets

toapproval?

higherreimbursement?

accessto,mytreatment?

patientusageexistina

havethegreatest

Whatgeographies

Whatistheoptimal

Whatismyoptimal

givengeography

chanceofsuccess?

shouldwegotofirst?

rebateprogram?

HCPmessaging?

andwhy?

Clinicaltrials

Howdowedesignthetrialtopositionusfor

thewidestindication,whilealsohavingthebestchanceforsuccess(i.e.,meetingclinicalendpoints)?

Marketingregistration

Whatisthebroadestindicationthat

evidencesupportsformydrug?

Manufactureandsupply

Whatarethebottlenecksinmysupplychain?

Whataremyinventorylevelsanddothey

fluctuateovertime?

WhereshouldIlocatemymanufacturingformaximumefficiency/optimizedproduction?

Distribution/pharmacy

WheredoIhave

bottlenecksinmy

distributionnetworkandwhy?

HowdoIreduce

wastageandaccrualinspecialtypharma?

SafetyandPV

Whatistheadverseevent(AE)trendformydrug?

WhatisthecausalityrelationshipbetweenmydrugandtheAE?

2|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics

Understandingyourowndatamaturity

Thesechangesaren’tjustone-size-fits-allupdates.They,infact,firstrequirecompaniestolookinwardtoassesstheirowndatamaturityandhowittiestotheirproductportfolioinsightneeds,corporatestrategy,andabilitytointeractinameaningfulwaywithinternalandexternalstakeholders.Anevolveddatastrategyisrootedin

thedefinitionofthevalueyourorganizationstrives

toderivefromthedata.Basedonthisself-reflection,yourorganizationmustidentifywhereitliesonthe

datamaturitycurveinordertoassesshowtoprogressonwardandupward.

Today,manyofIQVIA’scustomersarestillinstages1-2,withpocketsofstages3-4incertaintherapeuticareasorgeographies.Thisisunderstandableasprogressingalongthedatamaturitycurveisnoeasyfeat—it

takescommitmentatalllevelsofyourorganization;

investmentintime,resources,andmoney;andappetiteforchange.However,ifyourorganizationsuccessfullyprogressesupthedatamaturitycurve,itwillbeableto:

•Maximizethevalueofexistingdataassetswithdeeperandfasterinsights

•Leveragedata,analytics,insights,andcapabilitiesacrossteams

•Lowercostsondataprocurementandinsightsdelivery

Exhibit2:Organizationaldatamaturitycurve

Insight-drivenculture

Scientifichubfordatainsights

Data-drivencapabilities

Governed

self-serviceaccess

Abilitytorapidly

deploy

technology

platforms

designedto

solvespecificbusinessneeds

Thought

leadershipdrivenbywell-governeddataandahighperformingdatascienceteam

Regularadvocacy

fornew

approachesusingdatascienceandmachinelearning

4

Secure,reliabledatarepository

Datawarehouse/lakeandcuratedsystemswith

well-defined

managementandgovernance

Foundationalsystemfor

reportinganddatascience

2

Accesstodatabasedonlevelofexpertise

Reportingteamfocuseson

operational

analyticsandbusinessusers

runqueriesandextractasneeded

3

Businessunits

workwithdatainanuncoordinatedway,withno

shared

definitions/processes

1

Isolateddataprojects

Lackingdataforanalyticsprojects

Keydatasourcesareinfrequentlycollected,withsignificant

manualerrors

0

Data

driven-insightsareingrainedinprocessesand

accessibleacrossthebusinessto

measureresultsanddriveaction

Seamlessly

integratenew

dataanddevelopinsightsintonew

datapolicies

Abilitytorapidlydrivethe

adoptionofnewdigitalanddataapproaches

acrossthe

organization

5

Datamaturity

|3

Whatarethepillarsofanevolveddatastrategy?

Toachievethedegreeofdatamaturityyourorganizationneedstothrive,thereareafewcriticalelementsyou

shouldseek:

1.Business—Directalignmentwithbusiness

objectivesandgoals

•Aligningdatastrategieswithorganizational

objectives:Adatastrategyshouldbeinlinewiththeoverarchingcorporategoalsanddescribehowdatawillhelpachievethosegoals.

•Keyperformanceindicators(KPIs)shouldbe

establishedtoenabletheorganizationtomonitorprogressagainstgoalsinordertomodifystrategyasnecessary.

2.Governance—Definedandyetdynamicdata

governanceanddataarchitecture

•Dataqualityshouldbeestablished,including

qualitycontrols,datacleansingprocedures,andstandardizeddatadefinitions.Doingsohelpstoensuredataaccuracy,reliability,andcompliance.

•Datamanagementsystemsshouldbeableto

combinedatafromvariedsourcesandmakethem

availablethroughouttheorganizationas‘onesourceoftruth’,althoughaccessibilitymaybedeterminedbyroleandneed.

3.Technology—Enablingadvancedanalyticsand

AI/MLcapabilities

•Dataanalyticstoolsandinfrastructureshould

includeresourcessuitedfortheanalysis,as

wellastechnologyplatformsandinfrastructuretoassemble,process,analyze,andvisualize

increasinglylargeamountsofdataefficientlyandeffectivelywithcapacityforscale.

•Datascienceexpertiseshouldbeacquired,

developed,andempowered—thisincludesthe

individualsthatorganizeandcleansedata,aswellasthosethatdeveloptheprogressiveanalytics

modelstouncovernewinsightsandprovidemoreactionablerecommendations(e.g.,AI,ML,GenAI).

4.Security—Compliancewithglobal/regionaldata

privacyandsecurityrequirements

•Datasecurityisofpreeminentimportancegiventhesensitivenatureoftheinformationbeinganalyzed,andreputational,aswellasfinancial,risktothe

organizationshouldsecuritybecompromised.The

datainfrastructureand/orprocessesshouldincluderobustsecuritymeasuressuchasencryption,accesscontrols,andmonitoringsystems.

•Privacyandconsent,particularlywhenusingpatientdata,isafundamentalrequirementandmustbe

addressed.Thisincludesestablishingprotocolstoensurecompliancewiththemarket’sdataprivacyregulations(e.g.,HIPAA,GDPR,LGPD).Additionally,havingtheabilitytoobtainandmanageappropriateconsentfordatausage.

4|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics

5.Integration—Innovativedatauseandintegration

acrossdatasets

•Tosucceed,companiesmustalwaysbehungryto

innovate.Thisappliestocorporatedatauseaswell.Onecommonapproach,usedbycompaniessuch

asGoogle,isthe70:20:10approachtoinnovation

andtime.Thisinvolvesidentifyingandcategorizingyourprojectsintocoregroups:70%(i.e.,product

launchorlifecyclemanagement),adjacent20%(newapproachesforexistingprocesses,likeML/NLP

application),andtransformative10%(commonlymoreblueskyfordeploymentin2+years).

•Lifesciencescompaniesarestartingtorecognize

theimportanceofnon-traditionaldatause(like

consumerdata),aswellaslearningtoleveragenovelintegrationsacrossdatasetstogleannewinsightsintotheirbusiness.

6.Culture—Acompanymindsetof

continuousimprovement

•Embeddingthedataculturerequiresgenuineculturechangeanddevelopment.Thisincludesleadershipadvocatingforamindsetthatvaluesdata-driven

decisionmaking.Additionalstepsincludepromotingdataliteracyandfluencyacrosstheorganization,

andencouragingexperimentationandinnovationwithdata(whilemaintainingcompliance).

•Beyondthis,organizationsshouldregularlymonitorprocessestocelebrate‘wins’,buildmomentum,

demonstrateprogress,andidentifyfuture

opportunitiestooptimize.Doingsoallowsthe

processestoberefinedasneededinordertoadapttochangingbusinessneedsandnewtechnologies.

Exhibit3:Dataandanalyticsorganizationeffort

10%

20%

70%

TRANSFORMATIONAL

Completelynewdataand

analyticsfornewmarketsandcustomerinsightneeds

ADJACENT

ExpandingfromcoreD&Alaunchneeds:taking

existingdataoranalysis

andgoingtoadeeperlevel(i.e.,individual)

CORE

Incrementalimprovementstoyourcurrentdata

collection,utilization,andanalyticsenvironment

|5

Lookout!It’snothardtogetstuck—

companiesoftenfindthemselvestrappedevenwhentryingtogetitright

Whilethegoalisclear,lifesciencesorganizationsstillstrugglewithdevelopingandimplementingafuture-proofeddatastrategy.

•Inertia:Often,itstartswithorganizations

de-prioritizingdatastrategy.Thefocusremains

onlaunchingproductsandrunningthebusiness.

Near-termgoalsoverridelonger-termgoals.While

uncomfortable,organizationsmustchallenge

themselvestothinkabouthowdatastrategycanhelpthemmeetbusinessobjectivesinthenear-term

(<6months),mid-term(6-18months),andlong-term(18months+).

•Complacency:Othertimes,organizationsstrugglewithalackofcommitmentandresourcing.An

evolveddatastrategyrequiresalignmentbehindandcommitmenttosharedgoals—acrossteamsand

acrosslevels.Thisenablestoolstobedevelopedandimplemented,aswellasashiftincultureandmindsettoleveragedatatogether.

•Lookingonlyinwardinsteadofout:Iforganizationsdorecognizetheimportanceofevolvingtheirdata

strategy,theyoftenstrugglewithwheretostart.

Organizationsareoftenunwillingtolookoutside

oftheirorganizationsforinnovativesolutionsthat

mayrequireinvestmentandnewwaysofthinking.

Organizationsarealsonotengagingwiththebusinesstofindtherightdatastrategyfitforallteams(i.e.,

usecases).Itiscriticaltogroundstrategyinbusinessobjectives,usecases,andkeybusinessquestions.

Doingsoalignsstakeholdersandsetsthedirectionandscopeforallactivities.

Onceorganizationsunderstandtheimportanceof

evolvingtheirdatastrategytomaximizetheimpactofdata,aswellastheinvestmentrequiredtoachievethis,theycanbegintotakethesetangiblesteps.

1.Connectdatastrategytobusinessobjectives

andgoals

Firstthing’sfirst—inordertogetitright,yourteams

haveto“rowtogether.”Thereisaplethoraofhealthcaredataavailablefororganizationstoleverage,andwithoutastrategyyourinsightswillgetlostintheshuffle.Thekeytoderivingmaximizedvalue—andvaluefitforyourorganization—isensuringyourdatastrategyisalignedtoyourbusinessgoals.Unfocuseddataprocurement

andusagewillultimatelyleadtoredundancies,highercosts,andadditionalfrictionfrommanagingthat

extradata.

Beginbyunderstandingyourorganization’sobjectivesandkeybusinessquestions.Onceidentified,youcan

narrowinonthekindsofdatathatwillhelpyouachievethoseobjectiveswithoutdistraction.Forexample,is

thisararediseaseproductlaunchinanopenmarket,newproductlaunchintoacrowdedmarket,ormatureproductabouttoreachLOE?

Whenexecutedwell,organizationscanleverage

actionableinsightsacrossteams.Notjustthat,but

organizationscanalsolowercostsondataprocurementandinsightsdelivery.

6|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics

Exhibit4:IQVIAapproachtodatastrategy

Datastrategyshouldbeginwith,andbedirectlytiedto,organizationalgoalsandkeybusinessquestions

3

What

dataacquisitionandmanagementcapabilitiesarerequired?

1

Whatusecasesdoweneed

tosupport?

Datasource

Datainventory

•Datacatalog

•Dataorganizedbygeography

•Dataorganizedbyfunction

•Dataorganizedbyusecases

•Aggregateddata(Copay,SP,Siteofcare,etc..)

•3rdparty(hospital,claims,labs,demo,EMR)

•Patientsupportprograms

•Registries

•Governmentproviders

•Digitaldevice,digitalcare

•Other(Consumer,etc..)

Existing

businessneeds

Current

Adjacent

Future

Strategic

opportunities

Datagovernance

Datadelivery

•Extractandtransform

•Standardization

•De-identification

•Integration

•Tokenization

•Structured/unstructured

•Storageandexchange

•Privacy

•Access,security

•Compliance

•Quality

•Access

•Stewardshipandpolicies

•Operatingmodel

Long-termgoals

Enablingtechnologies—

APIs,datastreams,cloudconnect

2

Whatanalyticmethodologies

doweutilize?

Data

requirements

Market

requirements

HCP/Patient

requirements

2.Establishgovernanceproceduresandtoolsthat

arefitforpurpose

Anevolveddatastrategymustbebuiltonprocessestogovernpeople,processes,andtechnologies.Thisincludesdefiningrolesandresponsibilities,aswellasdeployingtherighttoolstoequipyourteams.

•Rolesandresponsibilitiesenableteamstosolve

businesschallengeseffectivelyandefficiently.They

definehowteamscanandshouldworktogetherto

findpurposefulsolutionsdesignedtoaddressspecificbusinessquestions.However,toaccomplishthis,rolesandresponsibilitiesmustnotonlybedefined,butalsocodified,disseminated,andenforced.Furthermore,organizationsshouldconsidertheneedforrolesto

evolvetomeetfutureorganizationalneeds.

•Toolsenableteamstocarryouttheirrolesand

responsibilities.Thesetoolsshouldalsoenable

measuresofKPIsandothermetricstogaugesuccessoropportunitiestopivot.Whethertheyaredata

catalogsordashboards,teammustassesswhich

aremostfittomeettheirneeds,whilelookingfor

opportunitiestoleveragethesametoolsacrossteams.

•Processes,whencorrectlyestablished,willhelpyourteamunderstandhowtoaccessthedatatheyneedtoanswertheirquestionsinanefficientmannerontheirown.Establishingthepropertechnologiesenables

yourteam’sabilitytoaccessitsdatainatimelymanner.Establishingtheproperpermissionsandprotocols

ensuresthatonlytherightteamshaveaccessto

relevantdata.

Standardizedandstreamlinedprocesses,roles,

responsibilities,andtoolsestablishthestrongfoundationtoaccelerateinsightsusingthevarietyofdataavailable,fromsyndicated,tocurated,togenerated.

|7

Customerspotlight

Theresultwasaholisticdatacatalogthatenabledteamstounderstandhowdataassetswereused.

Groundingthedatacataloginkeybusiness

questionsenabledidentificationofinsightsthat

couldbeleveragedacrossteamsandofredundantdatasetsbeingprocuredandanalyzedbymultipleteams.Establishinggovernanceofthedatacatalogenabledaccountabilityandcommitmenttonotonlymaintenanceofthetool,butalsotothesharedvalueinthetool.

IQVIArecentlyworkedwithaTop10pharmaceuticalcompanyonits2-3yeardataandanalyticsstrategy.Duringtheinitialassessment,werecognizedtheneedforasingle,business-friendlydatacatalogasastrongfoundationforthemanagementanduseofdata

assetsacrossteamsandbrands.Thecommercialdataandanalyticsteambeganbyassessingkeybusinessprioritiesandcorrespondingbusinessquestions.

Thefindingsweremergedwithaninventoryof

commercialdataassets,includingcharacteristicsandconsiderationsforuseofthedataasset.

3.LeverageadvancedanalyticsandAI/MLandbuild

enablingcapabilities

Lifesciencesorganizationsarefollowingotherindustries

inbuildingadvancedanalyticspractices,including

naturallanguageprocessing(NLP)andartificial

intelligence/machinelearning(AI/ML)solutions..

Ultimately,thesesolutionscanyielddeeperandmorepredictiveinsights.Infact,92%oflifesciencesCIOs

andtechnologyexecutivesbelieveAI/MLwillbethetopgame-changingtechnologyinthenextthreeyears.6

However,itiscriticaltorememberthatadvanced

analyticsandAIaresimplytoolstohelpyouansweryourbusinessquestions—notthesolutionsthemselves.

Althoughwhenleveragedcorrectlyandfitforpurpose,thesetechniquescanyieldinsightsthattraditional

analysescannot.Forexample,AI/MLshoulddrive

NextBestAction

,butshouldnotreplacestrategic

planningorgounchecked.Organizationsmustcarefullyassesstheirbusinesspriorities,correspondingbusinessquestions,andanalyticssolutionsthatarefitforpurpose.

4.Ensurecompliancewithapplicableprivacy

regulations,includingthoseoftheUnitedStates(HIPAA),EuropeanUnion(GDPR),andJapan(APPI)

Perhapsthemostimportantdifferencebetween

healthcareindustrydataandthatofothersisthe

requirementtopreventpatientdatafrombeing

compromised.Morespecifically,HIPAArequiresthat

theconfidentiality,integrity,andavailabilityofpersonalhealthinformation(PHI)beprotected,andsafeguardsbeimplemented.Notably,responsibilityforprotectingPHIcanextendbeyondyourorganizationtoinclude

yourpartnersinthebroaderhealthcareecosystem.

Whichbegsthequestion…Areyourpartnersholding

themselvestothesamestandardsasyourorganization?

TheGDPRisbroaderinthatitdealswithallpersonally

identifiableinformation(PII)acrossindustries,butalsoisfocusedonsafeguardinginformation.

“OurworkwithclientsonAIandMLhasfoundthatlessthan15%oftheeffortisneededto

developanalgorithm,withthevastmajoritybeingonsourcingandpreparingthedata.As

pharmapreparestomaximizegenerativeAI’spotential,theymustevolvetheirgo-forwarddatastrategy.Icallit‘DataStrategy2.0.’Thisincludesbuildingspecificcapabilitiesintotheirdataarchitecture,governance,andprocessingtosupportbroadusecases.”

—TysonKuehl,Principal,IQVIAData&AnalyticsConsulting

8|EnsuringEnterpriseExcellenceThroughanEvolvedApproachtoDataandAnalytics

Whiletherearenotabledifferences,inbroadstrokes,theprivacyregulationshaveasimilarframeworkinthattheyrequire:

•Controlledaccesstosensitivedata

•PHIencryptionwhenstoredandwhentransmitted

•Methodsfordetectingbreachesorchangesininformation

5.Embraceinnovativedatasetsandintegrateacross

datasetstouncoverhiddeninsight

Whilelifesciencesorganizationsoftenareawareof

opportunitiestogaingreaterinsightsfromdifferent

datasets,theycontinuetothinktraditionallyabout,andaskthesamequestionswith,existingdatasets.Asthehealthcarelandscapechanges—intermsofpatient

expectations,diseasecomplexity,workforcecapabilities,andmore—organizationsmustchallengethemselvestolooktoinnovativedatasetsandintegrationsthathave

notbeenpreviouslyleveraged.

Asanexample,toppharmaorganizationsareturningtheirattentiontopatientsupportprograms.Whilethereare

avarietyofdatatypesandsourcesthataddresspatient

needs,organizationsmustassesshowtobesttomeettheirpatientneeds.Atauniquepharmalevel,thismeansthat

youshouldconsiderthepatientneedsanddatacollectedforuniquepatientsegment(s).ThiscoulddiffergreatlyifyouareworkinginthehighlyprevalenttherapeuticareaofobesityversusararediseaselikeSickleCellDisease.

Furthermore,lifesciencesorganizationsareincreasinglyinvestinginintegratingdatatogaingreaterinsights

intopatients,providers,andotherstakeholders.ThisincludesintegratingthepurchaseofLRxdatawiththeirin-housepatientsupportprogram(PSP)data.Doing

soenablesaunique,longitudinallookatthepatient

journeytobetterunderstandtheirbackgrounds,

experiences,behaviors,drivers,andmore.However,doingsorequiresadedicationtopatientdataprivacy,whichbecomesmorechallengingasdataiscontinuallyintegrated,requiringgreaterdegreesoftokenization,

anonymization,andmonitoringforriskofre-identification(RRD).

Whileintegrationandinteroperabilitycanleadtogreateranddeeperinsights,theyaremeaninglesswithoutuser-friendlyreportingdashboards.Tobesuccessful,your

organizationandteammusthavetoolstofocusonthemostimpactfulKPIsandbusinessquestionsfocusedon

theirrole.Theymusttakethetimetofullyunderstandthepowerofintegrateddataandshareinsights

acrossteams.

6.Activateteamswithashiftincultureandmindset

Establishingtherightprocessesandtoolswillonlygetyousofar.Itiscriticalthatteamsaresupportedand

empoweredtodriveyourdatastrategy.Thisincludesaculturethatanswersbusinessquestionsanddevelopssolutionsthatdrivetowardsaction.Makesurethat

yourorganizationprioritizes“data-drivenculture”initseverydaylanguageandexpectations.Ensurethatbusinessquestionsandprioritiescanbetestedwithhypothesesandevidence.

Todothis,themessagehastocomefromthetopdown,

aswellasthebottomup.Ensureyourorganization’s

leadershipsubscribestothelevelofdata-drivenrigortheyexpectfromtheircolleagues.Andsupportthosecolleagueswithappropriatetrainingsondataliteracy,whichis

expectedtobecomeamainstreampriorityin2-5years.7

Finally,remember,establishinganenduringcultureisanongoingeffort!

“Perhapsthemostunderappreciatedpart

ofourjourneyhasbeentheimportanceofactivelyengagingourbusinesscolleaguesaspartofthejourney.Nowthattheybetterrecognizewhatwecando,andplantodo,wearebroughtinearlieron,asstrategicpartners.Histo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论