版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ResearchReport
JAMESRYSEFF,BRANDONDEBRUHL,SYDNEJ.NEWBERRY
TheRootCausesofFailure
forArtificialIntelligence
ProjectsandHowThey
CanSucceed
AvoidingtheAnti-PatternsofAI
rtificialintelligence(AI)iswidelyrecognizedastechnologywiththepotentialtohavea
transformativeeffectonorganizations.1AlthoughAIwasoncereservedforadvancedtech-
nologycompanieswiththeabilitytohiretoptalentandspendmillionsofdollars,alltypes
A
oforganizationsareadoptingAItoday.Private-sectorinvestmentinAIincreased18-foldfrom2013to2022,2andonesurveyfoundthat58percentofmidsizecorporations3haddeployedatleastoneAImodeltoproduction.4Similarly,theU.S.DepartmentofDefense(DoD)isspending$1.8billioneachyearonmilitaryapplicationsforAI,andDoDleadershaveidentifiedAIasoneofthemostcrucialtechnologiestothefutureofwarfare.5
AIisalreadymakingimpactsacrossawidevarietyofindustries.Pharmaceuticalcompaniesareusingittoacceleratethepaceandsuccessrateofdrugdevelopment.6Retailers,suchasWalmart,aredeployingAIforpredictiveanalyticssothattheyknowwhentorestockinventoryandhowtooptimizetheirend-to-endsupplychains.7Finally,inthedefenserealm,AIispilotingfighterjets,8detecting
enemysubmarines,9andimprovingcommanders’awarenessofthebattlefield.10Theseexamplesdem-onstratetherelevanceofAItoorganizationsinavarietyofindustriesandforavarietyofusecases.
However,despitethepromiseandhypearoundAI,manyorganizationsarestrugglingto
deliverworkingAIapplications.Onesurveyfoundthatonly14percentoforganizationsrespondedthattheywerefullyreadytoadoptAI,eventhough84percentofbusinessleadersreportedthat
theybelievethatAIwillhaveasignificantimpactontheirbusiness.11Managersanddirectorsfindthemselvesunderenormouspressuretodosomething—anything—withAItodemonstratetotheirsuperiorsthattheyarekeepingupwiththerapidadvanceoftechnology.12Buttoomanymanagershavelittleunderstandingofhowtotranslatethisdesireintoaction.Bysomeestimates,morethan80percentofAIprojectsfail.13Thisistwicethealready-highrateoffailureincorporateinformationtechnology(IT)projectsthatdonotinvolveAI.14
SUMMARY
2
Background
Althoughleaderswidelyrecognizetheimportanceofartificialintelligence(AI),successfullyimplementingAI
projectsremainsaseriouschallenge.aAccordingtoonesurvey,84percentofbusinessleadersrespondedthattheybelievethatAIwillhaveasignificantimpactontheirbusiness,and97percentofbusinessleadersreportedthattheurgencytodeployAI-poweredtechnologieshasincreased.bDespitethis,thesamesurveyfoundthat
only14percentoforganizationsrespondedthattheywerefullyreadytointegrateAIintotheirbusinesses.
Bysomeestimates,morethan80percentofAIprojectsfail—twicetherateoffailureforinformationtechnol-
ogyprojectsthatdonotinvolveAI.cThus,understandinghowtotranslateAI’senormouspotentialintoconcreteresultsremainsanurgentchallenge.Inthisreport,wedocumentlessonslearnedfromthosewhohavealreadyappliedAI/MLsothatU.S.DepartmentofDefenseleadershipandotherscanavoidthesefailuresormitigate
risksintheirplanning.
Approach
ToinvestigatewhyAIprojectsfail,weinterviewed65experienceddatascientistsandengineers.ParticipantshadatleastfiveyearsofexperiencebuildingAI/MLmodelsinindustryoracademia.Weselectedparticipantsacrossavarietyofcompanysizesandindustriestoensurethatthesefindingswouldbebroadlyrepresentative.Theoutputoftheseinterviewsissummarizedinthisanalysis.
Takeaways
OurinterviewshighlightedfiveleadingrootcausesofthefailureofAIprojects.First,industrystakeholdersoftenmisunderstand—ormiscommunicate—whatproblemneedstobesolvedusingAI.Toooften,trainedAImodelsaredeployedthathavebeenoptimizedforthewrongmetricsordonotfitintotheoverallbusinessworkflowandcontext.Second,manyAIprojectsfailbecausetheorganizationlacksthenecessarydatatoadequatelytrain
aneffectiveAImodel.Third,insomecases,AIprojectsfailbecausetheorganizationfocusesmoreonusingthelatestandgreatesttechnologythanonsolvingrealproblemsforitsintendedusers.Fourth,organizationsmightnothaveadequateinfrastructuretomanagetheirdataanddeploycompletedAImodels,whichincreasesthe
likelihoodofprojectfailure.Finally,insomecases,AIprojectsfailbecausethetechnologyisappliedtoprob-lemsthataretoodifficultforAItosolve.AIisnotamagicwandthatcanmakeanychallengingproblemdisap-pear;insomecases,eventhemostadvancedAImodelscannotautomateawayadifficulttask.
IndustryRecommendations
Toovercometheseissues,leadersshouldconsiderthesefiveprinciplesforsuccessinAIprojects:
•Ensurethattechnicalstaffunderstandtheprojectpurposeanddomaincontext:Misunderstandingsand
miscommunicationsabouttheintentandpurposeoftheprojectarethemostcommonreasonsforAIproj-ectfailure.EnsuringeffectiveinteractionsbetweenthetechnologistsandthebusinessexpertscanbethedifferencebetweensuccessandfailureforanAIproject.
•Chooseenduringproblems:AIprojectsrequiretimeandpatiencetocomplete.BeforetheybeginanyAIproject,leadersshouldbepreparedtocommiteachproductteamtosolvingaspecificproblemforat
leastayear.IfanAIprojectisnotworthsuchalong-termcommitment,itmostlikelyisnotworthcommit-tingtoatall.
•Focusontheproblem,notthetechnology:Successfulprojectsarelaser-focusedontheproblemtobesolved,notthetechnologyusedtosolveit.ChasingthelatestandgreatestadvancesinAIfortheirownsakeisoneofthemostfrequentpathwaystofailure.
3
•Investininfrastructure:Up-frontinvestmentsininfrastructuretosupportdatagovernanceandmodel
deploymentcansubstantiallyreducethetimerequiredtocompleteAIprojectsandcanincreasethevolumeofhigh-qualitydataavailabletotraineffectiveAImodels.
•UnderstandAI’slimitations:DespiteallthehypearoundAIasatechnology,AIstillhastechnicallimitationsthatcannotalwaysbeovercome.WhenconsideringapotentialAIproject,leadersneedtoincludetechnicalexpertstoassesstheproject’sfeasibility.
AcademiaRecommendations
Toovercometheissuesdescribedbyouracademicinterviewees,leadersshouldconsiderthesetworecommendations:
•Overcomedata-collectionbarriersthroughpartnershipswithgovernment:Partnershipsbetween
academiaandgovernmentagenciescouldgiveresearchersaccesstodataoftheprovenanceneededforacademicresearch.ThefederalgovernmentshouldexpanditsinvestmentinsuchprogramsasD(theU.S.government’sopendatasite)andseektoincreasethenumberofdatasetsavailableforresearch.
•Expanddoctoralprogramsindatascienceforpractitioners:Neweracademicsoftenfeelpressuretofocusonresearchthatleadstocareersuccessasopposedtoresearchthathasthemostpotentialtosolveimportantproblems.Computerscienceanddatascienceprogramleadersshouldlearnfromdisciplines,
suchasinternationalrelations,inwhichpractitionerdoctoralprogramsoftenexistsidebysideateventhetop-rankeduniversitiestoprovidepathwaysforthemost-advancedresearcherstoapplytheirfindingstourgentproblems.
aForthisproject,wefocusedonthemachinelearning(ML)branchofAIbecausethatisthetechnologyunderpinningmostbusinessapplicationsofAItoday.ThisincludesAImodelstrainedusingsupervisedlearning,unsupervisedlearning,or
reinforcementlearningapproachesandlargelanguagemodels(LLMs).ProjectsthatsimplyusedpretrainedLLMs(some-timesknownaspromptengineering)werenotincludedinthescopeofthiswork.
bCiscoAIReadinessIndex.
cKahn,“WantYourCompany’sAIProjecttoSucceed?”
Thepurposeofthisexploratoryanalysisistohelpleadersandmanagerswithinalltypesoforga-nizationswhoarestrugglingtounderstandhow
toexecuteAIprojectsintheirorganizationavoid
someofthemostcommonreasonsforAIproject
failures.Todoso,weinterviewed65experiencedAIengineersandresearchersacrossavarietyofcom-paniesandindustries,aswellasacademia.From
theseinterviews,weidentifiedthemostfrequentlyreportedanti-patternsofAI—commonresponsestorecurringproblemsthataretypicallyineffectiveorevencounterproductive.15Wehopetohelporga-nizationsavoidmakingthesecommonmistakes
andtoprovideleadersandmanagersendeavoringtounderstandAIwithpracticaladvicetohelpthemgetstarted.
AIprojectshavetwocomponents:thetechnologyasaplatform(i.e.,thedevelopment,use,anddeploy-mentofAItocompletesomesetofbusinesstasks)andtheorganizationoftheproject(i.e.,theprocess,struc-
ture,andplaceintheoverallorganization).ThesetwoelementsenableorganizationsandAItoolstowork
togethertosolvepressingbusinessproblems.16
IT-typeprojectscanfailformanyreasonsnot
relatedtothetechnologyitself.Forexample,projectscanfailbecauseofprocessfailures(i.e.,flawsinthewaytheprojectisexecuted),interactionfailures(i.e.,problemswithhowhumansinteractwiththetech-nology),orexpectationfailures(i.e.,amisalignmentintheanticipatedvalueoftheproject).17Breakdownsinanycomponentcouldresultinaprojectfailure,
whichresultsinincreasedcostsforthesponsoring
enterprise.ThereisalargebodyofliteratureonhowITprojectsfail.However,AIseemstohavedifferentprojectcharacteristics,suchascostlylaborandcapi-talrequirementsandhighalgorithmcomplexity,thatmakethemunlikeatraditionalinformationsystem.18
Thehigh-profilenatureofAImayincreasethedesireforstakeholderstobetterunderstandwhatdrivestheriskofITprojectsrelatedtoAI.
4
Mostpriorworkonthistopichastakenoneoftwoforms.Insomecases,anindividualdatascien-tistormanagerdiscussestheirpersonalexperiencesandbeliefsaboutwhatcausesAIprojectstofail.19Inothercases,consultingfirmsconductawidespreadsurveyofITleaderstodiscusstheirexperiences
withAI.20Forexample,McKinseyhasconducted
anannualsurveyaboutAIforseveralyears.21Addi-tionally,onestudyconductedasystematicliteraturereviewandinterviewswithsixexpertstoexplorethefactorsthatmightcausegeneralAIprojectstofail.22
Ourstudydiffersfromthispriorworkinseveralways.First,wefocusontheperspectiveoftheindi-
vidualsbuildingAIapplicationsasopposedtothe
businessleadersoftheorganization.Abottom-up
approachallowsustodiscusswhyAIprojectsfail
fromthepointofviewofthepeoplewhointimatelyunderstandthespecificsofthetechnology.Second,weconductedsemistructuredinterviewsasopposedtorelyingonmultiple-choiceorshort-answersurveyquestions.Althoughtheburdenofconducting
interviewsmeansthatthesamplesizeofthisstudyissmallercomparedwiththoseofmultiple-choice
surveystudies,thisapproachallowedustoexploretheissuesraisedingreaternuanceanddepth.Finally,weconductedsubstantiallymoresemistructured
interviewswithexpertscomparedwithpriorauthorswhotookthisapproach.
Methods
Togatherdataforthisreport,weconductedsemi-
structuredinterviewswithexperiencedAIpractitio-nersinbothindustryandacademia.Duringthese
interviews,wedefinedthefailureofanAIprojectasaprojectthatwasperceivedtobeafailurebytheorga-
nization.Weincludedbothtechnicalfailuresand
businessfailureswithinthisdefinition.Eachinter-
vieweewasaskedtodiscussthetypesoffailuresthattheyperceivedtobethemostfrequentorimpactful
andwhattheybelievedtherootcausesofthesefail-ureswere.Wethenidentifiedcommonrootcauses
basedontheinterviewresponses.Theinterviews
wereconductedbetweenAugustandDecember2023.
Theapproachtakeninthisreporthasstrengthsandweaknesses.Conductinginterviewswithopen-
endedquestionsofexperienceddatascientistsandMLengineersallowedustodiscoverwhatthese
professionalsbelievearethegreatestproblemsandchallengeswhenattemptingtoexecuteAIprojects.However,becausethemajorityofourinterviewees
werenonmanagerialengineersinsteadofbusinessexecutives,theresultsmaydisproportionatelyreflecttheperspectiveofindividualswhodonotholdlead-ershippositions.Thus,theresultsmaybeskewed
towardidentifyingleadershipfailures.
IndustryParticipants
WeidentifiedpotentialindustryparticipantsusingtheLinkedInRecruitertoolandLinkedInInMail
messages.Potentialparticipantshadatleastfive
yearsofAI/MLexperienceinindustryandjobtitlesthatindicatedthattheywereeitheranindividual
contributororamanagerinthedatascienceorMLengineeringtechnicaldisciplines.23Weselected
participantstorepresentavarietyofexperiences
andbackgrounds.Inparticular,weselectedpar-
ticipantsfromdifferentcompanysizes(start-ups,
largecompanies,andmedium-sizedcompanies)andindustries(technology,healthcare,finance,retail,consulting,andothers).Industryparticipantswereoffereda$100honorariumforagreeingtotakepartina45-minuteinterview.
Atotalof379potentialindustrycandidateswereidentifiedandcontacted.Ofthese,50individuals
ultimatelyparticipatedinaninterview,represent-ingmorethan50uniqueorganizations.24Fourteenindividualssentamessagedecliningtoparticipateinthestudy;theseindividualswereremovedfromthecandidatepoolandhadnofurthercontactfromthestudyteam.25Table1illustratesthepercentagesofpotentialcandidateswhoeitherparticipatedordeclinedtoparticipateinthestudy.
Industryinterviewsusedaconsistentbatteryofquestions,whichisprovidedinAppendixA.Allinterviewswereconductedwithapromiseofanonymitytoensurethatparticipantsfeltfreetospeakcandidlyabouttheirexperiences.
5
AcademiaParticipants
Weconducted15interviewsofacademicsdrawn
fromconveniencesamplesduringconferencesandfromindividualsknowntotheresearchteam.Theseinterviewsrangedacrossschooltypes(e.g.,engi-
neeringprogramsandbusinessschools)anddegreelevels(e.g.,tenure-trackresearcher,non–tenure-trackresearcher,graduatestudent,andundergraduate
orresearchassistant).Theseinterviewsusedacon-sistentbatteryofquestions,whichispresentedin
AppendixB.Ourinterviewswereconductedwith
thepromiseofanonymitytoallownon–tenure-trackacademicresearchersandnonresearcherengineerswhosupporttheresearcheffortstohaveanopportu-nitytospeakwithoutattribution.Table2illustratestheacademiccandidateresponserates.
FindingsfromIndustryInterviews
Acrossalloftheinterviewsconductedwithexperi-encedAIpractitionersfromindustry,fivedominantrootcausesemergeddescribingwhyAIprojects
fail.Overall,intervieweesexpressedthatthemostcommonrootcauseoffailurewasthebusiness
leadershipoftheorganizationmisunderstanding
howtosettheprojectonapathwaytosuccess.Ourintervieweesalsonotedthatthesetypesoffailureshadthemostimpactontheultimateoutcomeoftheprojectcomparedwiththeotherrootcausesoffail-uretheydiscussed.
Theothernotablerootcauseoffailureidentifiedbyintervieweeswaslimitationsinthequalityand
utilityofdataavailabletotraintheAImodels.Thesetworootcauseswerecitedspontaneouslybymorethanone-halfoftheintervieweesastheprimaryrea-sonsthatAIprojectsfailedorunderperformed.
Inadditiontothemostfrequentfailurepatternscited,threeotherrootcauseswerenotedbyamean-ingfulnumberofinterviewees.26First,someinter-vieweesnotedthelackofinvestmentininfrastruc-
turetoempowertheteam.Second,someintervieweesdiscussedthedifferencebetweenthetop-downfail-urescausedbyleadershipandthebottom-upfailurescausedbyindividualcontributorsonthedatascienceteam.Finally,someintervieweesdiscussedproject
TABLE1
IndustryCandidateResponseRates
Candidate
Indicators
Pool
Accepted
Declined
Numberofcandidates
379
50
14
Percentage
100
13.2
3.7
TABLE2
AcademicCandidateResponseRates
Candidate
Indicators
Pool
Accepted
Declined
Numberofcandidates
37
15
22
Percentage
100
40.5
59.5
failurescausedbyfundamentallimitationsinwhatAIcanactuallyachieve.Whilethesefailurepatternswerecitedlessfrequentlythanthetwodominantrootcauses,theyeachwerecitedbyaone-quartertoone-thirdoftheinterviewparticipants.
Leadership-DrivenFailures
Morethananyothertypeofissue,ourintervieweesnotedthatfailuresdrivenbythedecisionsandexpec-tationsoftheorganization’sbusinessleadershipwerefarandawaythemostfrequentcausesofprojectfail-ure.Eighty-fourpercentofourintervieweescitedoneormoreoftheserootcausesastheprimaryreason
thatAIprojectswouldfail.Theseleadership-drivenfailurestookseveralforms.
OptimizingfortheWrongBusinessProblem
First,alltoooften,leadershipinstructsthedatasci-enceteamtosolvethewrongproblemwithAI.This
resultsinthedatascienceteamworkinghardfor
monthstodeliveratrainedAImodelthatmakes
littleimpactonthebusinessororganization.In
manycases,thisisduetoacommunicationbreak-downbetweenthedatascienceteamandtheleadersoftheorganization.
Fewbusinessleadershaveabackgroundindatascience;consequently,theobjectivestheysetneedtobetranslatedbythetechnicalstaffintogoalsthatcan
6
beachievedbyatrainedAImodel.Infailedprojects,eitherthebusinessleadershipdoesnotmakethem-selvesavailabletodiscusswhetherthechoicesmade
bythetechnicalteamalignwiththeirintent,ortheydonotrealizethatthemetricsmeasuringthesuccessoftheAImodeldonottrulyrepresentthemetricsofsuccessforitsintendedpurpose.Forexample,busi-nessleadersmaysaythattheyneedanMLalgorithmthattellsthemthepricetosetforaproduct—but
whattheyactuallyneedisthepricethatgivesthemthegreatestprofitmargininsteadofthepricethat
sellsthemostitems.Thedatascienceteamlacksthisbusinesscontextandthereforemightmakethewrongassumptions.Thesekindsoferrorsoftenbecome
obviousonlyafterthedatascienceteamdeliversacompletedAImodelandattemptstointegrateitintoday-to-daybusinessoperations.
UsingArtificialIntelligencetoSolveSimpleProblems
Inothercases,businessleadersdemandthatthetech-nicalteamapplyMLtoaproblemthatdoesnottrulyrequireit.Noteveryproblemiscomplexenough
torequireanMLsolution:Asoneinterviewee
explained,histeamswouldsometimesbeinstructedtoapplyAItechniquestodatasetswithahandfulofdominantcharacteristicsorpatternsthatcouldhavequicklybeencapturedbyafewsimpleif-thenrules.Thismismatchcanhappenfordifferentreasons.Insomecases,leadersunderstandAIonlyasabuzz-
wordanddonotrealizethatsimplerandcheaper
solutionsareavailable.Inothercases,seniorleaderswhoarefarremovedfromtheimplementationdetailsdemandtheuseofAIbecausetheyareconfident
thattheirbusinessareamusthavecomplexproblems
Manyleadersarenot
preparedforthetime
andcostofacquiring,cleaning,andexploringtheirorganization’sdata.
thatdemandcomplexsolutions.Regardlessofthecause,whilethesetypesofprojectsmightsucceedinanarrowsense,theyfailineffectbecausetheywerenevernecessaryinthefirstplace.
OverconfidenceinArtificialIntelligence
Additionally,manyseniorleadershaveinflated
expectationsofwhatAIcanbeexpectedtoachieve.Therapidadvancementsandimpressiveachieve-
mentsofAImodelshavegeneratedawaveofhype
aboutthetechnology.PitchesfromsalespeopleandpresentationsbyAIresearchersaddtotheperceptionthatAIcaneasilyachievealmostanything.Inreality,optimizinganAImodelforanorganization’suse
casecanbemoredifficultthanthesepresentationsmakeitappear.AImodelsdevelopedbyacademicresearchersmightnotworkeffectivelyforallofthepeculiaritiesofanorganization’sbusiness.Many
businessleadersalsodonotrealizethatAIalgo-
rithmsareinherentlyprobabilistic:EveryAImodelincorporatessomedegreeofrandomnessanduncer-tainty.Businessleaderswhoexpectrepeatabilityandcertaintycanbedisappointedwhenthemodelfailstoliveuptotheirexpectations,leadingthemtolosefaithintheAIproductandinthedatascienceteam.
UnderestimatingtheTimeCommitmentNeeded
Finally,manyinterviewees(14of50)reportedfindingthatseniorleadersoftenunderestimatedtheamount
oftimethatitwouldtaketotrainanAImodelthat
waseffectiveatsolvingtheirbusinessproblems.
Evenwhenanoff-the-shelfAImodelisavailable,ithasnotbeentrainedonanorganization’sdataandthusitmaynotbeimmediatelyeffectiveinsolvingthespecificbusinessproblems.Manyleadersarenotpreparedforthetimeandcostofacquiring,clean-ing,andexploringtheirorganization’sdata.They
expectAIprojectstotakeweeksinsteadofmonths
tocomplete,andtheywonderwhythedatascienceteamcannotquicklyreplicatethefantasticachieve-mentstheyhearabouteveryday.Evenworse,in
someorganizations,seniorleadersrapidlyswitch
theirprioritieseveryfewweeksormonths.Inthesecases,projectsthatareinprogresscanbediscardedbeforetheyhavetheopportunitytodemonstratereal
7
results,orcompletedprojectscanbeignoredbecausetheynolongeraddresswhatleadershipviewsasthemostimportantprioritiesofthecompany.Evenwhentheprojectissuccessful,leadersmaydirecttheteamtomoveonprematurely.Asoneintervieweeputit,
“Often,modelsaredeliveredas50percentofwhattheycouldhavebeen.”27
Bottom-Up–DrivenFailures
Incontrasttothetop-downfailurepatternsdriven
bytheorganization’sbusinessleadership,manyinter-viewees(16of50)notedadifferenttypeoffailure
patterndrivenbythedatascientistsontheteam.
Technicalstaffoftenenjoypushingtheboundariesofthepossibleandlearningnewtoolsandtechniques.Consequently,theyoftenlookforopportunitiesto
tryoutnewlydevelopedmodelsorframeworksevenwhenolder,more-establishedtoolsmightbeabetterfitforthebusinessusecase.Individualengineersanddatascientistsalsohaveastrongincentivetobuild
uptheirexperienceusingthelatesttechnological
advancementsbecausetheseskillsarehighlydesiredinthehiringmarket.AIprojectsoftenfailwhentheyfocusonthetechnologybeingemployedinsteadoffocusingonsolvingrealproblemsfortheirintendedendusers.Whileitisimportantforanorganizationtoexperimentwithnewtechnologiesandprovideitstechnicalstaffwithopportunitiestoimprovetheir
skillsets,thisshouldbeaconsciouschoicebalancedagainsttheotherobjectivesoftheorganization.
Data-DrivenFailures
Afterleadership-drivenfailures,intervieweesidenti-fieddata-drivenfailuresasthesecondmostcommonreasonthatAIprojectsendinfailure.Thesedifficul-tiesmanifestedinanumberofways.
Manyinterviewees(30of50)discussedpersistent
issueswithdataquality.Oneintervieweenoted,80percentofAIisthedirtyworkofdataengi-neering.Youneedgoodpeopledoingthedirtywork—otherwisetheirmistakespoisonthe
algorithms.Thechallengeis,howdowecon-vincegoodpeopletodoboringwork?28
TooFewDataEngineers
Thelackofprestigeassociatedwithdataengineer-
ingactsasanadditionalbarrier:Oneinterviewee
referredtodataengineersas“theplumbersofdata
science.”29Dataengineersdothehardworkof
designingandmaintainingtheinfrastructurethat
ingests,cleans,andtransformsdataintoaformat
suitablefordatascientiststotrainmodelson.Despitethis,oftenthedatascientiststrainingtheAImodelsareseenasdoing“therealAIwork,”whiledata
engineeringislookeddownonasamenialtask.30
Thegoalformanydataengineersistogrowtheir
skillsandtransitionintotheroleofdatascientist;
consequently,someorganizationsfacehighturnoverratesinthedataengineeringgroup.Evenworse,
theseindividualstakealloftheirknowledgeabout
theorganization’sdataandinfrastructurewhentheyleave.Inorganizationsthatlackeffectivedocumen-tation,thelossofadataengineermightmeanthat
nooneknowswhichdatasetsarereliableorhowthe
meaningofadatasetmighthaveshiftedovertime.
PainstakinglyrediscoveringthatknowledgeincreasesthecostandtimerequiredtocompleteanAIproject,whichincreasesthelikelihoodthatleadershipwill
loseinterestandabandonit.
LackofSuitableData
Additionally,insomecases,organizationslacktherightkindofdatatotrainAImodels.ThisfailurepatternisparticularlycommonwhenthebusinessisapplyingAIforthefirsttimeortoanewdomain.Intervieweesnotedthatbusinessleadersoften
wouldbesurprisedtolearnthattheirorganizationlackedsufficientdatatotrainAIalgorithms.Asoneintervieweeputit,“Theythinktheyhavegreatdatabecausetheygetweeklysalesreports,buttheydon’trealizethedatatheyhavecurrentlymaynotmeetitsnewpurpose.”31Inmanycases,legacydatasetswereintendedtopreservedataforcomplianceor
loggingpurposes.Unfortunately,structuringdataforanalysiscanbequitedifferent:Itoftenrequiresconsiderablecontextaboutwhythingshappened
asopposedtosimplywhathappened.Forexample,ane-commercewebsitemighthaveloggedwhat
linksusersclickon—butnotafulllistofwhatitemsappearedonthescreenwhentheuserselectedone
8
orwhatsearchqueryledtheusertoseethatiteminthefirstplace.Thismaymeanthatdifferentfieldsneedtobepreserved,ordifferentlevelsofgranular-ityandqualitymaybenecessary.Thus,evenifanorganizationhasalargequantityofhistoricaldata,thatdatamaynotbesufficienttotrainaneffectiveAIalgorith
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年雅安职业技术学院单招职业适应性测试备考试题及答案解析
- 2026年浙江长征职业技术学院单招职业适应性考试参考题库及答案解析
- 2026年广州城建职业学院单招职业适应性测试备考题库及答案解析
- 2026年山西国际商务职业学院单招职业适应性考试参考题库及答案解析
- 2026年安徽交通职业技术学院单招职业适应性测试备考试题及答案解析
- 2026年江西枫林涉外经贸职业学院单招职业适应性测试备考题库及答案解析
- 期中考试检讨书(合集15篇)
- 2026年安徽汽车职业技术学院单招职业适应性测试模拟试题及答案解析
- 2026年铜仁职业技术学院单招职业适应性考试模拟试题及答案解析
- 校外实习总结(合集15篇)
- 2025年重庆青年职业技术学院非编合同制工作人员招聘68人备考题库及一套答案详解
- 2025年常熟市交通产业投资集团有限公司(系统)招聘14人备考题库含答案详解
- 临沂市公安机关2025年第四季度招录警务辅助人员备考题库新版
- 2025年新版中医药学概论试题及答案
- 深圳市龙岗区2025年生物高一上期末调研模拟试题含解析
- 综合实践 参加欢乐购物活动 筹备购物活动 课件 2025-2026学年二年级上册数学北师大版
- 石材养护保养操作规程手册
- 栏杆劳务分包合同范本
- 2024年1月浙江省高考英语试题卷附答案
- 四川省宜宾市2023-2024学年高二物理第一学期期末联考试题含解析
- 玻璃隔墙拆除施工方案
评论
0/150
提交评论