付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.1.1导数与函数的单调性教学过程:一.创设情景函数是客观描述世界变化规律的重要数学模型,争辩函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是格外重要的.通过争辩函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数争辩函数的性质,从中体会导数在争辩函数中的作用。二.新课讲授1.问题:图(1),它表示跳水运动中高度随时间变化的函数的图像,图(2)表示高台跳水运动员的速度随时间变化的函数的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区分?通过观看图像,我们可以发觉:运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,.从最高点到入水,运动员离水面的高度随时间的增加而削减,即是减函数.相应地,.2.函数的单调性与导数的关系观看下面函数的图像,探讨函数的单调性与其导数正负的关系.如图3.3-3,导数表示函数在点处的切线的斜率.(图3.3-3)在处,,切线是“左下右上”式的,这时,函数在四周单调递增;在处,,切线是“左上右下”式的,这时,函数在四周单调递减.结论:函数的单调性与导数的关系在某个区间内,假如,那么函数在这个区间内单调递增;假如,那么函数在这个区间内单调递减.说明:(1)特殊的,假如,那么函数在这个区间内是常函数.3.求解函数单调区间的步骤:(1)确定函数的定义域;(2)求导数;(3)解不等式,解集在定义域内的部分为增区间;(4)解不等式,解集在定义域内的部分为减区间.三.典例分析例1.已知导函数的下列信息:当时,;当,或时,;当,或时,试画出函数图像的大致外形.解:当时,,可知在此区间内单调递增;当,或时,;可知在此区间内单调递减;当,或时,,这两点比较特殊,我们把它称为“临界点”.综上,函数图像的大致外形如图3.3-4所示.例2.推断下列函数的单调性,并求出单调区间.(1);(2)(3);(4)解:(1)由于,所以,因此,在R上单调递增,如上图所示.(2)由于,所以,当,即时,函数单调递增;当,即时,函数单调递减;函数的图像如图3.3-5(2)所示.(3)由于,所以,因此,函数在单调递减,如上图所示.(4)由于,所以.当,即时,函数;当,即时,函数;函数的图像如下图所示.注:(3)、(4)生练例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像.分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开头阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化状况.同理可知其它三种容器的状况.解:思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的状况吗?一般的,假如一个函数在某一范围内导数的确定值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.如图3.3-7所示,函数在或内的图像“陡峭”,在或内的图像“平缓”.例4.求证:函数在区间内是减函数.证明:由于当即时,,所以函数在区间内是减函数.说明:证明可导函数在内的单调性步骤:(1)求导函数;(2)推断在内的符号;(3)做出结论:为增函数,为减函数.例5.已知函数在区间上是增函数,求实数的取值范围.解:,由于在区间上是增函数,所以对恒成立,即对恒成立,解之得:所以实数的取值范围为.说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,留意此时公式中的等号不能省略,否则漏解.例6.已知函数y=x+,试争辩出此函数的单调区间.解:y′=(x+)′=1-1·x-2= 令>0.解得x>1或x<-1.∴y=x+的单调增区间是(-∞,-1)和(1,+∞).令<0,解得-1<x<0或0<x<1.∴y=x+的单调减区间是(-1,0)和(0,1)四.课堂练习1.求下列函数的单调区间1.f(x)=2x3-6x2+7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年一级建造师建筑实务真题及答案
- 武汉安全培训课程讲解
- 2025年医疗事业编考试试题答案
- 装修工程带资合同(标准版)
- 溧阳-事业单位考试真题(2篇)
- 民营企业的经济属性定位
- 安全生产十结合策略讲解
- 2025年江苏海事职业技术学院单招职业倾向性考试题库附答案详解
- 炎德英才大联考雅礼中学2025届模拟试卷(一)英语答案
- 2021版二级建造师《水利水电工程专业管理与实务》试题II卷(附解析)
- GB/T 8464-2023铁制、铜制和不锈钢制螺纹连接阀门
- SIM卡基础技术规范
- GB/T 2504-1989船用铸钢法兰(四进位)
- GB/T 18916.1-2021取水定额第1部分:火力发电
- GB 17568-2008γ辐照装置设计建造和使用规范
- 妊娠与肾脏疾病-陶冶主任课件
- 新形态一体化教材建设的探索与实践课件
- 2022年石家庄交通投资发展集团有限责任公司招聘笔试试题及答案解析
- 四川大学经济学院党政办公室工作人员招考聘用2人【共500题附答案解析】模拟检测试卷
- 《园林花卉学》课后题及答案
- 全国连片特困地区分县名单
评论
0/150
提交评论