专题07-动能定理-机械能守恒-能量守恒定律-高三物理二轮复习(原卷版)_第1页
专题07-动能定理-机械能守恒-能量守恒定律-高三物理二轮复习(原卷版)_第2页
专题07-动能定理-机械能守恒-能量守恒定律-高三物理二轮复习(原卷版)_第3页
专题07-动能定理-机械能守恒-能量守恒定律-高三物理二轮复习(原卷版)_第4页
专题07-动能定理-机械能守恒-能量守恒定律-高三物理二轮复习(原卷版)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高三物理二轮复习资料(命题规律+知识荟萃+经典例题+精选习题)(江苏专用)专题07动能定理机械能守恒能量守恒定律【命题规律】1、命题角度:(1)动能定理的综合应用;(2)机械能守恒定律及应用;(3)能量守恒定律.2、常考题型:计算题.【知识荟萃】★考向一、动能定理的综合应用1.应用动能定理解题的步骤图解:2.应用动能定理的四点提醒:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.3.五点说明(1)W总为物体在运动过程中所受各力做功的代数和。(2)动能增量Ek2-Ek1一定是物体在末、初两状态的动能之差。(3)动能定理既适用于直线运动,也适用于曲线运动。(4)动能定理既适用于恒力做功,也适用于变力做功。(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用。★考向二、2机械能守恒定律的应用1.判断物体或系统机械能是否守恒的三种方法定义判断法看动能与重力(或弹性)势能之和是否变化能量转化判断法没有与机械能以外的其他形式的能转化时,系统机械能守恒做功判断法只有重力(或弹簧的弹力)做功时,系统机械能守恒2.机械能守恒定律的表达式3.连接体的机械能守恒问题轻绳模型①分清两物体是速度大小相等,还是沿绳方向的分速度大小相等.②用好两物体的位移大小关系或竖直方向高度变化的关系.轻杆模型①平动时两物体速度相等,转动时两物体角速度相等.沿杆方向速度大小相等.②杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒.③对于杆和球组成的系统,忽略空气阻力和各种摩擦且没有其他力对系统做功,则系统机械能守恒.轻弹簧模型①含弹簧的物体系统在只有弹簧弹力和重力做功时,物体和弹簧组成的系统机械能守恒,而单个物体机械能不守恒.②同一根弹簧弹性势能大小取决于弹簧形变量的大小,在弹簧弹性限度内,形变量相等,弹性势能相等.③由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零).★考向三、3能量守恒定律的应用1.含摩擦生热、焦耳热、电势能等多种形式能量转化的系统,优先选用能量守恒定律.2.应用能量守恒定律的基本思路(1)系统初状态的总能量等于系统末状态的总能量E总初=E总末.(2)系统只有A、B时,A的能量减少量等于B的能量增加量,表达式为ΔEA减=ΔEB增,不必区分物体或能量形式.3.系统机械能守恒可以看成是系统能量守恒的特殊情况.【经典例题】【例题1】螺旋千斤顶由带手柄的螺杆和底座组成,螺纹与水平面夹角为,如图所示。水平转动手柄,使螺杆沿底座的螺纹槽(相当于螺母)缓慢旋进而顶起质量为m的重物,如果重物和螺杆可在任意位置保持平衡,称为摩擦自锁。能实现自锁的千斤顶,的最大值为。现用一个倾角为的千斤顶将重物缓慢顶起高度h后,向螺纹槽滴入润滑油使其动摩擦因数μ减小,重物回落到起点。假定最大静摩擦力等于滑动摩擦力,不计螺杆和手柄的质量及螺杆与重物间的摩擦力,转动手柄不改变螺纹槽和螺杆之间的压力。下列说法正确的是()A.实现摩擦自锁的条件为 B.下落过程中重物对螺杆的压力等于mgC.从重物开始升起到最高点摩擦力做功为mgh D.从重物开始升起到最高点转动手柄做功为2mgh【例题2】如图所示,质量为M的长木板静止在光滑水平面上,上表面OA段光滑、AB段粗糙,且AB段长为l,左端O处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F.质量为m的小滑块以速度v从A点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.则A.细绳被拉断瞬间木板的加速度大小为B.细绳被拉断瞬间弹簧的弹性势能大于C.弹簧恢复原长时滑块的动能为D.滑块与木板AB间的动摩擦因数为【例题3】如图所示,轻杆的上端可绕光滑铰链O在竖直平面内自由转动,小球固定在轻杆上Q点,用细绳连接小物块与小球,绳子穿过铰链正下方的小孔P,现用手沿绳方向拉住小球,使小球和物块保持静止,此时OQP=90°,POQ=37°。已知小球和小物块的质量均为1kg,轻杆长度为1m,重力加速度g取10m/,忽略一切摩擦,sin37°=0.6,sin53°=0.8,求:(1)拉力F的大小;(2)松手后,小球运动到最低点时的速度大小v;(3)松手后,小球在左侧最高点时绳对小球的拉力大小T。【例题4】如图所示,在粗糙水平地面上静止放置着物块B和C,相距x0=1.0m,在物块B的左侧固定有少量炸药。质量为M=2.0kg的物块A(可视为质点)靠在被压缩x1=0.2m的弹簧右端,O点为弹簧原长的位置,A与B相距l=0.8m。现将物块A由静止释放,与B发生碰撞(碰撞时间极短)并导致炸药爆炸,碰撞后A静止,B的速度v1=8m/s;物块B再与C发生正碰,碰后瞬间C的速度v=2.0m/s。已知B的质量为m=1.0kg,C的质量为B质量的k倍,物块与地面间的动摩擦因数均为μ=0.75,碰撞时间极短,重力加速度g取10m/s2。求:(1)A释放前弹簧的弹性势能Ep;(2)B与C碰撞前瞬间,B的速度大小;(3)要使碰撞后B与C的运动方向相同,求k的取值范围。【精选习题】一、单选题1.西汉著作《淮南子》中记有“阴阳相薄为雷,激扬为电”,人们对雷电的认识已从雷公神话提升到朴素的阴阳作用.下列关于雷电的说法中错误的是A.发生雷电的过程是放电过程B.发生雷电的过程是电能向光能、内能等转化的过程C.发生雷电的过程中,电荷的总量增加D.避雷针利用尖端放电,避免建筑物遭受雷击2.如图所示,武装直升机的旋翼桨盘面积(桨叶旋转形成的圆面面积)为S,空气密度为ρ,直升机质量为m,重力加速度为g。当直升机向上匀速运动时,假设空气阻力恒为f,空气浮力不计,风力的影响也不计,下列说法正确的是()A.直升机悬停时受到的升力大小为mg+fB.直升机向上匀速运动时,1s内被螺旋桨推动的空气质量为C.直升机向上匀速运动时,1s内被螺旋桨推动的空气质量为D.直升机向上匀速运动时,1s内发动机做的功为3.我国越野滑雪集训队为备战2022冬奥会,在河北承德雪上项目室内训练基地,利用工作起来似巨型“陀螺”的圆盘滑雪机模拟一些特定的训练环境和场景,其转速和倾角(与水平面的最大夹角达18°)根据需要可调。一运动员的某次训练过程简化为如下模型:圆盘滑雪机绕垂直于盘面的固定转轴以恒定的角速度转动,盘面上离转轴距离为10m处的运动员(保持图中滑行姿势,可看成质点)与圆盘始终保持相对静止,运动员质量为60,与盘面间的动摩擦因数为0.5,设最大静摩擦力等于滑动摩擦力,盘面与水平面的夹角为15°,g取10,已知,。则下列说法正确的是()A.运动员随圆盘做匀速圆周运动时,一定始终受到两个力的作用B.的最大值约为0.47C.取不同数值时,运动员在最高点受到的摩擦力一定随的增大而增大D.运动员由最低点运动到最高点的过程中摩擦力对其所做的功约为3870J4.以初速度竖直向上抛出一质量为m的小物块,假定物块所受的空气阻力的大小与速率成正比,小物块经过时间落回原处。下列描述该物体的位移x、空气阻力大小f、物体所受合力大小F、物体的机械能E随时间t变化的关系图像中,可能正确的是()A. B.C. D.5.如图所示,一小物块在粗糙程度相同的两个固定斜面上从A经B滑动到C,若不考虑物块在经过B点时机械能的损失,则下列说法中正确的是()A.从A到B和从B到C,减少的机械能相等B.从A到B和从B到C,减少的重力势能相等C.从A到B和从B到C,因摩擦而产生的热量相等D.小物块在C点的动能一定最大6.某研究小组在实验室内做外力作用下落体运动的研究,得到物体在竖直向下运动时的速度随下降高度变化关系,如图所示。已知,重力加速度。则()A.物体做匀变速直线运动 B.下落过程中物体的加速度不断减小C.下落过程中物体的机械能一直减小 D.物体在和处的机械能可能相等二、解答题7.如图所示,粗糙轻杆水平固定在竖直轻质转轴上A点。质量为m的小球和轻弹簧套在轻杆上,小球与轻杆间的动摩擦因数为μ,弹簧原长为0.6L,左端固定在A点,右端与小球相连。长为L的细线一端系住小球,另一端系在转轴上B点,AB间距离为0.6L。装置静止时将小球向左缓慢推到距A点0.4L处时松手,小球恰能保持静止。接着使装置由静止缓慢加速转动。已知小球与杆间最大静摩擦力等于滑动摩擦力,重力加速度为g,不计转轴所受摩擦。(1)求弹簧的劲度系数k;(2)求小球与轻杆间恰无弹力时装置转动的角速度ω;(3)从开始转动到小球与轻杆间恰无弹力过程中,外界提供给装置的能量为E,求该过程摩擦力对小球做的功W。8.如图所示,倾角的光滑斜面体固定在水平面上,斜面底端固定一挡板D,自由长度为L0的轻弹簧一端固定在D上,质量为m的小物块B与弹簧连接,另一相同的小物块C从斜面上端与挡板D相距1.9L0处的P点由静止释放,C与B碰撞后粘合在一起(碰撞时间极短)。已知重力加速度大小为g,弹簧的劲度系数为,弹簧的形变量为x时具有的弹性势能为。求:(1)开始时弹簧的形变量x;(2)C与B碰后粘合体的速度v;(3)碰后粘合体的最大动能Ek。9.如图所示,两足够长的直轨道所在平面与水平面夹角θ=37°,一质量为M=3kg的“半圆柱体”滑板P放在轨道上,恰好处于静止状态,P的上表面与轨道所在平面平行,前后面半圆的圆心分别为O、O′。有3个完全相同的小滑块,质量均为m=1kg。某时刻第一个小滑块以初速度v0=2m/s沿O′O冲上滑板P,与滑板共速时小滑块恰好位于O点,每当前一个小滑块与P共速时,下一个小滑块便以相同初速度沿O′O冲上滑板。已知最大静摩擦力等于滑动摩擦力,滑板P与小滑块间的动摩擦因数为μ=0.8,sin37°=0.6,cos37°=0.8,g取10m/s2,求:(1)滑板P恰静止时与一侧长直轨道间的摩擦力f;(2)第1、2个小滑块分别与滑板P共速时的速度大小v1和v2;(3)第3个小滑块与P之间摩擦产生的热量Q。10.如图所示,质量为的小物块放在长直水平面上,用水平细线紧绕在半径为、质量为的薄壁圆筒上。时刻,圆筒在电动机带动下由静止开始绕竖直中心轴转动,转动中角速度满足,物块和地面之间动摩擦因数为,。求:(1)物块运动中受到的拉力;(2)从开始运动至时刻,电动机做了多少功;(3)若当圆筒角速度达到时,使其减速转动,并以此时刻为,且角速度满足,则减速多长时间后小物块停止运动。(、均为已知,结果用字母表示)11.如图所示,一倾斜固定的传送带与水平面的倾角θ=37°,传送带以v=2m/s的速率沿顺时针方向匀速运行。从距离传送带底端x0=4m的O点由静止释放一质量m=0.5kg的滑块(视为质点),滑块沿传送带向下运动,到达传送带底端时与挡板P发生碰撞,碰撞时间极短,碰撞后反弹速率不变。滑块与传送带间的动摩擦因数μ=0.5,取g=10m/s2,传送带与轮子间无相对滑动,不计轮轴处的摩擦。求:(1)滑块与挡板P第一次碰撞的速度大小;(2)滑块与挡板P第一次碰撞后到达的最高位置到传送带底端的距离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论