




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题二函数第1讲函数的图象与性质-3-热点考题诠释高考方向解读1.(2017全国1,理5)函数f(x)在(-∞,+∞)单调递减,且为奇函数,若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是(
)A.[-2,2] B.[-1,1] C.[0,4] D.[1,3]答案解析解析关闭因为f(x)为奇函数,所以f(-1)=-f(1)=1,于是-1≤f(x-2)≤1等价于f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,所以-1≤x-2≤1,即1≤x≤3.所以x的取值范围是[1,3].答案解析关闭D-4-热点考题诠释高考方向解读答案解析解析关闭答案解析关闭-5-热点考题诠释高考方向解读3.(2017全国2,文8)函数f(x)=ln(x2-2x-8)的单调递增区间是(
)A.(-∞,-2) B.(-∞,1) C.(1,+∞) D.(4,+∞)答案解析解析关闭由题意可知x2-2x-8>0,解得x<-2或x>4.故定义域为(-∞,-2)∪(4,+∞),易知t=x2-2x-8在(-∞,-2)内单调递减,在(4,+∞)内单调递增.因为y=lnt在t∈(0,+∞)内单调递增,依据复合函数单调性的同增异减原则,可得函数f(x)的单调递增区间为(4,+∞).故选D.答案解析关闭D-6-热点考题诠释高考方向解读4.(2017天津,理6)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为(
)A.a<b<c B.c<b<aC.b<a<c D.b<c<a答案解析解析关闭∵f(x)是R上的奇函数,∴g(x)=xf(x)是R上的偶函数.∴g(-log25.1)=g(log25.1).∵奇函数f(x)在R上是增函数,∴当x>0时,f(x)>0,f'(x)>0.∴当x>0时,g'(x)=f(x)+xf'(x)>0恒成立.∴g(x)在(0,+∞)上是增函数.∵2<log25.1<3,1<20.8<2,∴20.8<log25.1<3.结合函数g(x)的性质得b<a<c.故选C.答案解析关闭C-7-热点考题诠释高考方向解读高考对函数图象与性质的考查主要体现在函数的定义域、值域、解析式、单调性、奇偶性、周期性等方面.题型多以选择题、填空题为主,一般属中档题.函数图象考查比较灵活,涉及知识点较多,试题考查角度有三个方面:一是函数解析式与函数图象的对应关系;二是研究函数图象变换与对应解析式之间的关系;三是利用图象研究函数性质、方程及不等式的解等,综合性较强.考向预测:函数的图象与性质是浙江省历年考查的热点和难点,2018年必然延续这一趋势.函数的图象主要考查利用函数性质判断图象,以选择题为主;函数的性质主要是以最值为载体,综合不等式、导数等考查,难度较大,选择题、填空题和解答题都可能涉及.-8-命题热点一命题热点二命题热点三答案:(1)D
(2)C-9-命题热点一命题热点二命题热点三-10-命题热点一命题热点二命题热点三-11-命题热点一命题热点二命题热点三规律方法1.根据具体函数y=f(x)求定义域时,只要构建使解析式有意义的不等式(组)求解即可.2.根据抽象函数求定义域时:(1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出;(2)若已知函数f(g(x))的定义域为[a,b],则函数f(x)的定义域为函数g(x)在x∈[a,b]时的值域.3.求f(g(x))类型的函数值时,应遵循先内后外的原则,而对于分段函数的求值问题,必须依据条件准确地找出利用哪一段求解.特别地,对具有周期性的函数求值要用好其周期性.-12-命题热点一命题热点二命题热点三答案解析解析关闭答案解析关闭-13-命题热点一命题热点二命题热点三答案解析解析关闭答案解析关闭-14-命题热点一命题热点二命题热点三-15-命题热点一命题热点二命题热点三(2)若直角坐标平面内两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称(P,Q)是函数y=f(x)的一个“伙伴点组”(点组(P,Q)与(Q,P)看作同一个“伙伴点组”).已知函数
有两个“伙伴点组”,则实数k的取值范围是(
)A.(-∞,0) B.(0,1) 答案:(1)A
(2)B-16-命题热点一命题热点二命题热点三解析:(1)由题意知函数为奇函数,图象关于原点对称,故排除B,C,又x=时,y=0,可排除D.故选A.(2)根据题意可知,“伙伴点组”的点满足:都在函数图象上,且关于坐标原点对称.可作出函数y=-ln(-x)(x<0)关于原点对称的函数y=ln
x(x>0)的图象,使它与直线y=kx-1(x>0)的交点个数为2即可.当直线y=kx-1与函数y=ln
x的图象相切时,解得m=1,k=1,可得函数y=ln
x(x>0)的图象过点(0,-1)的切线的斜率为1.结合图象可知k∈(0,1)时两函数图象有两个交点.故选B.-17-命题热点一命题热点二命题热点三规律方法1.作函数图象的基本思想方法大致有三种:(1)通过函数图象变换利用已知函数图象作图;(2)对函数解析式进行恒等变换,转化成已知方程对应的曲线;(3)通过研究函数的性质明确函数图象的位置和形状.2.已知函数解析式选择其对应的图象时,一般是通过研究函数的定义域、值域、单调性、奇偶性等性质以及图象经过的特殊点等来获得相应的图象特征,然后对照图象特征选择正确的图象.3.研究两函数交点的横坐标或纵坐标之和,常利用函数的对称性,如中心对称或轴对称.-18-命题热点一命题热点二命题热点三答案解析解析关闭当x=1时,y=1+1+sin1=2+sin1>2,可排除A,C;当x→+∞时,y→+∞,可排除B,满足条件的只有D.故选D.答案解析关闭D-19-命题热点一命题热点二命题热点三迁移训练4
已知函数y=a+sinbx(b>0且b≠1)的图象如图所示,则函数y=logb(x-a)的图象可能是(
)
答案解析解析关闭答案解析关闭-20-命题热点一命题热点二命题热点三例3(1)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=
.
其中所有正确命题的序号是
.
(3)若函数f(x)=ax2+20x+14(a>0)对任意实数t,在闭区间[t-1,t+1]上总存在两实数x1,x2,使得|f(x1)-f(x2)|≥8成立,则实数a的最小值为
.
-21-命题热点一命题热点二命题热点三答案:(1)6
(2)①②④
(3)8
解析:(1)由f(x+4)=f(x-2)知,f(x)为周期函数,其周期T=6.又f(x)为偶函数,所以f(919)=f(153×6+1)=f(1)=f(-1)=61=6.(2)在f(x+1)=f(x-1)中,令x-1=t,则f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;由于f(x)是偶函数,所以f(x-1)=f(1-x),结合f(x+1)=f(x-1)得f(1+x)=f(1-x),故函数f(x)的图象关于直线x=1对称,而当x∈[0,1]时,-22-命题热点一命题热点二命题热点三-23-命题热点一命题热点二命题热点三规律方法函数奇偶性和单调性的判定方法(1)函数的奇偶性:紧扣函数奇偶性的定义和函数的定义域区间关于坐标原点对称、函数图象的对称性等对问题进行分析转化,要特别注意“奇函数若在x=0处有定义,则一定有f(0)=0,偶函数一定有f(|x|)=f(x)”在解题中的应用.(2)函数的单调性:一是紧扣定义;二是充分利用函数的奇偶性、函数的周期性和函数图象的直观性进行分析转化.函数的单调性往往与不等式的解、方程的解等问题交汇,要注意这些知识的综合运用.-24-命题热点一命题热点二命题热点三迁移训练5
已知函数f(x)是R上的奇函数,当x>0时为减函数,且f(2)=0,则{x|f(x-2)>0}=(
)
A.{x|0<x<2或x>4}B.{x|x<0或x>4}C.{x|0<x<2或x>2}D.{x|0<x<2或2<x<4}答案解析解析关闭答案解析关闭-25-命题热点一命题热点二命题热点三迁移训练6
已知函数y=f(x)在R上是偶函数,对任意x∈R都有f(x+6)=f(x)+f(3),当x1,x2∈[0,3]且x1≠x2时,给出如下命题:
①函数y=f(x)在[-9,6]上为增函数;②直线x=-6是y=f(x)图象的一条对称轴;③f(3)=0;④函数y=f(x)在[-9,9]上有四个零点.其中所有正确命题的序号为
.
答案解析解析关闭依题意f(-3+6)=f(-3)+f(3),即有f(-3)=f(3)=0,f(x+6)=f(x),函数f(x)是以6为周期的函数,且f(x)在[0,3]上是增函数,f(-9)=f(9)=f(3),因此函数f(x)在[-9,6]上不是增函数.f(-12-x)=f(12+x)=f(x),函数f(x)的图象关于直线x=-6对称,f(-9)=f(-3)=f(9)=f(3)=0,结合函数f(x)的图象可知,函数f(x)在[-9,9]上有四个零点.综上所述,题目中所有正确命题的序号是②③④.答案解析关闭②③④-26-命题热点一命题热点二命题热点三迁移训练7
已知在(-∞,1]上递减的函数f(x)=x2-2tx+1,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值范围为(
)
答案解析解析关闭答案解析关闭-27-解题技巧提分极限思想是高等数学的基础,与函数图象相关的选择题,可用极限思想选出或排除选项.在高考中,要用好极限思想解题,常常要利用基本初等函数的增长规律.-28--29--30-答案:(1)A
(2)D-31-(2)由题意,x=0时,f(0)=1,排除B,x=-2时,f(-2)=0,排除A,x→-∞时,f(x)→+∞,排除C,故选D.点评本题的两小题通过x→+∞,x→0或x→-∞的函数值趋势判断,排除不满足题意的选项,得出正确答案.-32-1234答案解析解析关闭答案解析关闭-33-12342.已知定义在R上的函数y=f(x)为奇函数,且y=f(x+1)为偶函数,f(1)=1,则f(2019)+f(2020)=(
)A.1 B.-1 C.2 D.-2答案解析解析关闭由函数y=f(x)为奇函数,y=f(x+1)为偶函数,有f(-x+1)=f(x+1),从而有f(x+2)=f(-x)=-f(x),则f(x+4)=-f(x+2)=f(x),即函数f(x)是以4为周期的周期函数,从而f(2019)=f(-1)=-f(1)=-1,f(2020)=f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/ZHCA 021-2022化妆品紧致功效测试体外人源成纤维细胞活性测试方法
- 物业管理实务知识2025年考试试题及答案
- 旅游与酒店管理专业考试题及答案2025年
- 高级英语听力理解能力2025年考试试卷及答案
- 2025年心理学研究方法考试试卷及答案
- 2025年心理健康教育考试试卷及答案
- 2025年社区服务与社会工作专业考试卷及答案
- 2025年特许经营与市场运作的能力测评考试试题及答案
- 2025年电子信息工程考试试卷及答案
- 2025年法律文书写作考试试卷及答案
- 小学新课标《义务教育数学课程标准(2022年版)》新修订解读课件
- 湖南省2024年对口升学考试计算机综合真题试卷
- 江苏省南京市(2024年-2025年小学六年级语文)统编版期末考试(下学期)试卷及答案
- 中医适宜技术-中药热奄包
- 材料力学第4版单辉祖习题答案
- 法学本科毕业论文
- 爆破安全安全规程
- 首末件检查记录表
- DB52∕T 046-2018 贵州省建筑岩土工程技术规范
- 真空断路器课件
- 楼面板静载试验检测报告
评论
0/150
提交评论