




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重难点04圆的基本性质及直线与圆的位置关系命题趋势中考数学中《圆的基本性质及直线与圆的位置关系》部分主要考向分为十类:一、垂径定理及其应用(每年1道,3~12分)二、圆周角定理(每年1~2道,3~12分)三、圆内接四边形(每年1题,3~6分)四、三角形的外接圆与外心(每年1~2题,3~8分)五、直线与圆的位置关系(每年1题,3~10分)六、切线的性质与判定(每年1~2题,3~13分)七、三角形内切圆与内心(每年1题,3~4分)八、正多边形和圆(每年1题,3~10分)九、弧长与扇形面积的计算(每年1题,3~4分)十、圆锥的计算(每年1题,3~4分)中考数学中,圆的基本性质与直线与圆的位置关系一直都是必考的考点,难度从基础到综合都有,通常选择、填空题会出圆的基本性质,如垂径定理、圆周角定理、弧长与面积的求法、切线的性质等,基本都是基础应用,难度不大,个别会出选择题的压轴题,难度稍大。简答题部分,一般会把切线的判定和相似三角形、锐角三角函数等结合考察,此时难度变大,综合性较强,需要认真应对。考向一:垂径定理及其应用【题型1垂径定理及其推论】满分技巧1.圆中模型“知2得3”由图可得以下5点:①AB⊥CD;②AE=EB;③AD过圆心O;④;⑤;以上5个结论,知道其中任意2个,剩余的3个都可以作为结论使用。2.常做辅助线:连半径、作弦心距、见直接连弦长得直径所对圆周角1.(2023•宜昌)如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为()A.5 B.4 C.3 D.22.(2023•广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m,拱高约为7m,则赵州桥主桥拱半径R约为()A.20m B.28m C.35m D.40m3.(2023•永州)如图,⊙O是一个盛有水的容器的横截面,⊙O的半径为10cm,水的最深处到水面AB的距离为4cm,则水面AB的宽度为cm.4.(2023•东营)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言表达就是:如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,则直径CD的长度为寸.5.(2023•贵州)如图,已知⊙O是等边三角形ABC的外接圆,连接CO并延长交AB于点D,交⊙O于点E,连接EA,EB.(1)写出图中一个度数为30°的角:,图中与△ACD全等的三角形是;(2)求证:△AED∽△CEB;(3)连接OA,OB,判断四边形OAEB的形状,并说明理由.考向二:圆周角定理【题型2圆周角定理及其推论】满分技巧圆中模型“知1得4”由图可得以下5点:①AB=CD;②;③OM=ON;④;⑤;以上5个结论,知道其中任意1个,剩余的4个都可以作为结论使用。1.(2023•山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC=40°,则∠DBC的度数为()A.40° B.50° C.60° D.70°2.(2023•吉林)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A.70° B.105° C.125° D.155°3.(2023•宜宾)如图,已知点A,B,C在⊙O上,C为的中点.若∠BAC=35°,则∠AOB等于()A.140° B.120° C.110° D.70°4.(2023•阜新)如图,A,B,C是⊙O上的三点,若∠AOC=90°,∠ACB=25°,则∠BOC的度数是()A.20° B.25° C.40° D.50°5.(2023•苏州)如图,AB是半圆O的直径,点C,D在半圆上,,连接OC,CA,OD,过点B作EB⊥AB,交OD的延长线于点E.设△OAC的面积为S1,△OBE的面积为S2,若,则tan∠ACO的值为()A. B. C. D.6.(2023•温州)如图,四边形ABCD内接于⊙O,BC∥AD,AC⊥BD.若∠AOD=120°,AD=,则∠CAO的度数与BC的长分别为()A.10°,1 B.10°, C.15°,1 D.15°,7.(2023•台湾)图1为一圆形纸片,A、B、C为圆周上三点,其中AC为直径,今以AB为折线将纸片向右折后,纸片盖住部分的AC,而AB上与AC重叠的点为D,如图2所示,若=35°,则的度数为何()A.105° B.110° C.120° D.145°8.(2023•武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BAC.(1)求证:∠AOB=2∠BOC;(2)若AB=4,,求⊙O的半径.9.(2023•衡阳)如图,AB是⊙O的直径,AC是一条弦,D是弧AC的中点,DE⊥AB于点E,交AC于点F,交⊙O于点H,DB交AC于点G.(1)求证:AF=DF.(2)若AF=,sin∠ABD=,求⊙O的半径.考向三:圆内接四边形【题型3圆内接四边形的性质及其推论】满分技巧1、性质:圆内接四边形对角互补;2、推论:圆内接四边形的任意一个外角等于它的内对角;1.(2023•西藏)如图,四边形ABCD内接于⊙O,E为BC延长线上一点.若∠DCE=65°,则∠BOD的度数是()A.65° B.115° C.130° D.140°2.(2023•赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD的度数是()A.25° B.30° C.35° D.40°3.(2023•襄阳)如图,四边形ABCD内接于⊙O,点E在CD的延长线上.若∠ADE=70°,则∠AOC=度.4.(2023•北京)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.(1)求证DB平分∠ADC,并求∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.考向四:三角形的外接圆与外心【题型4外心的确定及其性质】满分技巧1、三角形的外心:三角形三边中垂线的交点;实际画图时只需要画两条中垂线的交点即可!2、三角形外心的性质:三角形的外心到三角形三个顶点的距离相等;常做辅助线:连结三角形内心和顶点的线段1.(2023•陕西)如图,⊙O是△ABC的外接圆,∠A=72°.过点O作BC的垂线交于点D,连接BD,则∠D的度数为()A.64° B.54° C.46° D.36°2.(2023•湖北)如图,在3×3的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点△ABC外接圆的一部分,小正方形边长为1,图中阴影部分的面积为()A.π﹣ B.π﹣ C.π﹣ D.π﹣3.如图,⊙O是锐角三角形ABC的外接圆,OD⊥AB,OE⊥BC,OF⊥AC.垂足分别为D,E,F,连接DE,EF,FD.若DE+DF=6.5,△ABC的周长为21,则EF的长为()A.8 B.4 C.3.5 D.34.(2023•呼和浩特)如图,△ABC内接于⊙O且∠ACB=90°,弦CD平分∠ACB,连接AD,BD.若AB=5,AC=4,则BD=,CD=.5.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点O作AC的垂线,垂足为D,分别交直线BC,于点E,F,射线AF交直线BC于点G.(1)求证AC=CG.(2)若点E在CB的延长线上,且EB=CG,求∠BAC的度数.(3)当BC=6时,随着CG的长度的增大,EB的长度如何变化?请描述变化过程,并说明理由.考向五:直线与圆的位置关系【题型5直线与圆的位置关系的确定】满分技巧直线与圆的位置关系的确定方法:1.(2023•宿迁)在同一平面内,已知⊙O的半径为2,圆心O到直线l的距离为3,点P为圆上的一个动点,则点P到直线l的最大距离是()A.2 B.5 C.6 D.82.(2023•镇江)已知一次函数y=kx+2的图象经过第一、二、四象限,以坐标原点O为圆心,r为半径作⊙O.若对于符合条件的任意实数k,一次函数y=kx+2的图象与⊙O总有两个公共点,则r的最小值为.考向六:切线的性质与判定【题型6切线的性质】满分技巧切线的性质:经过切点的半径垂直于圆的切线;延伸:经过切点的直径也垂直于圆的这条切线常用辅助线及规律:见切点,连半径,得垂直!2、切线长定理:过圆外一点所作的圆的两条切线长相等;1.(2023•重庆)如图,AC是⊙O的切线,B为切点,连接OA,OC.若∠A=30°,AB=2,BC=3,则OC的长度是()A.3 B. C. D.62.(2023•眉山)如图,AB切⊙O于点B,连结OA交⊙O于点C,BD∥OA交⊙O于点D,连结CD,若∠OCD=25°,则∠A的度数为()A.25° B.35° C.40° D.45°3.(2023•山西)中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为A,曲线终点为B,过点A,B的两条切线相交于点C,列车在从A到B行驶的过程中转角α为60°.若圆曲线的半径OA=1.5km,则这段圆曲线的长为()A. B. C. D.4.(2023•武汉)如图,在四边形ABCD中,AB∥CD,AD⊥AB,以D为圆心,AD为半径的弧恰好与BC相切,切点为E,若,则sinC的值是()A. B. C. D.5.如图,在Rt△ABC中,∠C=90°,点D在斜边AB上,以AD为直径的半圆O与BC相切于点E,与AC相交于点F,连接DE.若AC=8,BC=6,则DE的长是()A. B. C. D.6.(2023•青岛)如图,在平面直角坐标系中,已知点A(1,0),P(﹣1,0),⊙P过原点O,且与x轴交于另一点D,AB为⊙P的切线,B为切点,BC是⊙P的直径,则∠BCD的度数为°.7.(2023•北京)如图,OA是⊙O的半径,BC是⊙O的弦,OA⊥BC于点D,AE是⊙O的切线,AE交OC的延长线于点E.若∠AOC=45°,BC=2,则线段AE的长为.8.(2023•衢州)如图是一个圆形餐盘的正面及其固定支架的截面图,凹槽ABCD是矩形.当餐盘正立且紧靠支架于点A,D时,恰好与BC边相切,则此餐盘的半径等于cm.(多选)9.(2023•湘潭)如图,AC是⊙O的直径,CD为弦,过点A的切线与CD延长线相交于点B,若AB=AC,则下列说法正确的是()A.AD⊥BC B.∠CAB=90° C.DB=AB D.AD=BC10.(2023•金华)如图,点A在第一象限内,⊙A与x轴相切于点B,与y轴相交于点C,D,连结AB,过点A作AH⊥CD于点H.(1)求证:四边形ABOH为矩形.(2)已知⊙A的半径为4,OB=,求弦CD的长.11.(2023•济南)如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,∠ABC=2∠BCP,点E是的中点,弦CE,BD相交于点F.(1)求∠OCB的度数;(2)若EF=3,求⊙O直径的长.12.(2023•镇江)如图,将矩形ABCD(AD>AB)沿对角线BD翻折,C的对应点为点C′,以矩形ABCD的顶点A为圆心,r为半径画圆,⊙A与BC′相切于点E,延长DA交⊙A于点F,连接EF交AB于点G.(1)求证:BE=BG;(2)当r=1,AB=2时,求BC的长.【题型7切线的判定】满分技巧切线的判定方法1:圆心到直线的距离等于半径的直线是圆的切线;切线的判定方法2:经过半径的外端并且垂直于这条半径的直线是圆的切线;切线证明常见辅助线及规律:有切点,连半径,证垂直;无切点,作垂直,证半径;1.(2023•辽宁)如图,AB是⊙O的直径,点C,E在⊙O上,∠CAB=2∠EAB,点F在线段AB的延长线上,且∠AFE=∠ABC.(1)求证:EF与⊙O相切;(2)若BF=1,sin∠AFE=,求BC的长.2.(2023•齐齐哈尔)如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,点E是斜边AC上一点,以AE为直径的⊙O经过点D,交AB于点F,连接DF.(1)求证:BC是⊙O的切线;(2)若BD=5,,求图中阴影部分的面积.(结果保留π)3.(2023•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=2,求的长.4.(2023•鄂州)如图,AB为⊙O的直径,E为⊙O上一点,点C为的中点,过点C作CD⊥AE,交AE的延长线于点D,延长DC交AB的延长线于点F.(1)求证:CD是⊙O的切线;(2)若DE=1,DC=2,求⊙O的半径长.5.(2023•西藏)如图,已知AB为⊙O的直径,点C为圆上一点,AD垂直于过点C的直线,交⊙O于点E,垂足为点D,AC平分∠BAD.(1)求证:CD是⊙O的切线;(2)若AC=8,BC=6,求DE的长.考向七:三角形的内切圆及内心【题型8内心的确定及其性质】满分技巧三角形的内心:三角形条角平分线的交点;实际画图时只需要画两条角分线的交点即可!2、三角形内心的性质:三角形的内心到三角形三边的距离相等;常做辅助线:作内心到三边的垂线段1.(2023•广州)如图,△ABC的内切圆⊙I与BC,CA,AB分别相切于点D,E,F,若⊙I的半径为r,∠A=α,则(BF+CE﹣BC)的值和∠FDE的大小分别为()A.2r,90°﹣α B.0,90°﹣α C.2r, D.0,2.(2023•威海)在△ABC中,BC=3,AC=4,下列说法错误的是()A.1<AB<7 B.S△ABC≤6C.△ABC内切圆的半径r<1 D.当AB=时,△ABC是直角三角形3.(2023•攀枝花)已知△ABC的周长为l,其内切圆的面积为πr2,则△ABC的面积为()A.rl B.πrl C.rl D.πrl4.(2023•镇江)《九章算术》中记载:“今有勾八步,股一十五步.问勾中容圆径几何?”译文:今有一个直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少?书中给出的算法译文如下:如图,根据勾、股,求得弦长.用勾、股、弦相加作为除数,用勾乘以股,再乘以2作为被除数,商即为该直角三角形内切圆的直径,求得该直径等于步(注:“步”为长度单位).5.(2023•湖北)如图,在△ABC中,∠ACB=70°,△ABC的内切圆⊙O与AB,BC分别相切于点D,E,连接DE,AO的延长线交DE于点F,则∠AFD=.考向八:正多边形和圆【题型9几个必记的正多边形】满分技巧其中,r表示图形外接圆的半径,AB表示正多边形的一条边长另:圆内接正三角形的每个内角=60°,中心角=120°,弦心距=半径;圆内接正方形的每个内角=90°,中心角=90°,弦心距=半径;圆内接正六边形的每个内角=120°,中心角=60°,弦心距=半径;1.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60° B.54° C.48° D.36°2.(2023•福建)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O的面积,可得π的估计值为,若用圆内接正十二边形作近似估计,可得π的估计值为()A. B.2 C.3 D.23.(2023•山西)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M均为正六边形的顶点.若点P,Q的坐标分别为,(0,﹣3),则点M的坐标为()A.(3,﹣2) B.(3,2) C.(2,﹣3) D.(﹣2,﹣3)4.(2023•上海)如果一个正多边形的中心角是20°,那么这个正多边形的边数为18.5.(2023•杭州)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则=.考向九:弧长与扇形面积的计算【题型10弧长及扇形面积的公式及其计算】满分技巧;公式可以直接应用,也可以由弧长(或面积)的数值求解对应的圆心角或者半径1.(2023•青岛)如图,四边形ABCD是⊙O的内接四边形,∠B=58°,∠ACD=40°.若⊙O的半径为5,则的长为()A. B. C.π D.2.《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,是以点O为圆心、OA为半径的圆弧,N是AB的中点.MN⊥AB.“会圆术”给出的弧长l的近似值计算公式:l=AB+.当OA=4,∠AOB=60°时,则l的值为()A.11﹣2 B.11﹣4 C.8﹣2 D.8﹣43.(2023•阜新)如图,四边形OABC1是正方形,曲线C1C2C3C4C5…叫作“正方形的渐开线”,其中,,,,…的圆心依次按O,A,B,C1循环,当OA=1时,点C2023的坐标是()A.(﹣1,﹣2022) B.(﹣2023,1)C.(﹣1,﹣2023) D.(2022,0)4.(2023•金华)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为cm.5.如图,在⊙O中,若∠ACB=30°,OA=6,则扇形OAB(阴影部分)的面积是()A.12π B.6π C.4π D.2π6.(2023•滨州)如图,某玩具品牌的标志由半径为1cm的三个等圆构成,且三个等圆⊙O1,⊙O2,⊙O3相互经过彼此的圆心,则图中三个阴影部分的面积之和为()A.πcm2 B.πcm2 C.πcm2 D.πcm27.(2023•广元)如图,半径为5的扇形AOB中,∠AOB=90°,C是上一点,CD⊥OA,CE⊥OB,垂足分别为D,E,若CD=CE,则图中阴影部分面积为()A. B. C. D.8.(2023•永州)已知扇形的半径为6,面积为6π,则扇形圆心角的度数为60度.考向十:圆锥的计算【题型11圆锥侧面积公式及其计算】满分技巧;1.(2023•牡丹江)用一个圆心角为90°,半径为8的扇形作一个圆锥的侧面,则这个圆锥的底面直径是()A.6 B.5 C.4 D.32.如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是()A.3 B.4 C.5 D.63.(2023•十堰)如图,已知点C为圆锥母线SB的中点,AB为底面圆的直径,SB=6,AB=4,一只蚂蚁沿着圆锥的侧面从A点爬到C点,则蚂蚁爬行的最短路程为()A.5 B. C. D.4.(2023•扬州)用半径为24cm,面积为120πcm2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为cm.5.(2023•宿迁)若圆锥的底面半径为2cm,侧面展开图是一个圆心角为120°的扇形,则这个圆锥的母线长是cm.6.(2023•内江)如图,用圆心角为120°半径为6的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的高是.重难通关练(建议用时:60分钟)1.(2023•凉山州)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=2,则OC=()A.1 B.2 C.2 D.42.(2023•荆州)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300m,BD=150m,则的长为()A.300πm B.200πm C.150πm D.100πm3.(2023•牡丹江)如图,A,B,C为⊙O上的三个点,∠AOB=4∠BOC,若∠ACB=60°,则∠BAC的度数是()A.20° B.18° C.15° D.12°4.(2023•广东)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()A.20° B.40° C.50° D.80°5.(2023•乐山)如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴、y轴分别交于A、B两点,C、D是半径为1的⊙O上两动点,且CD=,P为弦CD的中点.当C、D两点在圆上运动时,△PAB面积的最大值是()A.8 B.6 C.4 D.36.(2023•淄博)如图,△ABC是⊙O的内接三角形,AB=AC,∠BAC=120°,D是BC边上一点,连接AD并延长交⊙O于点E.若AD=2,DE=3,则⊙O的半径为()A. B. C. D.7.(2023•泰安)如图,⊙O是△ABC的外接圆,半径为4,连接OB,OC,OA,若∠CAO=40°,∠ACB=70°,则阴影部分的面积是()A.π B.π C.π D.π8.(2023•聊城)如图,点O是△ABC外接圆的圆心,点I是△ABC的内心,连接OB,IA.若∠CAI=35°,则∠OBC的度数为()A.15° B.17.5° C.20° D.25°9.(2023•河北)如图,点P1~P8是⊙O的八等分点.若△P1P3P7,四边形P3P4P6P7的周长分别为a,b,则下列正确的是()A.a<b B.a=b C.a>b D.a,b大小无法比较10.如图,四边形ABCD内接于⊙O,若∠C=120°,⊙O的半径为3,则的长为()A.π B.2π C.3π D.6π11.(2023•通辽)如图,在扇形AOB中,∠AOB=60°,OD平分∠AOB交于点D,点C是半径OB上一动点,若OA=1,则阴影部分周长的最小值为()A. B. C. D.12.(2023•张家界)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于()A.π B.3π C.2π D.2π﹣13.(2023•连云港)如图,矩形ABCD内接于⊙O,分别以AB、BC、CD、AD为直径向外作半圆.若AB=4,BC=5,则阴影部分的面积是()A.π﹣20 B.π﹣20 C.20π D.2014.如图,某小区要绿化一扇形OAB空地,准备在小扇形OCD内种花,在其余区域内(阴影部分)种草,测得∠AOB=120°,OA=15m,OC=10m,则种草区域的面积为()A. B. C. D.15.(2023•广安)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC为半径画弧,交AB于点E,以点B为圆心,BC为半径画弧,交AB于点F,则图中阴影部分的面积是()A.π﹣2 B.2π﹣2 C.2π﹣4 D.4π﹣416.(2023•长沙)如图,点A,B,C在半径为2的⊙O上,∠ACB=60°,OD⊥AB,垂足为E,交⊙O于点D,连接OA,则OE的长度为.17.(2023•宁夏)如图,四边形ABCD内接于⊙O,延长AD至点E,已知∠AOC=140°那么∠CDE=°.18.(2023•河南)如图,PA与⊙O相切于点A,PO交⊙O于点B,点C在PA上,且CB=CA.若OA=5,PA=12,则CA的长为.19.为了测量一个圆形光盘的半径,小明把直尺、光盘和三角尺按图所示放置于桌面上,并量出AB=4cm,则这张光盘的半径是cm.(精确到0.1cm.参考数据:≈1.73)20.(2023•上海)在△ABC中,AB=7,BC=3,∠C=90°,点D在边AC上,点E在CD延长线上,且CD=DE,如果⊙B过点A,⊙E过点D,若⊙B与⊙E有公共点,那么⊙E半径r的取值范围是2≤r≤2.21.(2023•内蒙古)如图,正六边形ABCDEF的边长为2,以点A为圆心,AB为半径画弧BF,得到扇形BAF(阴影部分).若扇形BAF正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是.22.图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.23.(2023•苏州)如图,在▱ABCD中,AB=+1,BC=2,AH⊥CD,垂足为H,AH=.以点A为圆心,AH长为半径画弧,与AB,AC,AD分别交于点E,F,G.若用扇形AEF围成一个圆锥的侧面,记这个圆锥底面圆的半径为r1;用扇形AHG围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r2,则r1﹣r2=.(结果保留根号)24.(2023•扬州)如图,在△ABC中,∠ACB=90°,点D是AB上一点,且∠BCD=∠A,点O在BC上,以点O为圆心的圆经过C、D两点.(1)试判断直线AB与⊙O的位置关系,并说明理由;(2)若sinB=,⊙O的半径为3,求AC的长.25.(2023•湖州)如图,在Rt△ABC中,∠ACB=90°,点O在边AC上,以点O为圆心,OC为半径的半圆与斜边AB相切于点D,交OA于点E,连结OB.(1)求证:BD=BC.(2)已知OC=1,∠A=30°,求AB的长.26.(2023•天津)在⊙O中,半径OC垂直于弦AB,垂足为D,∠AOC=60°,E为弦AB所对的优弧上一点.(1)如图①,求∠AOB和∠CEB的大小;(2)如图②,CE与AB相交于点F,EF=EB,过点E作⊙O的切线,与CO的延长线相交于点G,若OA=3,求EG的长.27.(2023•辽宁)如图,△ABC内接于⊙O,AB是⊙O的直径,CE平分∠ACB交⊙O于点E,过点E作EF∥AB,交CA的延长线于点F.(1)求证:EF与⊙O相切;(2)若∠CAB=30°,AB=8,过点E作EG⊥AC于点M,交⊙O于点G,交AB于点N,求的长.28.(2023•朝阳)如图,以△ABC的边AB为直径作⊙O,分别交AC,BC于点D,E,点F在BC上,∠CDF=∠ABD.(1)求证:DF是⊙O的切线;(2)若=,tan∠CDF=,BC=,求⊙O的半径.培优争分练(建议用时:60分钟)1.(2024•临潼区一模)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,.则BE的长为()A. B. C.2 D.2.(2024•安徽一模)如图,⊙O的内接正五边形ABCDE,点P是上的动点,连接OA,OC,则∠EAO+∠APC的度数为()A.126° B.144°C.150° D.随着点P的变化而变化3.(2024•子洲县校级一模)如图,这是一扇拱形门的示意图,BC为门框底,∠B=∠C=90°,AB=BC=CD=2m,门框顶部是一段圆心角为90°的圆弧,E是的中点,则点E到门框底BC的距离是()A. B. C. D.4.(2024•雁塔区校级三模)如图,四边形ABCD是⊙O的内接四边形,∠ADC=108°,,连接OA,OD,OC,则∠COD的度数为()A.24° B.48° C.72° D.96°5.(2024•西安校级二模)如图,已知△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,连接AD,BE相交于点F,若CE=6,CD=5,则EF的长为()A. B. C. D.6.如图,在菱形ABCD中,AB=6,∠B=60°,以CD为直径的圆与AD交于点E,则的长是()A.3π B. C.4π D.5π7.(2024•驿城区一模)如图,AB为⊙O的直径,C,D为⊙O上的点,.若∠CBD=35°,则∠ABD的度数为()A.20° B.35° C.40° D.70°8.(2024•泸县一模)如图,正三角形ABC的边长为6cm,则它的外接圆⊙O的半径为()A. B. C.3cm D.9.(2024•南岗区一模)如图,在△ABC中,∠ACB=70°,△ABC的内切圆⊙O与AB,BC分别相切于点D,E,连接DE,AO的延长线交DE于点F,则∠AFD的大小是()A.35° B.40° C.45° D.50°10.(2024•瑶海区一模)如图,在△ABC中,,I是△ABC的内心,连接BI、CI,则∠BIC的度数是()A.110° B.120° C.130° D.140°11.(2023•青岛)如图,四边形ABCD是⊙O的内接四边形,∠B=58°,∠ACD=40°.若⊙O的半径为5,则的长为()A. B. C.π D.12.(2024•义乌市模拟)如图,点B、E是以AD为直径的半圆O的三等分点,弧BE的长为,∠C=90°,则图中阴影部分的面积为()A. B. C. D.13.(2023•凉山州模拟)如图,△ABC中,∠C=90°,AC=6,AB=10,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.14.如图,在矩形ABCD中,CD是⊙O直径,E是BC的中点,P是直线AE上任意一点,AB=4,BC=6,PM、PN相切于点M、N,当∠MPN最大时,PM的长为.15.(2024•驿城区一模)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点为格点,已知Rt△ABC的三个顶点均在格点上,且∠BAC=90°,点M为AC上一点,以点A为圆心,AM的长为半径作圆与边BC相切于点N,已知为该圆的一部分.则图中由线段CN,CM及所围成的阴影部分的面积为.16.(2024•西山区校级模拟)如图,在矩形ABCD中,AB=3,BC=6,E为BC的中点,连接AE,DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积和是(结果保留π).17.(2024•偃师区模拟)黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如图,用黄金矩形ABCD框住整个蜗牛壳,之后作正方形ABFE,得到黄金矩形CDEF,再作正方形DEGH,得到黄金矩形CFGH……,这样作下去,我们以每个小正方形边长为半径画弧线,然后连接起来,就是黄金螺旋.已知,则阴影部分的面积为.18.(2024•渭城区一模)如图,四边形ABCD是⊙O的内接四边形,BD为直径,点D为弧AC的中点,连接CD.延长AD,BC交于点E,DF为⊙O的切线.(1)求证:DF平分∠CDE;(2)若DF=EF=4,求AD的长.19.如图,AB为⊙O的直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE交AE的延长线于D点,延长DC与AB的延长线交于P点.(1)求证:DP为⊙O的切线;(2)若DC=,∠DAC=30°,求阴影部分的面积.20.如图,正方形ABCD是⊙O的内接四边形,PE是⊙O的直径,连接AE,PD交于点F.(1)判断△DEF的形状,并说明理由.(2)过点E作⊙O的切线交PD的延长线于点G.若DG=1,,求线段AE的长.21.(2024•常州模拟)对于⊙C和⊙C上的一点A,若平面内的点P满足:射线AP与⊙C交于点Q(点Q可以与点P重合,且,则点P称为点A关于⊙C的“阳光点”.已知点O为坐标原点,⊙O的半径为1,点A(﹣1,0).(1)若点P是点A关于⊙O的“阳光点”,且点P在x轴上,请写出一个符合条件的点P的坐标;(2)若点B是点A关于⊙O的“阳光点”,且,求点B的横坐标t的取值范围;(3)直线与x轴交于点M,且与y轴交于点N,若线段MN上存在点A关于⊙O的“阳光点”,请直接写出b的取值范围是.22.如图1,AB,CD是⊙O的两条互相垂直的弦,垂足为E,连结BC,BD,OC.(1)求证:∠BCO=∠ABD.(2)如图2,过点A作AF⊥BD,交CD于G,求证:CE=EG.(3)如图3,在(2)的条件上,连结BG,若BG恰好经过圆心O,若⊙O的半径为5,,求AB的长.23.(2024•广东一模)如图1,在⊙O中,AB为⊙O的直径,点C为⊙O上一点,点D在劣弧BC上,CE⊥CD交AD于E,连接BD.(1)求证:△ACE~△BCD;(2)若cos∠ABC=m,求;(用含m的代数式表示)(3)如图2,DE的中点为G,连接GO,若BD=a,cos∠ABC=,求OG的长.
重难点04圆的基本性质及直线与圆的位置关系考向一:垂径定理及其应用【题型1垂径定理及其推论】满分技巧1.圆中模型“知2得3”由图可得以下5点:①AB⊥CD;②AE=EB;③AD过圆心O;④;⑤;以上5个结论,知道其中任意2个,剩余的3个都可以作为结论使用。2.常做辅助线:连半径、作弦心距、见直接连弦长得直径所对圆周角1.(2023•宜昌)如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为()A.5 B.4 C.3 D.2【分析】根据垂径定理的推论得OB⊥AC,再根据勾股定理得OA===10,即可求出答案.【解答】解:∵AD=CD=8,∴OB⊥AC,在Rt△AOD中,OA===10,∴OB=10,∴BD=10﹣6=4.故选:B.2.(2023•广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m,拱高约为7m,则赵州桥主桥拱半径R约为()A.20m B.28m C.35m D.40m【分析】设主桥拱半径R,根据垂径定理得到AD=,再利用勾股定理列方程求解,即可得到答案.【解答】解:由题意可知,AB=37m,CD=7m,设主桥拱半径为Rm,∴OD=OC﹣CD=(R﹣7)m,∵OC是半径,OC⊥AB,∴AD=BD=AB=(m),在RtADO中,AD2+OD2=OA2,∴()2+(R﹣7)2=R2,解得R=≈28.故选:B.3.(2023•永州)如图,⊙O是一个盛有水的容器的横截面,⊙O的半径为10cm,水的最深处到水面AB的距离为4cm,则水面AB的宽度为cm.【分析】过点O作OD⊥AB于点C,交⊙O于点D,连接OA,由垂径定理可得AC=BC,然后在Rt△AOC中根据勾股定理求出AC的长,即可得出AB的长.【解答】解:如图,过点O作OD⊥AB于点C,交⊙O于点D,连接OA,∴,由题意知,OA=10cm,CD=4cm,∴OC=6cm,在Rt△AOC中,(cm),∴AB=2AC=16(cm),故答案为:16.4.(2023•东营)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言表达就是:如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,则直径CD的长度为寸.【分析】连接OA,设⊙O的半径是r寸,由垂径定理得到AE=AB=5寸,由勾股定理得到r2=(r﹣1)2+52,求出r,即可得到圆的直径长.【解答】解:连接OA,设⊙O的半径是r寸,∵直径CD⊥AB,∴AE=AB=×10=5寸,∵CE=1寸,∴OE=(r﹣1)寸,∵OA2=OE2+AE2,∴r2=(r﹣1)2+52,∴r=13,∴直径CD的长度为2r=26寸.故答案为:26.5.(2023•贵州)如图,已知⊙O是等边三角形ABC的外接圆,连接CO并延长交AB于点D,交⊙O于点E,连接EA,EB.(1)写出图中一个度数为30°的角:,图中与△ACD全等的三角形是;(2)求证:△AED∽△CEB;(3)连接OA,OB,判断四边形OAEB的形状,并说明理由.【分析】(1)⊙O是等边三角形ABC的外接圆,可知点O为外心,故CD为AB的中线、垂线、∠ACB平分线(三线合一),并利用HL定理证明△ACD≌△BCD;(2)利用两三角形两个对应角相等,可证明两三角形相似;(3)根据“在直角三角形中,30°角所对的直角边等于斜边的一半”,可证得四边形OAEB四条边相等,从而证明它为菱形.【解答】(1)解:∵已知⊙O是等边三角形ABC的外接圆,∴点O是等边三角形ABC的外心,∴CE⊥AB,∠1=∠2=30°.∴∠ADC=∠BDC=90°,又∵AC=BC,CD=CD,∴Rt△ACD≌Rt△BCD(HL定理).故答案为:∠1(答案不唯一),△BCD.(2)证明:∵∠ADE=∠CBE=90°,∠3=∠CAE﹣∠CAB=90°﹣60°=30°=∠2,∴△AED∽△CEB.(3)四边形OAEB为菱形.证明:∵∠CAE=90°,∠1=30°,∴AE=CE.同理可证,BE=CE.∴OA=OB=AE=BE,∴四边形OAEB为菱形.考向二:圆周角定理【题型2圆周角定理及其推论】满分技巧圆中模型“知1得4”由图可得以下5点:①AB=CD;②;③OM=ON;④;⑤;以上5个结论,知道其中任意1个,剩余的4个都可以作为结论使用。1.(2023•山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC=40°,则∠DBC的度数为()A.40° B.50° C.60° D.70°【分析】由圆周角定理可得∠BCD=90°,∠BDC=∠BAC=40°,再利用直角三角形的性质可求解.【解答】解:∵BD经过圆心O,∴∠BCD=90°,∵∠BDC=∠BAC=40°,∴∠DBC=90°﹣∠BDC=50°,故选:B.2.(2023•吉林)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A.70° B.105° C.125° D.155°【分析】利用圆周角定理求得∠BOC的度数,然后利用三角形外角性质及等边对等角求得∠BPC的范围,继而得出答案.【解答】解:如图,连接BC,∵∠BAC=70°,∴∠BOC=2∠BAC=140°,∵OB=OC,∴∠OBC=∠OCB==20°,∵点P为OB上任意一点(点P不与点B重合),∴0°<∠OCP<20°,∵∠BPC=∠BOC+∠OCP=140°+∠OCP,∴140°<∠BPC<160°,故选:D.3.(2023•宜宾)如图,已知点A,B,C在⊙O上,C为的中点.若∠BAC=35°,则∠AOB等于()A.140° B.120° C.110° D.70°【分析】连接OC,由∠BAC=35°,得∠BOC=2∠BAC=70°,又C为的中点.故∠AOC=∠BOC=70°,即知∠AOB=∠AOC+∠BOC=140°.【解答】解:连接OC,如图:∵∠BAC=35°,∴∠BOC=2∠BAC=70°,∵C为的中点.∴=,∴∠AOC=∠BOC=70°,∴∠AOB=∠AOC+∠BOC=140°,故选:A.4.(2023•阜新)如图,A,B,C是⊙O上的三点,若∠AOC=90°,∠ACB=25°,则∠BOC的度数是()A.20° B.25° C.40° D.50°【分析】先利用圆周角定理求出∠AOB=50°,然后利用角的和差关系进行计算,即可解答.【解答】解:∵∠ACB=25°,∴∠AOB=2∠ACB=50°,∵∠AOC=90°,∴∠BOC=∠AOC﹣∠AOB=40°,故选:C.5.(2023•苏州)如图,AB是半圆O的直径,点C,D在半圆上,,连接OC,CA,OD,过点B作EB⊥AB,交OD的延长线于点E.设△OAC的面积为S1,△OBE的面积为S2,若,则tan∠ACO的值为()A. B. C. D.【分析】如图,过C作CH⊥AO于H,证明∠COD=∠BOE=∠CAO,由,即,可得=,证明tan∠A=tan∠BOE,可得,设AH=2m,则BO=3m=AO=CO,可得OH=3m﹣2m=m,CH=m,再利用正切的定义可得答案.【解答】解:如图,过C作CH⊥AO于H,∵,∴∠COD=∠BOE=∠CAO,∵,即,∴,∵∠A=∠BOE,∴tan∠A=tan∠BOE,∴,即,设AH=2m,则BO=3m=AO=CO,∴OH=3m﹣2m=m,∴CH=,∴tan∠A==,∵OA=OC,∴∠A=∠ACO,∴tan∠ACO=;故选A.6.(2023•温州)如图,四边形ABCD内接于⊙O,BC∥AD,AC⊥BD.若∠AOD=120°,AD=,则∠CAO的度数与BC的长分别为()A.10°,1 B.10°, C.15°,1 D.15°,【分析】由平行线的性质,圆周角定理,垂直的定义,推出∠AOB=∠COD=90°,∠CAD=∠BDA=45°,求出∠BOC=60°,得到△BOC是等边三角形,得到BC=OB,由等腰三角形的性质求出圆的半径长,求出∠OAD的度数,即可得到BC的长,∠CAO的度数.【解答】解:连接OB,OC,∵BC∥AD,∴∠DBC=∠ADB,∴=,∴∠AOB=∠COD,∠CAD=∠BDA,∵DB⊥AC,∴∠AED=90°,∴∠CAD=∠BDA=45°,∴∠AOB=2∠ADB=90°,∠COD=2∠CAD=90°,∵∠AOD=120°,∴∠BOC=360°﹣90°﹣90°﹣120°=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB,∵OA=OD,∠AOD=120°,∴∠OAD=∠ODA=30°,∴AD=OA=,∴OA=1,∴BC=1,∴∠CAO=∠CAD﹣∠OAD=45°﹣30°=15°.故选:C.7.(2023•台湾)图1为一圆形纸片,A、B、C为圆周上三点,其中AC为直径,今以AB为折线将纸片向右折后,纸片盖住部分的AC,而AB上与AC重叠的点为D,如图2所示,若=35°,则的度数为何()A.105° B.110° C.120° D.145°【分析】由折叠的性质得到:、的度数相等,又AC是圆的直径,即可求出的度数.【解答】解:由折叠的性质得到:=,∵的度数=35°,AC是圆的直径,∴的度数=180°﹣35°﹣35°=110°.故选:B.8.(2023•武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BAC.(1)求证:∠AOB=2∠BOC;(2)若AB=4,,求⊙O的半径.【分析】(1)利用圆周角定理可得,,结合∠ACB=2∠BAC可证明结论;(2)过点O作半径OD⊥AB于点E,可得AE=BE,根据圆周角、弦、弧的关系可证得BD=BC,即可求得BE=2,,利用勾股定理可求解DE=1,再利用勾股定理可求解圆的半径.【解答】(1)证明:∵,,∠ACB=2∠BAC,∴∠AOB=2∠BOC;(2)解:过点O作半径OD⊥AB于点E,连接DB,∴AE=BE,∵∠AOB=2∠BOC,∠DOB=∠AOB,∴∠DOB=∠BOC.∴BD=BC.∵AB=4,,∴BE=2,,在Rt△BDE中,∠DEB=90°,∴,在Rt△BOE中,∠OEB=90°,OB2=(OB﹣1)2+22,解得,即⊙O的半径是.9.(2023•衡阳)如图,AB是⊙O的直径,AC是一条弦,D是弧AC的中点,DE⊥AB于点E,交AC于点F,交⊙O于点H,DB交AC于点G.(1)求证:AF=DF.(2)若AF=,sin∠ABD=,求⊙O的半径.【分析】(1)由D是弧AC的中点,得出,再由垂径定理得出,根据等弧所对圆周角相等得出∠ADH=∠CAD,即可证明出结论.(2)证明出∠ADE=∠B,得出tan∠ADE=,设AE=x,根据勾股定理求出x,再求出直径即可.【解答】(1)证明:∵D是弧AC的中点,∴,∵AB⊥DH,且AB是⊙O的直径,∴,∴,∴∠ADH=∠CAD,∴AF=DF.(2)解:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠B=90°,∵∠DAE+∠ADE=90°,∴∠ADE=∠B,∴sin∠ADE=,∴tan∠ADE=,设AE=x,则DE=2x,∵DF=AF=,∴EF=2x﹣,∵AE2+EF2=AF2,∴x=2,∴AD==2,∴AB=,∴AB=10,∴⊙O的半径为5.考向三:圆内接四边形【题型3圆内接四边形的性质及其推论】满分技巧1、性质:圆内接四边形对角互补;2、推论:圆内接四边形的任意一个外角等于它的内对角;1.(2023•西藏)如图,四边形ABCD内接于⊙O,E为BC延长线上一点.若∠DCE=65°,则∠BOD的度数是()A.65° B.115° C.130° D.140°【分析】根据邻补角互补求出∠DCB的度数,再根据圆内接四边形对角互补求出∠BAD的度数,最后根据圆周角定理即可求出∠BOD的度数.【解答】解:∵∠DCE=65°,∴∠DCB=180°﹣∠DCE=180°﹣65°=115°,∵四边形ABCD内接于⊙O,∴∠BAD+∠DCB=180°,∴∠BAD=65°,∴∠BOD=2∠BAD=2×65°=130°,故选:C.2.(2023•赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD的度数是()A.25° B.30° C.35° D.40°【分析】利用圆内接四边形的性质及圆周角定理求得∠BOD的度数,再结合已知条件求得∠COD的度数,然后利用圆周角定理求得∠CBD的度数.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠BCD=105°,∴∠A=75°,∴∠BOD=2∠A=150°,∵∠BOC=2∠COD,∴∠BOD=3∠COD=150°,∴∠COD=50°,∴∠CBD=∠COD=25°,故选:A.3.(2023•襄阳)如图,四边形ABCD内接于⊙O,点E在CD的延长线上.若∠ADE=70°,则∠AOC=度.【分析】首先根据圆内接四边形的性质得∠B=∠ADE=70°,再根据圆心角与圆周角的关系即可得出∠AOC的度数.【解答】解:∵四边形ABCD内接于⊙O,∠ADE=70°,∴∠B=∠ADE=70°,∴∠AOC=2∠B=140°.故答案为:140.4.(2023•北京)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.(1)求证DB平分∠ADC,并求∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.【分析】(1)由圆周角定理得到∠BAC=∠CDB,而∠BAC=∠ADB,因此∠ADB=∠CDB,得到BD平分∠ADC,由圆内接四边形的性质得到∠ABD+∠ADB=90°,即可求出∠BAD=90°;(2)由垂径定理推出△ACD是等边三角形,得到∠ADC=60°由BD⊥AC,得到∠BDC=∠ADC=30°,由平行线的性质求出∠F=90°,由圆内接四边形的性质求出∠FBC=∠ADC=60°,得到BC=2BF=4,由直角三角形的性质得到BC=BD,因为BD是圆的直径,即可得到圆半径的长是4.【解答】(1)证明:∵∠BAC=∠ADB,∠BAC=∠CDB,∴∠ADB=∠CDB,∴BD平分∠ADC,∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∴∠ABD+∠CBD+∠ADB+∠CDB=180°,∴2(∠ABD+∠ADB)=180°,∴∠ABD+∠ADB=90°,∴∠BAD=180°﹣90°=90°;(2)解:∵∠BAE+∠DAE=90°,∠BAE=∠ADE,∴∠ADE+∠DAE=90°,∴∠AED=90°,∵∠BAD=90°,∴BD是圆的直径,∴BD垂直平分AC,∴AD=CD,∵AC=AD,∴△ACD是等边三角形,∴∠ADC=60°∵BD⊥AC,∴∠BDC=∠ADC=30°,∵CF∥AD,∴∠F+∠BAD=180°,∴∠F=90°,∵四边形ABCD是圆内接四边形,∴∠ADC+∠ABC=180°,∵∠FBC+∠ABC=180°,∴∠FBC=∠ADC=60°,∴BC=2BF=4,∵∠BCD=90°,∠BDC=30°,∴BC=BD,∵BD是圆的直径,∴圆的半径长是4.考向四:三角形的外接圆与外心【题型4外心的确定及其性质】满分技巧1、三角形的外心:三角形三边中垂线的交点;实际画图时只需要画两条中垂线的交点即可!2、三角形外心的性质:三角形的外心到三角形三个顶点的距离相等;常做辅助线:连结三角形内心和顶点的线段1.(2023•陕西)如图,⊙O是△ABC的外接圆,∠A=72°.过点O作BC的垂线交于点D,连接BD,则∠D的度数为()A.64° B.54° C.46° D.36°【分析】连接CD,根据圆内接四边形的性质得到∠BDC=180°﹣∠A=108°,根据垂径定理得到E是边BC的中点,得到BD=CD,根据等腰三角形的性质得到∠ODB=∠ODC=∠BDC,即可求出∠ODB的度数.【解答】解:连接CD,∵四边形ABDC是圆内接四边形,∠A=72°,∴∠CDB+∠A=180°,∴∠BDC=180°﹣∠A=108°,∵OD⊥BC,∴E是边BC的中点,∴BD=CD,∴∠ODB=∠ODC=∠BDC=54°.故选:B.2.(2023•湖北)如图,在3×3的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点△ABC外接圆的一部分,小正方形边长为1,图中阴影部分的面积为()A.π﹣ B.π﹣ C.π﹣ D.π﹣【分析】作AB的垂直平分线MN,作BC的垂直平分线PQ,设MN与PQ相交于点O,连接OA,OB,OC,则点O是△ABC外接圆的圆心,先根据勾股定理的逆定理证明△AOC是直角三角形,从而可得∠AOC=90°,然后根据图中阴影部分的面积=扇形AOC的面积﹣△AOC的面积﹣△ABC的面积,进行计算即可解答.【解答】解:如图:作AB的垂直平分线MN,作BC的垂直平分线PQ,设MN与PQ相交于点O,连接OA,OB,OC,则点O是△ABC外接圆的圆心,由题意得:OA2=12+22=5,OC2=12+22=5,AC2=12+32=10,∴OA2+OC2=AC2,∴△AOC是直角三角形,∴∠AOC=90°,∵AO=OC=,∴图中阴影部分的面积=扇形AOC的面积﹣△AOC的面积﹣△ABC的面积=﹣OA•OC﹣AB•1=﹣××﹣×2×1=﹣﹣1=﹣,故选:D.3.如图,⊙O是锐角三角形ABC的外接圆,OD⊥AB,OE⊥BC,OF⊥AC.垂足分别为D,E,F,连接DE,EF,FD.若DE+DF=6.5,△ABC的周长为21,则EF的长为()A.8 B.4 C.3.5 D.3【分析】根据垂径定理得到AD=BD,AF=CF,BE=CE,根据三角形的中位线定理得到DE+DF+EF=(AB+BC+AC)==10.5,于是得到结论.【解答】解:∵OD⊥AB,OE⊥BC,OF⊥AC,∴AD=BD,AF=CF,BE=CE,∴DE,DF,EF是△ABC的中位线,∴DE=,∴DE+DF+EF=(AB+BC+AC)==10.5,∵DE+DF=6.5,∴EF=10.5﹣6.5=4,故选:B.4.(2023•呼和浩特)如图,△ABC内接于⊙O且∠ACB=90°,弦CD平分∠ACB,连接AD,BD.若AB=5,AC=4,则BD=,CD=.【分析】首先利用已知条件得到AB为直径,然后可以证明△ADB为等腰直角三角形,由此求出BD,接着把△ACD绕D逆时针旋转90°得到△DBE,证明△DCE为等腰直角三角形即可解决问题.【解答】解:∵△ABC内接于⊙O且∠ACB=90°,∴AB为⊙O的直径,∴∠ADB=90°,∴∠DAC+∠DBC=180°,∵弦CD平分∠ACB,∴∠ACD=∠BCD=45°,∴AD=BD,∵AB=5,AC=4,∴CB=3,AD=BD=,∴如图把△ACD绕D逆时针旋转90°得到△DBE,∴∠DBE=∠DAC,BE=AC,∴∠DBC+∠DBE=180°,∴C、B、E三点共线,∴△DCE为等腰直角三角形,∴CE=AC+BC=7,∴CD=DE=.故答案为:,.5.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点O作AC的垂线,垂足为D,分别交直线BC,于点E,F,射线AF交直线BC于点G.(1)求证AC=CG.(2)若点E在CB的延长线上,且EB=CG,求∠BAC的度数.(3)当BC=6时,随着CG的长度的增大,EB的长度如何变化?请描述变化过程,并说明理由.【分析】(1)作直径作AM,根据垂径定理得AC⊥EF,根据等腰三角形的性质和三角形的外角即可得到结论;(2)连接AE,过A作AH⊥BC于H,根据等腰三角形的性质和三角形内角和定理即可得到结论;(3)分三种情况讨论:当CG=6,当CG≥6,当3<CG<6,再根据相似证明即可.【解答】(1)证明:过A作直径AM,∵AB=AC,∴AM⊥BC,∴∠E+∠EOM=90°,∵AC⊥EF,∴∠OAD+∠AOD=90°,∴∠E=∠OAD,∵OA=OF,∴∠OAD+∠DAF=∠AFO=∠E+∠G,∴∠DAF=∠G,AC=CG;(2)解:BAG=∵AB=AC,AM⊥BC,∴∠BAM=∠CAM,设∠BAM=∠CAM=2α,∴∠ABC=∠ACB=(180°﹣∠BAC)=90°﹣2α,∵AC=CG,∴∠CAG=∠CGA=45°﹣α,∴∠BAG=2α+2α+45°﹣α=45°+3α,如图:连AE,∵EF⊥AC,又EF过圆心,∴EF垂直平分AC,∴EC=AE,∵BH=HC,又EB=CG,∴HE=HG,∴AM垂直平分EG,∴AE=AG,∴EC=AG,∵EB=CG,∴EB+BC=BC+CG,∴EC=BG,∴AG=BG,∴∠BAG=∠ABG,∴45°+3α=90°﹣2α,∴α=9°,∴∠BAC=4α=36°;(3)答:当CG=6,BE=0;当CG≥6时,BE随CG的增大而增大;当3<CG<6时,BE随CG的增大而减小.说明:①当BE=0时,即点E与B重合,在△BOH和△AOD中,,∴△BOH≌△AOD(AAS),∴AD=BH=3,∴AC=2AD=6,∴AB=AC=BC=6,∴△ABC为等边三角形,∴∠BAC=∠ACB=60°,∴∠CAG=30°,∠CAG+∠G=60°,∴∠G=30°=∠CAG,∴CA=CG=6;②当CG≥6时,如图:∵∠E=∠CAH,∠EDC=∠AHC=90°,∴△ACH~△ECD,∴,∴,∴=,∴BE=CG2﹣6,∴BE随CG的增大而增大.③当3<CG<6时,如图,∵∠ACM=∠DCE,∠EDC=∠AMC=90°,∴△AMC~△EDC,∴,∴,∴,∴BE=﹣CG2+6,∴BE随CG的增大而减小.综上所述:当CG≥6时,BE随CG的增大而增大;当3<CG<6时,BE随CG的增大而减小.考向五:直线与圆的位置关系【题型5直线与圆的位置关系的确定】满分技巧直线与圆的位置关系的确定方法:1.(2023•宿迁)在同一平面内,已知⊙O的半径为2,圆心O到直线l的距离为3,点P为圆上的一个动点,则点P到直线l的最大距离是()A.2 B.5 C.6 D.8【分析】根据圆心到直线l的距离为3,而圆的半径为2,此时直线与圆相离,当点P在⊙O上运动时,当点P在BO的延长线与⊙O的交点时,点P到直线l的距离最大,根据题意画出图形进行解答即可.【解答】解:如图,由题意得,OA=2,OB=3,当点P在BO的延长线与⊙O的交点时,点P到直线l的距离最大,此时,点P到直线l的最大距离是3+2=5,故选:B.2.(2023•镇江)已知一次函数y=kx+2的图象经过第一、二、四象限,以坐标原点O为圆心,r为半径作⊙O.若对于符合条件的任意实数k,一次函数y=kx+2的图象与⊙O总有两个公共点,则r的最小值为.【分析】在y=kx+2中,令x=0,则y=2,于是得到一次函数y=kx+2的图象与y轴交于(0,2),求得一次函数过定点(0,2),当⊙O过(0,2)时,两者至少有一个交点,根据一次函数经过一、二、四象限,得到直线与圆必有两个交点,而当⊙O半径小于2时,圆与直线存在相离可能,于是得到结论.【解答】解:在y=kx+2中,令x=0,则y=2,∴一次函数y=kx+2的图象与y轴交于(0,2),∴一次函数过定点(0,2),当⊙O过(0,2)时,两者至少有一个交点,∵一次函数经过一、二、四象限,∴直线与圆必有两个交点,而当⊙O半径小于2时,圆与直线存在相离可能,∴半径至少为2,故r的最小值为2,故答案为:2.考向六:切线的性质与判定【题型6切线的性质】满分技巧切线的性质:经过切点的半径垂直于圆的切线;延伸:经过切点的直径也垂直于圆的这条切线常用辅助线及规律:见切点,连半径,得垂直!2、切线长定理:过圆外一点所作的圆的两条切线长相等;1.(2023•重庆)如图,AC是⊙O的切线,B为切点,连接OA,OC.若∠A=30°,AB=2,BC=3,则OC的长度是()A.3 B. C. D.6【分析】根据切线的性质得到OB⊥AC,求得∠ABO=∠CBO=90°,得到OB=AB=2,根据勾股定理即可得到结论.【解答】解:连接OB,∵AC是⊙O的切线,∴OB⊥AC,∴∠ABO=∠CBO=90°,∵∠A=30°,AB=2,∴OB=AB=2,∵BC=3,∴OC===,故选:C.2.(2023•眉山)如图,AB切⊙O于点B,连结OA交⊙O于点C,BD∥OA交⊙O于点D,连结CD,若∠OCD=25°,则∠A的度数为()A.25° B.35° C.40° D.45°【分析】连接OB,由切线的性质得到∠ABO=90°,由平行线的性质得到∠D=∠OCD=25°,由圆周角定理得出∠O=2∠D=50°,因此∠A=90°﹣∠O=40°.【解答】解:连接OB,∵AB切⊙O于B,∴半径OB⊥AB,∴∠ABO=90°,∵BD∥OA,∴∠D=∠OCD=25°,∴∠O=2∠D=50°,∴∠A=90°﹣∠O=40°.故选:C.3.(2023•山西)中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为A,曲线终点为B,过点A,B的两条切线相交于点C,列车在从A到B行驶的过程中转角α为60°.若圆曲线的半径OA=1.5km,则这段圆曲线的长为()A. B. C. D.【分析】由圆的切线可得∠OAC=∠OBC=90°,进而可证明A、O、B、C四点共圆,利用圆内接四边形的性质可求得∠AOB=60°,再根据弧长公式计算可求解.【解答】解:∵过点A,B的两条切线相交于点C,∴∠OAC=∠OBC=90°,∴A、O、B、C四点共圆,∴∠AOB=α=60°,∴圆曲线的长为:(km).故选:B.4.(2023•武汉)如图,在四边形ABCD中,AB∥CD,AD⊥AB,以D为圆心,AD为半径的弧恰好与BC相切,切点为E,若,则sinC的值是()A. B. C. D.【分析】连接DB、DE,设AB=m,由=得CD=3AB=3m,再证明AB是⊙D的切线,而⊙D与BC相切于点E,则BC⊥DE,由切线长定理得EB=AB=m,∠CBD=∠ABD,由AB∥CD,得∠ABD=∠CDB,则∠CBD=∠CDB,所以CB=CD=3m,CE=2m,由勾股定理得DE==m,即可求得sinC==,于是得到问题的答案.【解答】解:连接DB、DE,设AB=m,∵=,∴CD=3AB=3m,∵AD是⊙D的半径,AD⊥AB,∴AB是⊙D的切线,∵⊙D与BC相切于点E,∴BC⊥DE,EB=AB=m,∠CBD=∠ABD,∵AB∥CD,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD=3m,∴CE=CB﹣EB=3m﹣m=2m,∵∠CED=90°,∴DE===m,∴sinC===,故选:B.5.如图,在Rt△ABC中,∠C=90°,点D在斜边AB上,以AD为直径的半圆O与BC相切于点E,与AC相交于点F,连接DE.若AC=8,BC=6,则DE的长是()A. B. C. D.【分析】首先求出AB=10,先证△BOE和△BAC相似,由相似三角形的性质可求出OE,BE的长,进而可求出CE的长和AE的长,然后再证△BDE和△BEA相似,最后利用相似三角形的性质即可求出DE.【解答】解:在Rt△ABC中,∠C=90°,AC=8,BC=6,由勾股定理得:,连接AE,OE,设⊙O的半径为r,则OA=OE=r,∴OB=AB﹣OA=10﹣r,∵BC与半圆相切,∴OE⊥BC,∵∠C=90°,即AC⊥BC,∴OE∥AC,∴△BOE∽△BAC,∴,即:,由得:,由得:,∴,在Rt△ACE中,AC=8,,由勾股定理得:,∵BE为半圆的切线,∴∠BED=∠BAE,又∠DBE=∠EBA,∴△BDE∽△BEA,∴,∴DE•AB=BE•AE,即:,∴.故选:B.6.(2023•青岛)如图,在平面直角坐标系中,已知点A(1,0),P(﹣1,0),⊙P过原点O,且与x轴交于另一点D,AB为⊙P的切线,B为切点,BC是⊙P的直径,则∠BCD的度数为°.【分析】先根据点A,P的坐标得OP=OA=1,进而得⊙P的半径为1,然后再在Rt△ABP中利用锐角三角函数求出∠BAP=30°,进而得∠BPA=∠CPD=60°,最后再证△CPD为等边三角形即可求出∠BCD的度数.【解答】解:∵点A(1,0),P(﹣1,0),∴OP=OA=1,∴AP=OP+OA=2∵⊙P过原点O,∴OP为⊙P的半径,∵AB为⊙P的切线,∴PB⊥AB,PB=OP=1,在Rt△ABP中,BP=1,AP=2,sinA=PB/AP=1/2,∴∠BAP=30°,∴∠BPA=60°,∴∠CPD=60°,又∵PC=PD,∴三角形CPD为等边三角形,∴∠PCD=60°,即∠BCD的度数为60°.故答案为:60.7.(2023•北京)如图,OA是⊙O的半径,BC是⊙O的弦,OA⊥BC于点D,AE是⊙O的切线,AE交OC的延长线于点E.若∠AOC=45°,BC=2,则线段AE的长为.【分析】根据切线的性质得到∠A=90°,根据等腰直角三角形的性质得到OD=CD,OA=AE,根据垂径定理得到CD=,于是得到结论.【解答】解:∵OA是⊙O的半径,AE是⊙O的切线,∴∠A=90°,∵∠AOC=45°,OA⊥BC,∴△CDO和△EAO是等腰直角三角形,∴OD=CD,OA=AE,∵OA⊥BC,∴CD=,∴OD=CD=1,∴OC=OD=,∴AE=OA=OC=,故答案为:.8.(2023•衢州)如图是一个圆形餐盘的正面及其固定支架的截面图,凹槽ABCD是矩形.当餐盘正立且紧靠支架于点A,D时,恰好与BC边相切,则此餐盘的半径等于cm.【分析】连接OA,过点O作OE⊥BC,交BC于点E,交AD于点F,则点E为餐盘与BC边的切点,由矩形的性质得AD=BC=16cm,AD∥BC,∠BCD=∠ADC=90°,则四边形CDFE是矩形,OE⊥AD,得CD=EF=4cm,∠AFO=90°,AF=DF=8cm,设餐盘的半径为xcm,则OA=OE=xcm,OF=(x﹣4)cm,然后由勾股定理列出方程,解方程即可.【解答】解:由题意得:BC=16cm,CD=4cm,如图,连接OA,过点O作OE⊥BC,交BC于点E,交AD于点F,则∠OEC=90°,∵餐盘与BC边相切,∴点E为切点,∵四边形ABCD是矩形,∴AD=BC=16cm,AD∥BC,∠BCD=∠ADC=90°,∴四边形CDFE是矩形,OE⊥AD,∴CD=EF=4cm,∠AFO=90°,AF=DF=AD=×16=8(cm),设餐盘的半径为xcm,则OA=OE=xcm,∴OF=OE﹣EF=(x﹣4)cm,在Rt△AFO中,由勾股定理得:AF2+OF2=OA2,即82+(x﹣4)2=x2,解得:x=10,∴餐盘的半径为10cm,故答案为:10.(多选)9.(2023•湘潭)如图,AC是⊙O的直径,CD为弦,过点A的切线与CD延长线相交于点B,若AB=AC,则下列说法正确的是()A.AD⊥BC B.∠CAB=90° C.DB=AB D.AD=BC【分析】利用圆周角定理即可判断A;根据切线的性质即可判断B;利用等腰直角三角形的性质即可判断C;利用直角三角形斜边中线的性质即可判断D.【解答】解:A、∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,故A正确;B、∵AC是⊙O的直径,AB是⊙O的切线,∴CA⊥AB,∴∠CAB=90°,故B正确;C、∵∠CAB=90°,AB=AC,∴∠B=45°∵AD⊥BC,∴BD=AB,故C错误;D、∵AC=AB,AD⊥BC,∴CD=BD,∵∠CAB=90°,∴AD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 粮食仓储企业绿色评价体系考核试卷
- 硅冶炼过程中的热效率分析与改进考核试卷
- 纤维原料的产销模式和渠道建设考核试卷
- 2023-2024学年广东省佛山市名校高二下学期期中联考语文试题(解析版)
- 硕士生求职攻略
- 吉林省四平市铁西区重点中学2024-2025学年初三下-(期中)物理试题试卷含解析
- 宁夏民族职业技术学院《外国文学作品原著》2023-2024学年第二学期期末试卷
- 九江职业大学《机器学习与模式识别I(双语)》2023-2024学年第二学期期末试卷
- 私立华联学院《游戏中的数学》2023-2024学年第一学期期末试卷
- 四川省成都市崇州市2025届四年级数学第二学期期末综合测试试题含解析
- 2025高级铁路车辆钳工核心备考试题库及答案(浓缩300题)
- 2024年大学生就业力调研报告-智联招聘-202405
- 腰椎间盘突出症护理讲课
- 体检中心知识试题及答案
- 项目一废旧物品变折扇(教案)-2024-2025学年皖教版(2023)劳动四年级上册
- 乳腺结节健康教育课件
- 学校食堂副食品配送服务投标方案(技术方案)
- 2025年共青团入团考试测试题库及答案
- 私人教练运动指导免责声明书
- 第二单元《我的语文生活》公开课一等奖创新教学设计-(同步教学)统编版语文七年级下册名师备课系列
- 2025年租房合同房东模板
评论
0/150
提交评论